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Abstract

In flow assurance issues, asphaltene precipitéti@nude oil tends to block the wellbore, the pretibn tubing,

the flowlines and as well as surface facilitiegrédby reducing the quantity of crude oil that coboédrecovered
during recovery, hence there is need to predictotimet conditions under which asphaltene wouldipitate.

Previous models (thermodynamic/colloidal) attemptptedict the onset of asphaltene precipitatiomgishe

solubility parameter, crude oil/n-alkane mixturedathe refractive index of asphaltene. However, ttu¢he

constraint in handling numerous and complex datateis work attempts to predict the onset of aipha

precipitation (onset solvent to bitumen/asphalteti® as a function of temperature and pressuieptificial

neural networkNeur osolution 6).

The results obtained show that the onset solvemirigin ratio obtained using the neural network Wasecto the
experimental (desired) onset solvent bitumen réM&E of 0, Err% 0.0553 for the training set and MSE of
0.006581, Err% of3.343 for the testing set) with an average absoluteadieni of3.56.

Artificial neural network is a robust predictiveoldor predicting the onset of asphaltene precifitain heavy
crude oil.
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1. Introduction

Crude oils have complex composition; hence charizetéon by the individual molecular types is naispible.
Instead, hydrocarbon group type analysis is comynemiployed. In the oil field, asphaltenes are kestvn for
clogging wells, flowlines, surface facilities andbsurface formations. Asphaltenes are high-molecutghts
solids which are soluble in aromatic solvents saslbenzene and toluene and insoluble in parafioigents.
Its precipitation is one of the most common proldeim both oil recovery and refinery process. Asferad
precipitation depends on the composition of theesul temperature and pressure. In oil recovepe@ally in
gas injection, formation of asphaltene aggregatadlowing their deposition causes blocking in theservoir.
This makes the remedial process costly and sometimeconomical. Unfortunately, there is no predécti
model for asphaltene problem treatment. Hencerieessary to predict the amount of asphalteneptiagon
as pre-emptive measure. The major questions indasiich problems are “how” and “how much” heavyaoig
compounds will precipitate in operational condiso®ver the years, many researchers have triethdotlie
answer. They introduced experimental proceduresewen analytical models, but a fully satisfactory
interpretation is still lacking. The problem is yetifficult mainly because of the fuzzy nature sphaltene and
the large number of parameters affecting precipitat

Predicting the onset condition of asphaltene pitipn helps in decision making pertaining to fhasing of
chemicals to combat the problem of asphaltene jpitation.

The existing models used in asphaltene precipitdad into three categories: firstly, Moleculaetimodynamic
models in which asphaltenes are dissolved in caildend crude oil forms a real solution. The vaijdof such
models depends on the reversibility of asphalteneeipitation. Reversibility experiments stronglypport this
type of models. Secondly, colloidal models in whiabphaltene is suspended in crude oil and pepligedsins.
The asphaltene precipitation is irreversible inhsnwodels. Reversibility experiments are stronglgiast this
type of models. Thirdly, Models based on scalingagipn, in which the properties of complex asphedteare
not involved.

However, artificial neural network, an informatiprocessing paradigm that is inspired by the waybtbtogical
nervous system such as the brain process informatm be used to predict the solvent bitumen rasica
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function of temperature and pressure.

The objective of this study is to predict the onsétasphaltene precipitation (onset solvent to rbén
(asphaltene) ratio) using artificial neural network

11 Flow Assurance | ssues with Asphaltene Precipitation

Flow assurance issues such as asphaltene depa@siiame of the important areas being studied tddayto the
high cost of deep-water E&P (Exploration and Prdidng. Thus, effective measurements to understand
asphaltene phase behavior in the reservoir flue raquired. The flow assurance issues in deep-vaater
primarily due to the deposition of solids in theguction path. The tentative areas of solids déjposiamongst
others can be as follows (Figurel.0): near wellbb@gion, production, subsea wellhead, subsea fi@sliand
separators. The combination of an integrated pramluenodel (IPM) with asphaltene and wax thermodaigita
models (Gonzalez et al, 2007) improves means tonat solid formation due to variations in pressure
temperature and composition during the life of phgject.

1.2 Asphaltene Precipitation Onsets and Amount

At atmospheric conditions, the most common metlwoddtermine the precipitation onset is the titratid oil
against the precipitating solvents (Andersen, 1988¢roscopic examination of an oil-solvent mixtuisealso
adapted by some authors (Buckley, 1996). The mosinton methods for oils under high pressure and
temperature are light scattering technique witlear+infrared light source and high pressure miapsqHPM)
systems (Hammami and Ratulowski, 2007). HPM alldwsct visual observation of multiple phases présg¢n
elevated pressure and temperature. Overall, optietihods are usually limited to light oils with l@gphaltene
content because of the limitation on the opacitgitsf. Other methods with physical property measwnets are
used when the low light transmittance is encoudtere

Amount of precipitation is usually measured usinlgration (Leontaritis et al., 1994) and centriftiga
(Akbarazadeh et al., 2005; Tharanivasan et al.9R®chniques for oils at atmospheric conditiomstHese
techniques, the oil is mixed with an appropriatvesat and filtered or centrifuged. However, varidilgsation
techniques are adapted for oils at elevated pressamd temperatures to measure the precipitatiayuats
(Peramanu et al.,, 1999; Edmonds et al., 1999; Fadtiral., 2004; Negahban et al., 2005). HPM system
(Figure2.6) coupled with post-filtration technigiseadapted widely for such amount measurements (fam
and Ratulowski, 2007). Jamaluddin et al (2002})joted the onset of asphaltene precipitation ugiragimetric
technique.

2.0 M ethodology
2.1 Description of The Neural Model

The Artificial neural network (Neurosolution 6) cists of different networks such as the multilagerceptron,
generalized feed forward, modular neural netwookgddn/Elman network, Principal component analyBiSA),
recurrent network, the Time-lag recurrent networttk. eThe Multilayer perceptron and the generalized
feedforward model are used in predicting the oasbtent-bitumen (asphaltene) ratio. The amounsphaltene
precipitate in heavy crude oil is a function of el parameters such as temperature, the presheréPI
gravity, the PH value of the crude oil solvent mangt, the viscosity of the crude oil and the amafraromatic
compounds present in the formation.

Knowledge of the onset solvent ratio at which poiation of asphaltene will occur is crucial in @mstanding
the fluid property and in remedial work carried twtensure there is improved oil recovery from shbsurface
to the surface facilities.

The onset solvent to bitumen ratio is taken amatfon of the temperature and the pressure ingbervoir.
Mathematically;
Onset Solvent/Bitumen = F (T, P) 13

Where T is the temperature in Kelvin, P is the pues in Bar and S/B is the ratio between the solaed the
bitumen.
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2.2 BACK PROPAGATION CONCEPT

In order to train a neural network to perform samesk, we must adjust the weights of each unit suelay that
the error between the desired output and the acwiut is reduced. This process requires thatnéheral
network compute the error derivative of the weigfEsV). In other words, it must calculate how theoer
changes s each weight is increased or decreagbtlysliThe back propagation algorithm is the mostaely used
method for determining the EW. The algorithm conegutach EW by first computing the EA, the rate laicty
the error changes as the activity level of a umithanged. For output unit, the EA is simply thffedénce
between the actual and the desired output. To ctenthe EA for a hidden unit in the layer just beftine output
layer, we first identify all the weights betweeitidden unit and the output unit to which it @moected.

2.3 INPUTING TRAINING DATA

Parameters such as pressure, temperature andgeesmivent to bitumen ratio (onset S/B) were itgzlinto

the network builder. The onset solvent to bitumatior (S/B) was taken as the output parameter wihiée
pressure (Bar) and the temperature (K) were taleinput parameters. The mixture number was skipped
because they are not affecting the output (24 Wataused for training) (Tablel).

Table 1: Input Data Set Used for Training Network (MasoRdhim, 2007)

PRESS(BAR) TEM(K) ONSETS/B
177 465 0.10
186 455 0.20
194 445 0.30
202 435 0.40
211 425 0.50
219 415 0.60
227 405 0.70
236 395 0.80
244 385 0.90
252 375 1.00
261 365 1.10
269 355 1.20
277 345 1.30
286 335 1.40
294 325 1.50
302 315 1.60
311 305 1.70
319 295 1.80
327 285 1.90
336 275 2.00
344 265 2.10
352 255 2.20
361 245 2.30
369 235 2.40
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24 CROSSVALIDATION AND TESTING OF IMPUTED DATA

After the data were imputed, the test data sete wpecified (Table 2). Cross validation is higrdggmmended
method for stopping network training. The perceatafjtraining data for CV and the percentage dhing data
for testing was read from existing files (in tabigh format). This method monitors the error oniadependent
set of data and stops training when this errorrsetp increase (point of best generalization). &te(l1) data
was used to test the network.

Table 2: Data Used for Testing (Masoudi Rahim, 2007)

PRESS(BAR) TEM(K) ONSETS/B
377 225 2.50
386 215 2.60
394 205 2.70
402 195 2.80
411 185 2.90
419 175 3.00
427 165 3.10
436 155 3.20
444 145 3.30
452 135 3.40
461 125 3.50

2.5 HIDDEN LAYER

A LinearAxon transfer file and a Levenberg Marquadtion as learning rule were used in each of #ngral
models selected with the number of processing elesmepecified. The number of PEs for the outpugdayas
determined by the number of columns selected addhiged response (in this case one).

2.6 OUTPUT LAYER

A LinearAxon transfer and the Levenberg Marqua fiemcas the learning rule with one (1) processilegnent.
The parameters selected in this layer are depemdethie neural model, but all require a nonlingdtihction to
specify the behaviour of the PEs. The number ofiBEstermined by the number of columns selectatkased
response.

2.7 SUPERVISED LEARING CONTROL

In this control unit, the number of iterations weawied from five (5) to fifteen (15) epochs in thaultilayer
perceptron model and five (5) epoch in the gerezdlfeedforward model.
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2.8 PROBE CONFIGURATION

The input was configured in a bar-chart format @ltile desired and the output were configured iata-driter
format. General performance measures such as tha swguare error (MSE), correlation factor (r), dhe
percentage error (%err) were used to check thepaance after building the network.

29 TESTING

The next thing was to test the network by imputihg test data (table 2) from the existing testiihgy fThe
result was shown as the output in contrast withdéngred fed into the network.

3.0 Result and Discussion

The best neural network model used in predictirggdhset solvent bitumen ratio in this work is theltiayer
perceptron model using linear Axon transfer functefter five (5) iterations i.e epoch = 5. The ntayter
perceptron models using linear Axon as transfectfan were chosen by means of the mean square (MQRE),
the coefficient of variation (r) and the percenteg®r (err%).

31 PERFORMANCE ANALYSIS

From the performance analysis (table 3), using &pechs with the multilayer perceptron network, thean
square error for the training data set is approtetyazero, the percentage errorOi€553 (though larger than
values of higher number of runs) and the mean sgeapr for the data used to test the modéld66581, and
the percentage error 3343 (comparing the errors of both the training andingsfile, the values of the first run
were relatively better and close to the desirediegineeded to be predicted with the artificial abaetwork
(Neurosolution 6); invariably, this result was alsetter than results using the generalized feedfatwetwork
(Table 5) (which produced a mean square errod.808, 0.978 for training and testing respectively and
percentage error 164.03, 40.227 respectively). Similarly, trials of other netwopkoduced greater erroneous
results, so only the multilayer perceptron netwackurately yielded closed results.

Table 3 : Performance Measure of the MLP

TRAINING
Epoch5 Run#1 Run#2 Run#3 Run#4
'MSE 0 0 0 o0
R 1 1 1 1
%Err 0.0553 0.000297 0.0000636 0.01915
TESTING

MSE 0.006581 0.0067 0.00669 0.006641

r 1 1 1 1
%Err 3.343 3.371 3.371 3.358
Epoch10 TRAINING
MSE 0 0.00092 0
r 1 1 1
%Err 0 4.456 0
TESTING
MSE 0.006694 0.1727 0.0067
r 1 0.999 1
%Err 337,112 17.0799 3.37112
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'GENERALIZED ~ FEEDFORWARD |
NETWORK
Training Testing

Epoch5

MSE 1.308 0.978

R -0.993 0.953

%Err 264.03 40.227

3.2 PREDICTED RESULTSUSING THE NETWWORK

Results obtained using Neurosolution to predict dinset solvent bitumen ratio (Table 5) have an ayer
Absolute Deviation 08.56.

Table 5: Absolute Deviation of the ANN values from the Dedi Results

EXPERIMENTAL OL'T'I"\lPNUT DEV ABSDE AD%
2.50 2.5990 0.0990 0.0396 3.96
2.60 2.6998 0.0998 0.0384 3.84
2.70 2.7993 0.0993 0.0368 3.68
2.80 2.8988 0.0988 0.0353 3.53
2.90 2.9996 0.0996 0.0343 3.43
3.00 3.0992 0.0992 0.0331 3.31
3.10 3.1987 0.0987 0.0318 3.18
3.20 3.2995 0.0995 0.0311 3.11
3.30 3.3990 0.0990 0.0300 3.00
3.40 3.4985 0.0985 0.0290 2.90
3.50 3.5993 0.0993 0.0284 2.84

3.3 DISPLAY OF THE ANN OUTPUT AND THE TEMPERATURE
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Figures 1 and Figure 5 show the distribution ofelperimental (desired) onset solvent bitumen r@giedicted
by the Neuro-solution) as a function of the temper (K) with the equation of best fit. As the tesngture of
the solvent bitumen mixture increases, the ondgesbbitumen ratio decreases correspondingly attig an
inverse relationship between the temperature andiiset solvent bitumen ratio.

ANN S/B AGAINST TEMPERATURE
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Figure 1: ANN Solvent/Bitumen (S/B) against Temperature (K)

34 DISPLAY OF ANN OUTPUT AND THE PRESSURE (BAR)

Figures 2 and Figure 4 show the relationship betwtde onset solvent bitumen ratio (predicted by the
Neurosolution) and the corresponding pressure ef risulting mixture. The onset solvent bitumenorati
increases as the pressure increase. That is tle¢ soisent bitumen ratio is directly proportionalthe pressure

in which the mixture is subjected to. At constahperature, the liquid density increases as preseaareases.
Thus, an increase in pressure raises asphalteugilgglthat in turn increases the onset dilutiatic.
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Figure.2: Ann Solvent/Bitumen(S/B) against Pressure (bar)
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35 COLLAPSE OF THE DESIRED OUTPUT AGAINST THE ANN RESULT

The plot (Figure 3) of the results obtained using Neurosolution against the desired output of tbeskrent
bitumen ratio shows a linear relationship and dgoeregression profile with the coefficient of regsion as one.

COLLAPSE OF RESULTS OBTAINED FRONM ANN
AND DESIRED RESULTS
4.0000 - y=0.9996x+ 0.1003
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il >
3.5000 /’,A/-&"*"
3.0000 **’*4
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< 1.5000
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0.5000
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EXPERIMENTAL RESULTS

Figure.3: ANN Result versus Experimental Result

3.6 COMPARING RESULTSFROM ANN AND EXPERIMENT (DESIRED) RESULTS

The onset solvent bitumen ratio shows an inversgioaship with the temperature and a direct retathip with
the pressure of the mixture (Figure 4 and FigureThe values obtained using artificial neural netwaas
slightly lower than the desired values of onseteal bitumen ratio. However, results obtained fithe network
gave a good match for the needed results, andchs the network can be used to predict onset sbhitumen
ratio given the temperature and the correspondiaegsuire.

EXP AND ANN S/B AGAINST PRESSURE(BAR)
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Figure 4: ANN and Experimental Results Versus Pressure
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Figure5: Comparing of Ann and Experimental Results (delsiesult) Versus Temperature
4.0 CONCLUSION

The onset solvent to bitumen ratio was accuratedglipted in this work using the multilayer perceptmodel,
the LinerAxon as a transfer file and the Levenbargrqua as transfer function with an average absolut
deviation 0f3.56. Results obtained with ANN were compared withirdesresults from literature only, because
the models used the onset solvent to bitumen (éspled ratio as a function of temperature and piress At
constant temperature and solvent to bitumen rati@seasing pressure increases asphaltene sojulitiich in
turn raises onset dilution ratio. Thus, the modetlets the pressure effect correctly but qualitdyi.

Asphaltene precipitate can be removed using aronwilvents but the best practice is to prevent from
precipitating. As Asphaltene precipitation is predieantly due to fall in pressure, enhance oil rexgwshould

be encouraged to increase the pressure beyondiiet asphaltene will form precipitate and causekage in
the tubing and surface facilities.

5.0 RECOMMENDATION
The following recommendation stem from the restithe study and the observations made during tnayst

1. The complex relationship studied by the artifiai@ural network between input and output (desired)
should be developed into a mathematical equatioslltav subsequent use of the network whenever
needed.

2. Asphaltene precipitation problem can best be sobsedsing suitable solvents like toluene to prevent
asphaltene from forming precipitate which is a éltte oil recovery.
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