
Control Theory and Informatics                                                                        www.iiste.org 

ISSN 2224-5774 (print) ISSN 2225-0492 (online) 

Vol 2, No.3, 2012 

 

1 

A Robust RF-MRAS based Speed Estimator using Neural Network 

as a Reference Model for Sensor-less Vector Controlled IM Drives 
 

A. Venkadesan, Research Scholar 

Department of Electrical and Electronics Engineering 

Pondicherry Engineering College, Pondicherry, India 

E-mail: a_venkyeee@pec.edu 

 

S. Himavathi, Professor 

Department of Electrical and Electronics Engineering 

Pondicherry Engineering College, Pondicherry, India 

 

A. Muthuramalingam, Professor and Head 

Department of Electrical and Electronics Engineering 

Pondicherry Engineering College, Pondicherry, India 

 

The authors acknowledge the financial support of the Department of Science and Technology, Delhi for the grant of 

Junior Research Fellowship (JRF)-Professional to the first author for pursuing this research work.  The research 

project titled “AI techniques for Electrical Drives” is supported by the grants from the All India Council for 

Technical Education (AICTE), a statutory body of Government of India. File Number: No 8023/BOR/RID/RPS-

79/2007-08 and 8020/RID/TAPTEC-32/2001-02. 

 

Abstract 

This paper proposes a robust MRAS based speed estimator for sensorless vector controlled IM drives. Rotor Flux 

based MRAS Model Reference Adaptive System (RF-MRAS) for rotor speed estimation is gaining popularity for its 

simplicity in sensorless vector controlled IM drives. In this scheme, the voltage model equations are used as the 

reference model. The voltage model equations in turn depend on stator resistance which varies with temperature 

during motor operation and more predominant at low frequencies/speed. Hence separate on-line estimator is required 

to track the stator resistance variation. The newly developed MRAS technique uses a robust Single Neuron Cascaded 

Neural Network (SNC-NN) based rotor flux estimator trained from input/output data as reference model in the place 

of the conventional voltage model in RF-MRAS to form a robust RF-MRAS based speed estimator. This makes the 

reference model robust to stator resistance variation without the need for separate Rs estimator. The performance of 

the proposed speed estimator is investigated extensively for various operating conditions. The performance of 

proposed MRAS is shown to work for wide range of operating conditions including zero speed operation. The 

robustness of the proposed RF-MRAS based speed estimator is demonstrated through MATLAB simulations and 

compared with the conventional RF-MRAS. 

Keywords: Robust Rotor Flux-Model Reference Adaptive System, Rotor flux estimator, neural network, SNC-NN 

model, Sensor-less operation, vector-controlled IM drives. 

 

1. Introduction 

Advances in digital technology have made the vector control realizable by industries for high performance variable 

speed control applications. Various vector controlled techniques for induction motor drives have been proposed in 

the literature. In particular, sensor-less vector control is an emerging area. The speed sensor which is expensive, 

fragile, requires extra attention from failures under hostile environment and needs special enclosures and cabling is 

not needed for sensor-less closed loop control of Induction Motor (IM) drives. This leads to cheaper and more 

reliable control. 

The performance of sensor-less vector controlled IM drive depends to a large extent on the knowledge of motor 

speed. Various techniques for speed estimation have been suggested such as Model Reference Adaptive System 

(MRAS), Luenberger and Kalman filter Observers, Sliding Mode Observers. MRAS scheme offer simpler 

implementation and require less computational effort compared to other methods and therefore the most popular 
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strategies used for sensor-less control (Shady et al., 2009). Various MRAS schemes have been introduced in the 

literature based on rotor flux, back electromotive force, and reactive power (S.Maiti et al., 2008, 2010; P.Vas, 1998). 

However, rotor flux MRAS, first introduced by Schauder et al. (1992) is the most popular MRAS strategy. In this 

MRAS scheme, the conventional voltage model equations are used as the reference model. Conventional voltage 

model suffers from the problems of pure integrator and variation of stator resistance especially at low 

frequencies/speed (B.K.Bose, 2005; J.Holtz et al., 2003). Several techniques are proposed in the literature to 

overcome the problems of pure integrator (B.K. Bose et al., 1997; J.Hu et al., 1998). Stator resistance varies with 

temperature during motor operation and more predominant at low frequencies/speed. Numerous methods for on-line 

Rs estimation are proposed in the literature (B. Karanayil et al., 2007, 2005; N. Jaalam et al., 2011). But the 

additional Rs estimator would increases the complexity of the drive system. 

 Neural Network (NN) based estimators provide an alternate solution for flux estimation. It dispenses the direct use 

of complex mathematical model of the machine and hence overcomes the problems of integrator. The nonlinear 

dynamic system mapping capability of neural network was well proven in the literature (K.S. Narendra et al., 1990). 

They can be trained to be adaptive for parameter variations. Several Neural Network methods are reported for flux 

estimation. Programmable-cascaded low pass filter was realized as a recurrent NN whose weights are obtained 

through a polynomial-NN (L.E.B. da Silva et al., 1999). Single Layer Feed-forward Neural Network (SLFF-NN) 

trained using input/output data is proposed for rotor flux estimation (Shady et al., 2009). It is shown to improve the 

performance of the drive at very low and near zero speed, provide immunity to motor parameter variations, remove 

low-pass filter/ integrator and reduce the error. The Heuristic Design methodology for Multilayer Feed-Forward NN 

based flux estimator is proposed (A.Venkadesan et al. 2010). A compact NN model with desired accuracy assumes 

importance in real implementation of on-line flux estimator to ensure faster estimation for effective control. Single 

Neuron Cascaded (SNC) NN model is identified and shown to provide distinctly compact NN model for on-line flux 

estimation (A.Muthuramalingam et al., 2010). 

In this paper, SNC-NN based flux estimator trained with data including Rs changes is proposed to eliminate the need 

separate for on-line Rs estimator. The designed robust SNC-NN model is proposed to replace the conventional 

voltage model in the RF-MRAS to form robust RF-MRAS based speed estimator. The performance of the robust RF-

MRAS is investigated extensively for various operating conditions. The performance of proposed MRAS is shown to 

work for wide operating range of operating conditions including zero speed. The robustness of the proposed RF-

MRAS based speed estimator is demonstrated through MATLAB simulations and compared with the conventional 

RF-MRAS.  

The paper is organized as follows. Section II details the sensor-less IM drives, RF-MRAS and its issues. Section III 

describes the SNC-NN based flux estimator. The performance study of the proposed robust RF-MRAS based speed 

estimator is carried out and simulation results are presented in section IV. The performance study of the proposed 

and conventional MRAS based speed estimation scheme for parameter variation are carried out and simulation 

results are presented in section V.  Section VI concludes the paper. 

2. Speed Sensor-less Vector Controlled IM Drives 

The speed sensor-less vector control of induction motor drive presented is indirect rotor flux field oriented control. 

Figure 1 shows the overall block diagram of the speed-sensor-less drive system of an induction motor. Generally 

through a PI controller, the speed error signal is processed and the torque command is generated. It is combined with 

the flux command corresponding to the flux error to generate the common reference to control the motor current. The 

reference is used to produce the PWM pulses to trigger the voltage source inverter and control the current and 

frequency applied to the IM drive. The performance of sensor-less vector controlled IM drive to a large extent 

depends on the accuracy of speed estimation. There are many speed estimation schemes available in the literature. 

Out of which, Rotor Flux Model Reference Adaptive System (RF-MRAS) is the most popular MRAS strategy.   

The general block diagram of MRAS scheme for speed estimation is shown in Figure 2. The MRAS scheme consists 

of a reference model which determines the desired states and adaptive (adjustable) model which generates the 

estimated values of the states. The error between these states is fed to an adaptation mechanism to generate an 

estimated value of the rotor speed which is used to adjust the adaptive model. This process continues till the error 

between two outputs tends to zero. 

A. RF-MRAS 
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In RF-MRAS, the state variable used is the rotor flux. Conventional voltage model equations for rotor flux 

estimation are used as the reference model because it is independent of the rotor speed. The voltage model equations 

are given in (1).  

ss dd idsdr svL ids ds dtdt r R L
s svL s ssd di iqsqr m qs qs

dt dt

σ

   Ψ             = − −      Ψ         
       

   (1) 

The current model equations for rotor flux estimation are used as the adaptive model because it is dependent on the 

rotor speed. The current model equations are given in (2). 

1
 

1
 

sd
dr sr iT L dsrdt dr m

iTs sd qsqr qr r
r T

dt r

ω

ω
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    (2) 

Where, 

 

( )s s
v vqsds  - Stator voltages d axis (q axis) 

( )s s
i iqsds  - Stator currents d axis (q axis) 

( )s s
qsdsΨ Ψ  - Stator flux d axis (q axis) 

( )s s
qrdrΨ Ψ  - Rotor flux d axis (q axis) 

( )R Rs r  - Stator resistance (rotor) 

( )L Ls r  - Stator inductance (rotor) 

Lm  - Magnetization inductance 

2
1 -

Lm

L Lr s
σ =  -Leakage Co-Efficient 

Lr
T r

Rr
=  -Rotor Time Constant 

 

 

With correct speed signal, ideally, the fluxes calculated from the reference model and those calculated from the 

adaptive model will match, that is, s
drΨ = 's

drΨ  and s
qrΨ = 's

qrΨ , where s
drΨ and s

qrΨ  are reference model outputs and 

's
drΨ  and 's

qrΨ  are the adaptive model outputs. An adaptation algorithm with PI controller, as indicated, can be used to 

tune the speed ( )
,r est

ω  so that the error 0ξ = .  

In designing the adaptation algorithm for the MRAS, it is important to take account of the overall stability of the 

system and ensure that the estimated speed will converge to the desired value with satisfactory dynamic 

characteristics. Using popov’s criteria for a globally asymptotically stable system, the following relation for speed 

estimation can be derived. 

,
KiK pr est
S

ω ξ
 
 = + 
 

      (3) 

' 's s s s
qr qrdr drξ = −Ψ Ψ Ψ Ψ      (4) 

In steady state, 0ξ =  balancing the fluxes; in other words,  

s
drΨ = ' s

drΨ  and s
qrΨ = ' s

qrΨ     (5) 

From the equations (1), it is inferred that the voltage model used as the reference model in RF-MRAS are 

dependent on resistance Rs and inductances Ls, Lm, Lr. The variation of these parameters tends to reduce the accuracy 

of the flux estimation. Particularly, temperature variation of Rs becomes more dominant especially at low 

frequencies/speed. At higher frequencies, the influence of Rs variation on the estimator is negligible. A small 

mismatch in Rs between the motor and the estimator would cause the flux estimated from the voltage model based 
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estimator to get drift from the actual. This leads to large error in the speed estimation which would affect the overall 

sensorless operation of IM drives. A separate additional on-line Rs estimator may overcome this problem but it 

would increases the complexity of the drive system.  

 Hence to overcome these problems, a Single Neuron Cascaded Neural Network (SNC-NN) based flux estimator 

trained with data including Rs changes is proposed to eliminate the need for separate on-line Rs estimator. The 

proposed Single Neuron Cascaded Neural Network based flux estimator is used to replace the conventional voltage 

model based flux estimator in RF-MRAS to form robust RF-MRAS. 

3. Robust SNC-NN based Flux Estimator used as a Reference Model in RF-MRAS 

The data based flux estimator is designed using SNC-NN model. The Single Neuron Cascaded (SNC) architecture 

(A.Muthuramalingam et al., 2010) with multiple inputs/single output is shown in Figure 3. SNC-NN architecture 

consists of an input layer, hidden layers and an output layer. The first hidden layer receives only external signals as 

inputs. Other layers (M) receive external inputs and outputs from all previous (M-1) 1ayers. To create multilayer 

structure hidden layers are added one by one and the whole network trained repeatedly using the concept of moving 

weights so as to obtain compact network (A.Muthuramalingam et al., 2010). This process continues, till the 

performance index is reached. Cascading single neuron in every hidden layer in the “Single Neuron Cascaded” (SNC) 

architecture greatly simplifies the design process and can be self-organized which aids design automation similar to 

SLFF-NN. Thus SNC-NN combines the advantage of self organizing feature of SLFF-NN and power multilayer 

mapping capability of MLFF-NN. Also SNC-NN model is identified and shown to provide distinctly compact NN 

model for on-line flux estimation (A.Muthuramalingam et al., 2010). Hence in this paper, SNC-NN model is chosen 

to model the on-line Flux Estimator.   

The indirect field oriented controlled (IFOC) IM drive system with sinusoidal pulse width modulation is built using 

MATLAB with switching frequency of 10 KHz. The present and past samples of the d-q components of the stator 

voltages { ( )s kvds , ( 1)s kvds − , ( )s kvqs , ( 1)s kvqs − }  and stator currents { ( )s kids , ( 1)s kids − , ( )s kiqs , ( 1)s kiqs − }are used as the inputs to 

the SNC-NN Model. The outputs are the direct and quadrature axis rotor fluxes { ( )s kdrΨ , ( )s kqrΨ }. The block diagram 

of SNC-NN based flux estimator is shown in Figure 4. The vector controlled IM drive is the variable frequency 

drive. Hence, equal number of data sets for all operating conditions is used to train the network.  Around 11,266 data 

sets are obtained from the IFOC System for various operating conditions. In the literature, it is reported that the 

change in Rs may go upto 50% (B. Karanayil et al., 2007, 2005). Hence, to make SNC-NN robust to parameter 

variation, maximum of 50% change in Rs variation is incorporated in the training data sets. The activation function 

for hidden layers and output layer is chosen as tan-sigmoid and pure linear function respectively. The SNC-NN is 

trained with input/output data using LM algorithm for the required Mean Square Error (MSE) of 1.88876×10
-6

.The 

obtained SNC-NN model for flux estimation has the structure 8-13(h)-2 (h-hidden layer with one neuron). The 

obtained SNC-NN model for flux estimation replaces the conventional voltage model in the RF-MRAS to form 

“robust RF-MRAS”.  

4. Performance of Proposed Robust RF-MRAS based Speed Estimator 

The performance of proposed robust RF-MRAS scheme is tested for speed estimation for various operating 

conditions extensively through MATLAB simulations. Sample results for the major test conditions are presented in 

the following sections. 

1)  Test 1- Stair Case Speed Transients from 148 to 0 to −148 rad/sec at No Load:  

In this test, the IM drive is subjected to a stair case speed commands from 148 rad/sec to zero speed in a series of 

five 40 rad/sec steps continuing to −148 rad/sec, at no load. The performance of robust RF-MRAS is shown in 

Figure 5. The rotor fluxes estimated from the proposed flux estimator tracks the actual with negligible error for all 

the speed commands including the zero speed. The speed estimated from the proposed MRAS scheme is also found 

to closely track with the actual. The results depict Stable operation of the proposed MRAS scheme, particularly 

around zero speed.  

2) Test 2- Load Torque Change from 0% to 100% at 148rad/sec:  

The test 2 examines the load torque disturbance capability of the proposed MRAS based speed estimation scheme. 

The drive is operated with reference speed of 148rad/sec. 100% step change in load torque is applied at 1.5sec. The 

proposed robust MRAS shows better steady state and dynamic performance with negligible error between the actual 
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and estimated speed, as shown in Figure 6. The estimated rotor speed undershoots similar to actual speed and settles 

faster with the actual as soon as the step change in load torque is applied. 

3)  Test 3- Load Torque Change from 100% to 50% at 148rad/sec:  

The test 3 also examines the load torque change capability of the robust RF-MRAS. The drive is initially operated 

with the speed command of 148rad/sec with 100% load condition and suddenly the load torque is reduced to 50% at 

1.5sec. In this case also, the speed estimated from the proposed robust RF-MRAS is found to closely match with the 

actual with negligible error. The estimated speed overshoots similar to the actual speed and settles faster with the 

actual as soon as the load torque is suddenly reduced to 50%, as presented in Figure 7. 

4)  Test 4- ±148 rad/sec Speed at No Load:  

The test 4 examines the speed reversal capability of proposed speed estimation scheme. Initially, the drive is 

operated with the speed command of 148rad/sec. The slow speed reversal is taking place during 1.5-2 sec. The 

command speed is fixed to -148rad/sec after 2sec. The performance of proposed speed estimation scheme is shown 

in Figure 8. The proposed speed estimation scheme shows better performance. The speed estimated is found to 

closely match with the actual with negligible error.  

The proposed MRAS scheme works for wide range of operating conditions from 148 (rad/sec) to -148 (rad/sec) 

including zero speed operation. The error between the actual and the estimated speed from the proposed RF-MRAS 

for various operating conditions are consolidated and presented in Table I. The error in the speed estimated from the 

proposed MRAS scheme is found to be within ±0.4% for normal operating speeds. At very low operating speeds, the 

error is found to be within ±1.4%. 

4. Performance Comparison of Proposed robust RF-MRAS and Conventional RF-MRAS based speed 

Estimator for Stator Resistance Variation 

The performance of proposed robust RF-MRAS and conventional RF-MRAS is tested for step change in stator 

resistance variation. Of course, in a real drive, the stator resistance never undergoes abrupt variations in response to 

temperature change due to the large thermal time constant. The step variation represents an extreme case and is used 

to show the robustness of the proposed MRAS. The effect of Rs variation is investigated at very low speed of 

1rad/sec with 50% load condition. Two different cases for stator resistance detuning are considered. 

(a) Slight Rs detuning:  

The actual Rs of the induction motor are slightly detuned with respect to the nominal ones, as follows:  

5%s

s

R

R

∆
= −       (6) 

In this case, 5% step change in Rs is effected at 2sec. The locus diagram of rotor fluxes for the robust SNC-NN 

model and voltage model are presented in Figure 9(a) and (b) respectively. It is understood that the locus diagram of 

rotor fluxes of robust SNC-NN model closely tracks the locus of the actual flux and it is centered on the origin 

similar to the actual flux. The radius of the locus of the proposed flux estimator is also found to be similar to the 

actual flux. In the case of voltage model based flux estimator, the locus of rotor fluxes is not centered on the origin 

and it is shifted away from the origin approximately 0.05433wb. The radius of the locus of the voltage model based 

flux estimator is also observed to get increased approximately by 4.777%. Hence, the proposed robust SNC-NN 

based flux estimator is found to estimate the flux components with good accuracy even when there is change in the 

Rs with d and q-axis rotor flux MSE of 1.124×10
-6

 and 1.723×10
-6 

respectively.  

The speed estimated from the robust RF-MRAS and conventional RF-MRAS is presented in Figure 10(a) and (b) 

respectively. From the results obtained, it is obvious that the speed estimated from the robust RF-MRAS tracks 

closely the actual speed even when there is a change in the Rs and the error in the speed estimation is almost 

negligible. But, the speed estimated from the RF-MRAS fluctuates between -0.1798 (rad/sec) to 1.0873 (rad/sec). 
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4.2 Large Rs detuning: 

In many real applications, the Rs may vary on ranges which are larger than those considered in previous section. In 

order to check the robustness of the proposed speed estimator in the presence of larger detuning, the actual Rs of the 

induction motor are largely detuned with respect to the nominal ones, as follows: 

50%s

s

R

R

∆
= −       (7) 

50% step change in Rs is effected at 2sec. The locus diagram of rotor fluxes for the proposed robust SNC-NN model 

and voltage model are presented in Figure 11 (a) and (b) respectively.  

From the results obtained, it is observed that even in the case of large parameter detuning, the locus of the robust 

SNC-NN model tracks the actual flux locus very well. But the centre of the locus of flux estimated from the voltage 

model is shifted largely away from the origin approximately 0.3741wb which is 588.569% times larger than the 

previous one. The radius is also observed to get increased approximately by 56.871% which is much larger than the 

previous one. The robust speed estimation is observed from the proposed speed estimator even in the case of large 

parameter detuning which is presented in Figure 12(b). The speed estimated using RF-MRAS oscillates between -

29.6098 (rad/sec) to 0.3144 (rad/sec) which is evident from Figure 12 (a). Thus the centre and radius of the locus of 

flux estimated from the voltage model keeps on increases with increase in Rs. This leads to increase of oscillation in 

the estimated speed using voltage model. The conventional RF-MRAS can also be made robust to Rs variation with 

an additional on-line Rs estimator which would increase the complexity of the drive system. Thus the NN based 

estimator, trained with parameter variations result in the robust NN based flux estimator. The robust NN based 

estimator used as the reference model in RF-MRAS which result in the robust RF-MARS. This in turn results in 

robust speed estimation even in the presence of Rs variation. 

5. Conclusion 

This paper proposes a robust RF-MRAS for speed estimation over wide operating range in sensorless IM drives. The 

robust data based flux estimator is designed using SNC-NN model with data including Rs variation to avoid the 

requirement of separate need for on-line Rs estimator. The designed robust NN based flux estimator is proposed to 

replace the conventional voltage model in RF-MRAS to from a robust RF-MRAS. The performance of proposed 

MRAS is extensively investigated for various operating conditions. The proposed MRAS is shown to work for wide 

range of operating conditions including zero speed. The error in the speed estimated from the proposed MRAS 

scheme is found to be within ±0.4% for normal operating speeds. At very low operating speeds, the error is found to 

be within ±1.4%.The robustness of proposed MRAS scheme is illustrated for parameter variation and found to 

outperform the conventional RF-MRAS scheme. The advantages of the Proposed MRAS scheme are: independent of 

stator resistance, the reference model in proposed robust RF-MRAS is free from the integrator related problems, and 

the reference model in the proposed MRAS is computationally less rigorous as compared to the integral equations as 

involved in the reference model of conventional RF-MRAS. 

Thus the proposed robust RF-MRAS based speed estimation scheme is shown to perform well under all operating 

conditions including Rs variation. Hence it is concluded that a robust RF-MRAS based speed estimator is a 

promising technique for speed estimation in sensor-less vector controlled IM drives. 

APPENDIX 

The parameters of the induction machine used for simulation are given in the table shown below. 
INDUCTION MOTOR PARAMETERS 

Parameters Values Parameters Values 

Rated Power 

Rated voltage 
Rated current 

Type 

Frequency 
Number of poles 

Rated Speed 

1.1kW 

415V 
2.77A 

3 Ph 

50Hz 
4 

1415RPM 

Stator Resistance (Rs) 

Rotor Resistance (Rr) 
Magnetizing Inductance (Lm) 

Stator  Inductance (Ls) 

Rotor  Inductance (Lr) 
Total Inertia (JT) 

Friction Coefficient (B) 

6.03Ω 

6.085Ω 
0.4893H 

0.5192H 

0.5192H 
0.011787Kgm2 

0.0027Kgm2/s 
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Figure 1. Sensor-less Vector Controlled IM Drives showing the requirement of Speed Estimator 

 

 
 

Figure 2. RF-MRAS based Speed Estimator 
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Figure 3.  SNC-NN with multiple inputs/single output  

where,  
p  - Input vector, [1, 2, ... ]p R=  

,
,
m k

w
i j

 - 
Link weight of neuron ‘i’ of layer ‘m’ for input 

from neuron ‘j’ of layer ‘k’. 

,
m

w
i R  

- 
Input weight of neuron ‘i’ of layer ‘m’ for 

external input ‘R’. 
m

b
i

 - bias for neuron ‘i’ of layer ‘m’. 

m
f  - 

Activation functions of all neurons in a layer 

‘m’. 
m

a
i  

- Output of neuron ‘i’ of layer ‘m’ 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4.  The Inputs and Outputs of SNC-NN based Flux Estimator 
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(a) (b) 

Figure 5. Performance Curves for Test Condition-1 : (a) Rotor Fluxes (b) Rotor Speed 

 
(a) (b) 

Figure 6. Performance Curves for Test Condition-2 : (a) Rotor Fluxes (b) Rotor Speed 

 
(a) (b) 

Figure 7. Performance Curves for Test Condition-3 : (a) Rotor Fluxes (b) Rotor Speed  

 
(a) (b) 

Figure 8. Performance Curves for Test Condition-4 : (a) Rotor Fluxes (b) Rotor Speed  
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(b) (b) 

Figure 9. Locus of Rotor Fluxes with Slight Rs Detuning: (a) Voltage Model (b) Robust SNC-NN Model  

 
(b) (b) 

Figure 10. Rotor Speed with Slight Rs Detuning: (a) RF-MRAS (b) Robust RF-MRAS  

 
(b) (b) 

Figure 11. Locus of Rotor Fluxes with Large Rs Detuning: (a) Voltage Model (b) Robust SNC-NN Model 

 

 
(c) (b) 

Figure 12. Rotor Speed with Large Rs Detuning: (a) RF-MRAS (b) Robust RF-MRAS  
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TABLE I 

PERFORMANCE OF THE PROPOSED RF-MRAS BASED SPEED ESTIMATOR FOR VARIOUS SPEED COMMANDS  

Command 

Speed 

(rad/sec) 

Actual Speed 

(rad/sec) 

Estimated Speed using 

Robust RF-MRAS (rad/sec) 
%Error 

148 147.9998 147.9255 0.05022 

75 75.0015 74.9623 0.05160 

35 34.9976 34.9891 0.02428 

25 25.0012 24.9966 0.01839 

15 14.9996 14.9971 0.01666 

5  4.9884 5.0074 0.38088 

 

 

 



This academic article was published by The International Institute for Science, 

Technology and Education (IISTE).  The IISTE is a pioneer in the Open Access 

Publishing service based in the U.S. and Europe.  The aim of the institute is 

Accelerating Global Knowledge Sharing. 

 

More information about the publisher can be found in the IISTE’s homepage:  

http://www.iiste.org 

 

The IISTE is currently hosting more than 30 peer-reviewed academic journals and 

collaborating with academic institutions around the world.   Prospective authors of 

IISTE journals can find the submission instruction on the following page: 

http://www.iiste.org/Journals/ 

The IISTE editorial team promises to the review and publish all the qualified 

submissions in a fast manner. All the journals articles are available online to the 

readers all over the world without financial, legal, or technical barriers other than 

those inseparable from gaining access to the internet itself. Printed version of the 

journals is also available upon request of readers and authors.  

IISTE Knowledge Sharing Partners 

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open 

Archives Harvester, Bielefeld Academic Search Engine, Elektronische 

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial 

Library , NewJour, Google Scholar 

 

 

http://www.iiste.org/
http://www.iiste.org/Journals/

