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ABSTRACT:  The We find common random fixed point of two random operator in closed 

convex subset of separable Hilbert space by considering a sequence of measurable function 

satisfying condition A,B and C. 
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1. INTRODUCTION AND PRELIMINARIES  
     Random nonlinear analysis has grown into an active research area closely associated 

with the study of random nonlinear operators and their properties needed in solving nonlinear 

random operator equations (see [9, 14, 17]). The study of random fixed point theory was 

initiated by the Prague school of probabilists in the 1950’s([11, 23]). Random fixed point 

theorems are of tremendous importance in probabilistic functional analysis as they provide a 

convenient way of modelling many real life problems and random methods have also 

revolutionized the financial markets. The survey article by bharucha -Reid [10] in 1976 

attracted the attention of several mathematicians and gave wings to this theory. Itoh [13] 

extended Spacek’s and Hans’s theorems to random multivalued contraction mappings. In 

recent years, alot of efforts have been made ([4, 5, 6, 7, 8, 12, 18, 19], and references therein) 

to show the existence of random fixed points of certain random single valued and multivalued 

operators and various applications in diverse area from pure mathematics to applied sciences 

have been explored. 

  Theorem 1.1 (Banach’s contraction principle) Let (X,d) be a complete metric space,

c (0,1) and f: X→X be a mapping such that for each x, y ∈X, d (fx,fy) cd x,y   Then f has a 

unique fixed point a ∈X, such that for each x ∈ X, lim n

n f x a  . 

  After the classical result, Kannan [20] gave a subsequently new contractive mapping to 

prove the fixed point theorem. Since then a number of mathematicians have been worked on 

fixed point theory dealing with mappings satisfying various type of contractive conditions. 

The aim of this paper is to generalize some mixed type of contractive conditions to the 

mapping and then a pair of mappings satisfying general contractive mappings such as Kannan 

type [20], Zamfirescu type [24], etc. 
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   In recent years, the study of random fixed points has attracted much attention. Some of the 

recent literatures in random fixed point may be noted in  Rhoades [1], and Binayak S. 

Choudhary [2].In this paper, we construct a sequence of measurable functions and consider its 

convergence to the common unique random fixed point of two continuous random operators 

defined on a non-empty closed subset of a separable Hilbert space. For the purpose of 

obtaining the random fixed point of the two continuous random operators. We have used a 

rational inequality (from B. Fisher [3] and S.S. Pagey [21]) and the parallelogram law. 

Throughout this paper, (Ω, Σ) denotes a measurable space consisting of a set Ω and sigma 

algebra Σ of subsets of Ω, H stands for a separable Hilbert space and C is a nonempty closed 

subset of H. 

Definition 1.2.   A function f: Ω → C is said to be measurable if
1( )f B C    for every 

Borel subset B of H. 

Definition 1.3. A function :F C C  is said to be a random operator if (., ) :F x C is 

measurable for every x C  

Definition 1.4. A measurable :g C is said to be a random fixed point of the random 

operator :F C C   if  ( , ( )) ( )F t g t g t  for all t  

Definition 1.5. A random operator F: Ω×C → C is said to be continuous if for fixed   t , 

( ,.) :F t C C  is continuous. 

                    2. MAIN RESULTS  

Theorem 2.1. Let X  be a Hilbert space and K be non empty bounded closed convex subset 

of X .  1 2, :T T K K   be such that 

.

 

2 2 2 2

1 2 1 2 1 3 1

2 2

4 2 1

A. ( ,g (t)) ( , (t)) g (t) (t) g (t) ( ,g (t) (t) ( ,g (t)

max g (t) ( , (t) , (t) ( ,g (t)

n n n n n n n n

n n n n

T t T t f f T t f T t

T t f f T t

  



      

  
 

Where 0, 1,2,3,4,5i i   and 1 2 3 42 11 11 8 2        

B.    1T F F iff 2T F F for every convex subset F of K. 

 

 

1 1
(t) F (t) F

. Either g (t) ( ,g (t) (F) or (t) ( , (t) (F)
n n

n n n n
g f

C Sup T t Sup f T t f 
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for every non empty bounded closed convex subset F of  K which is mapped into itself  by 1T

or 2T then 1T and 2T have common random fixed point in X .                   

Proof:  Let Y be the family of all non empty bounded closed convex subsets of    K ordered 

by set inclusion which are mapped into itself  by 2T .Since X is  a hilbert space, it is a 

reflexive banach space and hence by Smulian result [22] every decreasing sequence of non 

empty bounded closed convex subset of X  has non empty intersection and by Zorn’s lamma, 

it follows that X  possesses a minimal element F, say. If F contains only one element then 

that element becomes a fixed point of 2T . We shall show that F contains only one element. 

We suppose on the contrary that F contains more than one point, which will show implies a 

contradiction. 

                    Let 2
(t) F

( , (t) (t)
n

n n
f

A Sup T t f f


   by the condition C, A (F)  

We now defined the following terms for (t) Fng   

(t)
(t) F

(F) max g (t) (t) ,
n

n

g n n
g

Sup f A


 
  

 
,  (t)(F) inf (F), (t)

ng ng F    

 (t)F (t) ; (F) (F)
nc n gg F       

We know that Fc  is non empty closed and convex. For a positive integer n and for (t)ng F

,let 
1

( (t),n) (t) ; (t) (t) (F)n n n nF g f F g f
n


 

     
 

and
( )

( ( ), )
n

n n

g t F

C F g t n


  

We show first nC  is non empty. If possible let nC = than there exit (t)ng and (t)nf F such 

that          ( ( ), ) ( ( ), )n nF g t n F f t n  .  

By contradiction 

1
( (t),n) (t) ; (t) (t) (F)n n n nF g f F g f

n


 
     
 

and similarly 

2
( ( ), ) (t) ; ( ) ( ) 2 ( )

(1)

n n n nF f t m g F f t g t F
n


 

     
 



Now for  (t)ng F ,
(t) F

( )
g (t) (t)

2n

n n
g

F
Sup f





  and so ( )

( )
( )

2ng t

F
F


  and this implies

http://www.iiste.org/


Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) 

Vol.4, No.6, 2014  

 

15 

( )
( )

2

F
F


 .there for

2
( ) 2 ( )F F

n
   .So Form (1) ( ) ( ) ( )n nf t g t F  which is 

contradiction because (t)ng and (t)nf .F
 

Therefore nC is non empty set. 

It may further be verified that nC  is closed ,convex and that 1n nC C  . 

We wish to show that 
1

c n

n

F C




  

For this let ( )n cf t F .then ( ) ( ) ( )
nf t F F   

So 
( )

max ( ) ( ) , ( )
n

n n
g t F

Sup f t g t A F


 
  

   

And so 
( )

( ) ( ) ( ) (2)
n

n n
g t F

Sup f t g t F


    

We verified that ( ) ( ( ), ) ( )n n nf t F g t n g t F   and for all n. 

It possible let ( ) ( ( ), ) forsome ( )n n nf t F g t n g t F  and for some n. then

1
( ) ( ) ( ) (3)n ng t f t F

n
   From (2) 

we see that ( ) ( ) ( )n nf t g t F  which contradiction to (3), 

So 
1

( )n n

n

f t C




 and so 
1

c n

n

F C




  

Next let 
1

( )n n

n

f t C




 then ( ) ( ( ), ) ( )n n nf t F g t n g t F   and for all n. and this implies that

( )

( ) ( ) ( )
n

n n
g t F

Sup g t f t F


  .also ( )A F .these two give ( ) ( ) ( )
nf t F F  . But  

( )( ) ( )
nf tF F  always and then ( )( ) ( )

nf tF F  and this gives  ( )n cf t F . So
1

n c

n

C F






.thus
1

n c

n

C F




 . 

This equality further gives that cF is closed convex and by smulian’s result[22] non empty. 

Next we show that ( ) ( )cF F  . 
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Since K  has normal structure and ( )A F  there exists a point ( )ng t F  such that 

(t) ( ) ( ).
ng F F   

 If ( ), ( )n n cg t f t F , then ( )( ) ( ) ( ) ( )
nn n g tg t f t F F    . 

                   So  

  ( )( ) sup ( ) ( ) : ( ), ( ) ( ) ( ) ( ) (4)
nc n n n n c g tF g t f t g t f t F F F F         

       If ( )n cg t F  and ( )nf t  is an arbitrary of F  we obtained 
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max (t) ( ,g (t)) , g (t) ( , (t))

(t) ( ,g (t)) g (t) ( , (t)) then by (A)
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n n n n
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T t f T t f f T t f T t

f T t T t f

If f T t T t f
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(t) ( ,g (t))
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g (t) (t) (t) ( , (t)) 2 g (t) (t) 2

2 ( , (t)) ( ,g (t))

2 (t)
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n

f f T t f T t

f T t

f T t f
f f T t f f

T t f T t
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  2 2

2 2 1( , (t)) 2 ( , (t)) ( ,g (t))n n nT t f T t f T t  

2 2

4 3 2 1 1 3

2

2 3 4 2

2 2

2 2 1 1 2

2

2 3 4 2

(1 2 4 ) ( , (t)) ( ,g (t)) ( 2 ) g (t) (t)

( 4 2 ) (t) ( , (t))

(*)

similarly,

(1- 4 ) ( , (t)) ( ,g (t)) ( 2 ) g (t) (t)

(4 4 ) (t) ( , (t))

n n n n

n n

n n n n

n n

a T t f T t f

f T t f

T t f T t f

f T t f

  

  

  

  

      

   

               

   

   

(**)              

 

2

2 3 4 2 1

2 2

1 2 3 2 3 4 2

adding (*)and (**), we get

(2 4 4 2 ) ( , (t)) ( ,g (t))
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T t f T t
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2 2
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2
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Taking the positive square root we get 
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So the set 2 ( )T F is contained in a closed sphere with centre at 1( , (t))nT t g and radius  

( )F .We denote this sphere by U . 

Clearly 2( )T F U F U    because F is minimal F U   

And so  

2

2
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sup ( ) ( , ( )) ( ). (5)
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f t F

f t T t f t F
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Hence
1 ( , ( )) ( ) ( )

nT t g t F F  but we always have
1 ( , ( )) ( ) ( ).

nT t g t F F   

So   
1 ( , ( )) ( ) ( )

nT t g t F F   

This implies that 1( , ( ))n cT t g t F and by (B) 2( , ( ))n cT t f t F  

There for cF is a non-empty, closed and convex subset of F which is mapped into itself by 1T  

and 2T  and because of (4) ( ) ( )cF F 
.
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Therefore cF is proper subset of  F .this contradicts the fact that F  is minimal. Therefore, F  

can not contain more than one element, but F  is not empty. Hence F  contains only one 

element which clearly a random fixed point of 1T  and 2T . 

This completes the proof of the theorem (2.1) 
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