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Abstract 

In this paper, we introduce a new equivalent system to the higher order Caputo fractional system   (CFS) . This 

equivalent system has multiple order Caputo fractional derivatives   (CFDs). These CFDs are lying between zero 

and one.  As well  as, we find the fundamental solution for linear CFS with multiple order CFDs. Also, we 

introduce new criteria of studying the stability (asymptotic stability) of the  linear CFS with multiple order CFDs. 

These criteria can be applied in three cases:  the first, all CFDs is lying between zero and one. The second, all 

CFDs are lying  between one and two. Finally, some of CFDs are lying between zero and one,  and the rest of 

these derivatives are lying between one and two. The criteria are  depending on the position of eigenvalues of the 

matrix system in the complex plane.  These criteria are considered as a generalized of the classical criteria which 

is  used to study the stability of linear first ODEs. Also, these criteria are considered  as generalized of the criteria 

which used to study the stability same order CFS in  case when all CFDs lying between zero and one, also in case 

when all CFDs lying  between one and two. Several examples are given to show the behavior of the  solution near 

the equilibrium point.  

Keywords: Caputo fractional derivatives; Linear Caputo fractional system  ; Fundamental solution Stability 

analysis. 

 

1. Introduction 

   The calculus of integrals and derivatives of any arbitrary real or complex  order is called fractional calculus. 

The topic of fractional calculus has  been known since the expansion of the  classical integer order calculus  with 

the initial works being related with  Leibniz and L’Hospital. All old  reference points out the foundation of 

fractional derivative is back to  correspondence letters between Leibniz and L’Hospital in 1695 where  half-order 

derivative was mentioned [1, 2, 3].  

    Differential equations content fractional derivative are called Fractional  differential equations (FDEs). FDEs 

have been used to describe many real  worlds modeling like, damping laws, fluid mechanics, rheology, 

physics,  mathematical biology, diffusion  processes, electrochemistry, and so on.  For example, the diffusion of 

heat through a semi- infinite solid can be  described by FOS [3]. Some  results related to the existence 

and  uniqueness solutions for FDEs may  be found in the books by Podlubny   [3] , Kilbas et al. [1] and Samko et 

al.[2 ].  

   In recent decades, the study of stability analysis for FDEs became a fruitful spot for many researchers. In fact, 

this subject is more complex than the ODEs since fractional derivative is represented  as integro- differential, so it 

is nonlocal and has weakly singular kernels. Matignon [4, 5], in has PhD thesis, was the first person how 

introduced some stability results related to a restrictive modeling of FDEs. There are many important result 

related on linear FDEs with CFDs orderα , where 0 1α< < .After that, Qian et al. [6] investigated the linear 

FDEs with Riemann-Liouville derivative and the same fractional orderα , where 0 1α< < . After that, many 

researchers have been investigated stability of linear and nonlinear FDEs with 0 1α< <   [6]-[18].  W. H. Deng 

et al. [19, 20] studied the stability and asymptotical stability for linear (linear time delay) fractional system with 

multi-order (rational) CFD. However, many stability methods for linear FDEs systems like, frequency domain 

methods, Linear Matrix Inequalities and conversion methods have emerged in progression [18]. In Fact, the 

stability results of FDEs are applicable many in physical systems, see, Ahn and Chen [7], Ahmed, EI-Saka, and 

EI-Saka [22], Li, Chen, and Podlubny [21], Li and Zhang [9], Miller and Ross [10], Odibat [13], Radwan, 

Soliman, Elwakil, and Sedeek [11], Sabatier, Moze, and Farges [18] , Samko et al. [2],Wen,Wu, and Lu, [16] . 

On the other hand, there are many FDEs have fractional orders not lying in (0,1) . In fact, there are many 

physical systems can be described by FDEs fractional orders lying in (1, 2) [1]-[3]. The study of stability 

(asymptotic stability) of many kind of linear FDEs with order (1, 2) have been done by many authors [12, 18, 8, 

23]. While, H.S. Ahn et al. [15] was introduced the necessary and sufficient condition for commensurate order 

fractional linear system. As well as, H.S. Ahn et al. [25] give new criteria of studying the robust stability of 

uncertain linear time invariant fractional system. 

The fundamental solution and the stability analysis of the linear FDEs system with constant coefficients are 

studied in two cases: the first when the system has the same order fractional derivative while the second when 

the systems have multiple rational orders [13, 19, 26]. In [26], the rational order CFS is transformed into an 
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equivalent system of the same order  CFDs. These  CFDs are lying between zero and one.  However, the order of 

CFDs in many fractional dynamical systems is not always rational order. The motivation of this paper is 

introducing a new equivalent system to the higher order CFS. Furthermore, since the equivalent system in the 

proposed method has multiple different orders CFDs  and there is no method enable us to solve such systems, we 

introduce a method to find the fundamental solution for linear CFS  with multiple different orders CFDs. As well 

as, we introduce new  criteria of studying the stability (asymptotic stability) of the linear CFS with multiple order 

CFDs. 

 

2. Preliminaries 

  This section is devoted to the definition Caputo fractional derivatives and their properties.    

Definition 2.1  [1]-[2] 

The Riemann–Liouville fractional integral of function ( )x t  is defined as 

     

( )
1

0

1
( ) ( ) .

( )
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= −

Γ
∫
t

t
D x t t x d                                                                                                             (2.1) 

Where 0, 0 , ( . )α > > Γt  is the Gamma function. 

 
Definition2.2 (Caputo derivative) [1]-[3]  

    In the fractional calculus the Caputo derivative is defined  
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 Where ( )x t  is  an  arbitrary  differentiable  function, ∈ Νn  and 
α

o

C

t t
D    is  Caputo fractional  derivative  of  

order  1 α− < <n n  , and  (.)Γ   denotes  the  Gamma  function. 

Definition 2.3 [ 1, 3] 

The one-parameter and two –parameter Mittag-Leffler functions are defined as, respectively 
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Property 2.4 [3] 

   The formula for the Laplace transform of the Caputo fractional derivative is given as 
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where 1 ,α− < <n n and 
+

∈n Z . 

Property 2.5: [1, 3] 

    The Laplace transform of two –parameter Mittag-Leffler function is given as 

1
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,
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where 0, ( )≥t R s denotes the real part of , Rλ ∈s . 

Lemma 2.6 [3] 

If (0, 2)α ∈ , β is an arbitrary real number, µ satisfies min{ , }
2

α π
µ π πα< < , and 

1 2
,C C are real constants, 

then 

( )
(1 ) / 1/ 2

, 1
( ) 1 exp ( Re( )) ,

1

β α α

α β

−

≤ + +
+

C
E z C z z

z
                                                                                  (2.7) 

Where arg ( ) , 0µ≤ ≥z z . 

Lemma 2.7 [14] 

The following properties hold. 
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(i) There exist finite real constants 
1 2
, 1≥M M such that for any (0,1)α ∈ , 

,1 1
( ) ,

α

α
≤

At
E At M e                                                                                   (2.8) 

, 2
( ) ,

α

α α
≤

At
E At M e                                                                                  (2.9) 

where A denotes matrix, . denotes any vector or induced matrix norm. 

(ii) If 1,α ≥ then for 1, 2,β α=  

,
( ) .

α

α β
≤

A t
E A t e                                                                                       (2.10) 

Theorem 2.8   [24] 

If for some , then 

 

Where and . 

Theorem 2.9 [24] 
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Theorem 2.10: [4, 5] 

 Let A  be ×n n real matrix. Then a necessary and sufficient condition for the asymptotical stability of  

0
( ) ( )

α
=

C

t
D x t Ax t                                                                               

is arg ( ( ))
2

α π
>spec A , where (0,1)α ∈ and ( )spec A is the spectrum (set of all eigenvalues) of A . 

Theorem 2.11[18] 

The system 
0
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α

=
C

t
D x t A x t  is asymptotically stable if the following condition is satisfy arg ( ( )) ,

2

α π
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Where (0, 2)α ∈ and ( )eig A are the eigenvalues of A . 

 

 

3. Equivalent system for high order autonomous CFS:  

Consider the high order autonomous CFS      
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Theorem 3.1 The high order autonomous CFS (3.1) with the initial conditions (3.2) is equivalent to a system of 

FDEs with derivative order 0 1α< ≤
i
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and so on, let 
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The Laplace transform to both sides of system (3.3) gives 
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Choose the initial condition of system (3.1.3) as follows 
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By using the initial conditions (3.5) and backward substitution of system (3.4) one can have 
1 2 ( 1)

1
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In fact, Eq. (3.6) is exactly the Laplace transform of system (3.1) with the initial conditions (3.2). So that the 

system (3.3) with the initial conditions (3.5) is equivalent to system (3.1) with the initial conditions (3.2).                                                                                     

Now, Consider the multi high order autonomous CFS      
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with the initial conditions (3.1.5). 

 

4. General solution of multiple different orders linear CFS:  
In this section, we adopt the general solution of multiple different orders linear CFS in the form 

0
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α
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where A is ×n n  matrix , 
1 2
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By taking inverse Laplace transform to both sides of (46), we have 
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So that the solution of (4.1) with the initial conditions (4.2) is 
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Second, if the square matrix A  have repeated eigenvales then we have invertible matrix P  such that 
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where 
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= + + +⋯
l

n n n n  

In fact, the system (4.10) can be divided to subsystems as follows 

A P
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First, we find the solution of (4.11), by using Laplace transform one can get 
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    
          

⋯

⋱

⋮ ⋮⋮ ⋱ ⋱

⋯n n

nn nn n

s y s s y y s

s y s s y y s

y ss y s s y

                            (4.14) 

by solving (4.14) backward, one can have 

1

1 1
1

1

1

( ) (0)
( )

α

α

λ

−

=
−

n

n
n n

s
y s y

s
 

1 1 1

1 1 11 1
1 1 1

1 1

1 1

1 1 1

( ) (0) (0)
( ) ( )( )

α α

α α α

λ λ λ

−

− −

− −

− −
= +

− − −

n n

n n n
n n n

s s
y s y y

s s s
 

21 1 1 1

1 1 1 11 11 2 1 2 1 1 2 1 1

1 1 1

2 2 1

1 1 1 1 1 1

( ) (0) (0) (0)
( ) ( )( ) ( )( )( )

α α α

α α α α α α

λ λ λ λ λ λ

− −

− −− − −

− − −

− − −
= + +

− − − − − −

⋮

n n n

n n n n n n
n n n n

s s s
y s y y y

s s s s s s

1 2 1

11 1 2 1 2 1

11 1

1 1 2

1 1 1 1 1 1

( ) (0) (0) (0)
( ) ( )( ) ( )( ) ( )

αα α

αα α α α αλ λ λ λ λ λ

−− −

= + + +
− − − − − −

⋯

⋯

n

n
n

s s s
y s y y y

s s s s s s
 

By taking Laplace inverse to the above equations, we have 

1

1 11
,1 1

( ) ( ) (0)
α

α
λ=

n

n
n n

y t E t y  

1 1 1
1 1 1 1

1 1 1 1 1 11 1 1 1

1

1 ,1 1 1 , 1 ,1 1
( ) ( ) (0) ( ) * ( ) (0)

α α α α

α α α α
λ λ λ− − −

− − −

−

− −
= − + − −

n n n n

n n n n
n n n

y t E t y t E t E t y  

                                                                       (4.15) 

1 1
1 1 1 1 1 1

1 1 1 1 1 11 1 1

11

1 ,1 1 1 , 1 , 1 ,1 1
( ) ( ) (0) ( ) * * ( ) * ( ) (0)

α α αα α α

α α α α α α
λ λ λ λ

− −

− −

−−
= + +⋯ ⋯

n n n

n n n
n

y t E t y t E t t E t E t y  

5. Stability analysis of multiple different orders linear CFS:  

In this section, we study the stability of the multiple different orders linear CFS in the form 

0
( ) ( ), ( )

α
= ∈

C n

t
D x t Ax t x t R                                                                          (5.1)  

⋮
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Where A is ×n n  matrix, 
1 2

( , , , ),α α α α= …
n

and 0 1, 1, 2, ,α< < = …
k

k n  

with initial conditions  

 (0) , 1, 2, ,= = …
k k

x x k n                                                                                 (5.2) 

Theorem 5.1 If A  is ×n n  matrix has different eigenvalues.  Then the zero solution of (5.1)-(5.2) is stable if and 

only if  { }1 2arg( ) Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ ≥ =… …

n

i
i n  and   asymptotically stable if and only if   

{ }1 2arg( ) >Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ =… …

n

i
i n  . 

Proof: Since the square matrix A  have different eigenvalues it is always possible to find invertible matrix P  

such that 
1

1 2
( , , , )λ λ λ

−
= = Λ…

n
P A P diag . Let 

1
( ) ( )

−
=y t P x t then we have  

 
0

( ) ( )
α

= Λ
C

t
D y t y t                                                                                               (5.3) 

1
(0) (0)

−
=y P x                                                                                                    (5.4) 

We can rewrite the (5.3) system as 

0
( ) ( ) , 1, 2, ,

α
λ= = …k

C

t k k k
D y t y t k n                                                                  (5.5) 

Each equation in system (5.3) can be study independently, so that the zero solution of the 
th

k equation is stable 

(asymptotically stable) if and only if arg( )
2

α π
λ ≥ k

k
( arg( )

2

α π
λ > k

k
) for all 1, 2, ,= …k n . 

So, the zero solution of system (5.3)-(5.4) is stable (asymptotically stable) if and only if 

{ }1 2arg( ) Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ ≥ =… …

n

i
i n                                        (5.6) 

( { }1 2arg( ) >Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ =… …

n

i
i n )                                       (5.7) 

Since the system (5.3)-(5.4) is equivalent to the system (5.1)-(5.2), one can have directly, that the system (5.1)-

(5.2) is stable (asymptotically stable) if and only if the condition (5.6) (the condition (5.7)) is held. 

 

Now, consider the following multiple different orders linear CFS 

 
0

( ) ( ), ( )
α

= ∈
C n

t
D x t Ax t x t R                                                                            (5.8) 

where 
1

1 2
( , , , )

−
= …

l
A P diag J J J P  is ×n n  matrix, 

1 2
= + + +⋯

l
n n n n   and 

1 2
( , , , ),α α α α= …

n
 

1
1 2 0

, 1, 1, 2, ,α α α
+

+ + +
= = = = =⋯ …

k k k k
n n n n

n k l , and 0 1, 1, 2, ,α< < = …
k

k n  with initial conditions  

 (0) , 1, 2, ,= = …
k k

x x k n  .                                                                             (5.9) 

Theorem 5.2 The zero solution of (5.8)-(5.9) is stable if and only if  

{ }1 2arg( ) Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ ≥ =… …

n

i
i n  and   asymptotically stable if and only if   

{ }1 2arg( ) >Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ =… …

n

i
i n  

Proof:  Since the square matrix A  have different eigenvalues it is always possible to find invertible matrix P  

such that 
1

1 2
( , , , )

−
= …

l
A P diag J J J P . Let 

1
( ) ( )

−
=y t P x t then we have  

0 1 2
( ) ( , , , ) ( )

α
= …

C

t l
D y t diag J J J y t                                                                  (5.10)   

With 
1

(0) (0)
−

=y P x                                                                                          (5.11) 

We can rewrite the above system as 
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1

1

1

11 1 1

10 1 1

20 2 1

0 1

( )( ) 1 0

( )( ) 0 0

1

( )( ) 0 0

α

α

α

λ

λ

λ
×

=

    
    
    
    
          

⋯

⋱

⋮⋮ ⋮ ⋱ ⋱

⋯

C

t

C

t

C

nt n n n

y tD y t

y tD y t

y tD y t

                                              (5.121) 

11

1
1

1
1

1
1

11

2 2 1 2

1 2

0 1 1
2

220 2

2
0

( ) ( )1 0

( )0 0( )

1

0 0 ( )( )

α

α

α

λ

λ

λ

+

+

+

+ +

++

× +
+

=

                             

⋯

⋱

⋮ ⋱ ⋱ ⋮⋮

⋯

⋮

n

n

n

C

t n n

C

nt n

C
n n n n

t n n

D y t y t

y tD y t

y tD y t

                                   (5.122) 

10 1

20 2

0

( )( ) 1 0

0 0 ( )( )

1

0 0 ( )( )

α

α

α

λ

λ

λ

− +− +

− +− +

×

=

    
    
    
    
            

⋯

⋱

⋮ ⋱ ⋱ ⋮⋮

⋯

n

ll

n

ll

n

l l

C

n nt n n l

C

l n nt n n

C
l n n nt n

y tD y t

y tD y t

y tD y t

                                      (5.12Ɩ) 

The above subsystems have same order fractional system and we can study the stability of each subsystems 

independently, so that the zero solution of the 
th

k equation is stable (asymptotically stable) if and only if 

1

1

1

1
arg( )

2

α π
λ −

−

+

+
≥ k

k

n

n
( 1

1

1

1
arg( )

2

k

k

n

n

α π
λ −

−

+

+
> ) for all 

0
0, 1, 2, ,= = …n k l . 

So, the zero solution of system (5.12) is stable (asymptotically stable) if and only if 

0 11

1

1 11

1 0
arg( ) Max , , , , 1, 2, , , 0,

2 2 2

α π α πα π
λ −

−

+ ++

+
≥ = =

 
 
 

… …
l

k

n nn

n
k l n               (5.13) 

(
0 11

1

1 11

1 0
arg( ) >Max , , , , 1, 2, , , 0,

2 2 2

α π α πα π
λ −

−

+ ++

+
= =

 
 
 

… …
l

k

n nn

n
k l n ).            (5.14) 

Since the system (5.8)-(5.9) is equivalent to the system (5.10)-(5.11), one can have directly, that the system 

(5.8)-(5.9) is stable (asymptotically stable) if and only if the condition (5.6) (the condition (5.7)) is held. 

   Consider the following multiple deferent orders linear CFS  

0
( ) ( ), ( )

α
= ∈

C n

t
D x t Ax t x t R                                                                                  (5.15) 

where A  is ×n n  matrix has different eigenvalues, 
1 2

( , , , ),α α α α= …
n

and 1 2, 1, 2, ,α< < = …
k

k n  with 

initial conditions  

 
1 2

(0) , (0) 1, 2, ,′= = = …
k k k k

x x x x k n                                                                 (5.16) 

Theorem 5.3 The zero solution of (5.15)-(5.16) is stable if and only if  

{ }1 2arg( ) Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ ≥ =… …

n

i
i n  and   asymptotically stable if and only if   

{ }1 2arg( ) >Max , , , , 1, 2, ,
2 2 2

α πα π α π
λ =… …

n

i
i n  . 

We will omit the proof since it is similar to the proof of theorem 5.1. 

    Now, Consider the following multiple different orders linear CFS 

 
0

( ) ( ), ( )
α

= ∈
C n

t
D x t Ax t x t R                                                                                 (5.17) 
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where 
1

1 2
( , , , )

−
= …

l
A P diag J J J P  is ×n n  matrix, 

1 2
= + + +⋯

l
n n n n  and 

1 2
( , , , ),α α α α= …

n
 

1
1 2 0

, 0, 1, 2, ,α α α
+

+ + +
= = = = =⋯ …

k k k k
n n n n

n k l , and 1 2, 1, 2, ,α< < = …
k

k n  with initial conditions  

 
1 2

(0) , (0) 1, 2, ,′= = = …
k k k k

x x x x k n                                                                          (5.18) 

Theorem 5.4  The zero solution of (5.17)-(5.18) is stable if and only if  

{ }1 2

arg( ) Max , , , , 1, 2, ,

2 2 2

α πα π α π
λ ≥ =… …

n

i
i n  and   asymptotically stable if and only if   

{ }1 2

arg( ) >Max , , , , 1, 2, ,

2 2 2

α πα π α π
λ =… …

n

i
i n . 

We will omit the proof since it is similar to the proof of theorem 5.2. 

   

   Consider the following multiple deferent orders linear CFS  

0
( ) ( ), ( )

α
= ∈

C n

t
D x t Ax t x t R                                                                                             (5.20) 

where A  is ×n n  matrix has different eigenvalues, 
1 2

( , , , ),α α α α= …
n

and 

1
1 2

0 1, 1, 2, , , 1 2, 1, 2, , ,α α
+

< < = < < =… …
k n k

k n k n and 
1 2

= +n n n  with initial conditions  

 
1 1

(0) , 1, 2, ,= = …
k k

x x k n  and 
1 2 2

(0) , (0) 1, 2, ,′= = = …
k k k k

x x x x k n .                     (5.21) 

Theorem 5.5 The zero solution of (5.20)-(5.21) is stable if and only if  

1 1
1 1

arg( ) Max , , , , 1, 2, ,
2 2 2

α π α π α π
λ

+ +

≥ =
 
 
 

… …
n n n

k
k n  and   asymptotically stable if and only if   

1 1
1 1

arg( ) >Max , , , , 1, 2, ,
2 2 2

α π α π α π
λ

+ +

=
 
 
 

… …
n n n

k
k n . 

We will omit the proof since it is similar to the proof of theorem 5.1 and theorem 5.2. 

Consider the following multiple different orders linear CFS  

0
( ) ( ), ( )

α
= ∈

C n

t
D x t Ax t x t R                                                                                             (5.22) 

where 
1

1 2
( , , , )

−
= …

l
A P diag J J J P  is ×n n  matrix, 

1 2
= + + +⋯

l
n n n n  and 

1 2
( , , , ),α α α α= …

n
 

1
1 2 0

, 0, 1, 2, ,α α α
+

+ + +
= = = = =⋯ …

k k k k
n n n n

n k l , and 0 1, 1, 2, , ,α< < = …
k

n
k m  

1 2, 0,1, 2, , 1α
−

< < = −…
l k

n
k m  where m  an integer number such that 0 < <m l  . with the initial conditions   

1 1 2
(0) , 1, 2, ,= = + + +… ⋯

k k m
x x k n n n                                                                          (5.23) 

and  
1 2 1 1

(0) , (0) 1, 2, ,
+ +

′= = = + + +… ⋯
k k k k m m l

x x x x k n n n .                                       (5.24) 

Theorem 5.6 The zero solution of (5.22)-(5.24) is stable if and only if  

1 2

arg( ) Max , , , , 1, 2, ,
2 2 2

α π α π α π
λ + +≥ =

 
 
 

… …
m m l

n n n

k
k n  and   asymptotically stable if and only if   

1 2

arg( ) >Max , , , , 1, 2, ,
2 2 2

α π α π α π
λ + + =

 
 
 

… …
m m l

n n n

k
k n . 

We will omit the proof since it is similar to the proof of theorem 5.1 and theorem 5.2. 

 

6. Illustrated examples:  
This section is devoted to provide several illustrate examples to find the fundamental solution and studying the 

stability analysis of multiple deferent orders linear CFS. 

Example 6.1 Find the fundamental solution and discuss the stability of the following fractional system 
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0 1 1

0 2 2

0 3 3

( ) 14 8 5 ( )

( ) 17 9 7 ( ) ,

( ) 2 2 1 ( )

α

β

γ

− − −

=

−

    
    
    

       

C

t

C

t

C

t

D x t x t

D x t x t

D x t x t

for any initial conditions
1
(0),x  

2
(0)x and 

3
(0)x  with

0 1, 0 1α β< < < < and 0 1γ< < . 

The eigenvalues of the system matrix are 
1 2

1, 2,λ λ= − = − and 
3

3.λ = −  So, we have 

{ }arg( ) = Max , ,
2 2 2

απ βπ γπ
λ π >

k
for all 0 1, 0 1α β< < < < ,and 0 1γ< < . Clearly, from the above inequality 

the zero solution of this system is asymptotically stable. The solution of the given system is 

 
( ) ( )

( )

1 1 2 3 ,1 1 2 3 ,1

1 2 3 ,1

( ) 7 (0) 5 (0) 3 (0) ( ) 3 (0) 2 (0) (0) ( 2 )

5 (0) 3 (0) 2 (0) ( 3 )

α β

α β

γ

γ

= − − − − + + + − +

+ + −

x t x x x E t x x x E t

x x x E t
 

( ) ( )

( )

2 1 2 3 ,1 1 2 3 ,1

1 2 3 ,1

( ) 7 (0) 5 (0) 3 (0) ( ) 3 (0) 2 (0) (0) ( 2 )

10 (0) 6 (0) 4 (0) ( 3 )

α β

α β

γ

γ

= + + − + + + − +

− − − −

x t x x x E t x x x E t

x x x E t
 

( ) ( )

( )

3 1 2 3 ,1 1 2 3 ,1

1 2 3 ,1

( ) 7 (0) 5 (0) 3 (0) ( ) 12 (0) 8 (0) 4 (0) ( 2 )

5 (0) 3 (0) 2 (0) ( 3 )

α β

α β

γ

γ

= + + − + − − − − +

+ + −

x t x x x E t x x x E t

x x x E t
 

In the following figures, we will show the behaviors the solution in case
3

2
α = ,

1

2
β = and 

6

3
γ =  for 

different initial conditions. 

 

 
 

 

The solution with the initial conditions 

1 2 2
(0) 1, (0) 1, (0) 1= = =x x x  
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Example 6.2 Find the fundamental solution and discuss the stability of the following fractional system 

0 1 1

0 2 2

0 3 3

( ) 1 0 1 ( )

( ) 1 1 0 ( ) ,

( ) 0 0 2 ( )

α

α

β

−

= −

−

    
    
    

       

C

t

C

t

C

t

D x t x t

D x t x t

D x t x t

 for any initial conditions
1
(0),x  

2
(0)x and 

3
(0)x  , Also, 0 1α< < ,and 

0 1β< < . 

The eigenvalues of the system matrix are 
1 2

1, 1,λ λ= − = − and 
3

2λ = −  

So, we have { }arg( ) = Max ,
2 2

απ βπ
λ π >

k
for all 0 1α< < ,and 0 1β< < .  

Clearly, from the above inequality the zero solution of this system is asymptotically stable. The solution of the 

given system is 

1 1 3 ,1 3 ,1

( 1)

2

2 2 3 ,1 1 3 3 ,1

0

3 3 ,1

( ) ( (0) (0)) ( ) (0) ( 2 ),

( 1)
( ) ( (0) (0)) ( ) ( (0) (0)) (0) ( 2 )

( 1)

( ) (0) ( 2 )

α β

α β

α

α β

α β

β

β

α

−∞

=

= + − − −

−
= − − + + + −

Γ +

= −

∑
i i i

i

x t x x E t x E t

C t
x t x x E t x x x E t

i

x t x E t

 

In the following figures, we will show the behaviors the solution in case
1

2

α = and
1

3

β =  for different initial 

conditions. 

The solution with the initial conditions 

1 2 2
(0) 10, (0) 0, (0) 10= − = =x x x  
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Example 6.3 Find the fundamental solution and discuss the stability of the following fractional system 

0 1 1

0 2 2

0 3 3

( ) 14 8 5 ( )

( ) 17 9 7 ( ) ,

( ) 2 2 1 ( )

α

β

γ

− − −

=

−

    
    
    

       

C

t

C

t

C

t

D x t x t

D x t x t

D x t x t

for any initial conditions
1 1
(0), (0),′x x  

2 2
(0), (0),′x x and 

3
(0)x  with

1 2,1 2α β< < < < and 0 1γ< < . 

The eigenvalues of the system matrix are 
1 2

1, 2,λ λ= − = − and 
3

3.λ = −  So, we have 

{ }arg( ) = Max ,
2 2

απ βπ
λ π >

k
for all 1 2α< < and 1 2.β< < Clearly, from the above inequality the zero 

solution of this system is asymptotically stable. The solution of the given system is 

( ) ( )

( )

1 1 2 3 ,1 1 2 3 ,1

1 2 3 ,1 1 2 ,2

1 2 ,2

( ) 7 (0) 5 (0) 3 (0) ( ) 3 (0) 2 (0) (0) ( 2 )

5 (0) 3 (0) 2 (0) ( 3 ) (7 (0) 5 (0)) ( )

(3 (0) 2 (0)) ( 2 )

α β

α β

γ α

γ α

β

β

= − − − − + + + − +

′ ′+ + − − + − +

′ ′+ −

x t x x x E t x x x E t

x x x E t t x x E t

t x x E t

 

The solution with the initial conditions 

1 2 2
(0) 1, (0) 1, (0) 1= = =x x x  

The solution with the initial conditions 

1 2 2
(0) 1, (0) 0, (0) 1= = = −x x x  
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( ) ( )

( ) ( )

( )

2 1 2 3 ,1 1 2 3 ,1

1 2 3 ,1 1 2 ,2

1 2 ,2

( ) 7 (0) 5 (0) 3 (0) ( ) 3 (0) 2 (0) (0) ( 2 )

10 (0) 6 (0) 4 (0) ( 3 ) 7 (0) 5 (0) ( )

3 (0) 2 (0) ( 2 )

α β

α β

γ α

γ α

β

β

= + + − + + + − +

′ ′− − − − + + − +

′ ′+ −

x t x x x E t x x x E t

x x x E t t x x E t

t x x E t

 

( ) ( )

( ) ( )

( )

3 1 2 3 ,1 1 2 3 ,1

1 2 3 ,1 1 2 ,2

1 2 ,2

( ) 7 (0) 5 (0) 3 (0) ( ) 12 (0) 8 (0) 4 (0) ( 2 )

5 (0) 3 (0) 2 (0) ( 3 ) 7 (0) 5 (0) ( )

12 (0) 8 (0) ( 2 )

α β

α β

γ α

γ α

β

β

= + + − + − − − − +

′ ′+ + − + + − +

′ ′− − −

x t x x x E t x x x E t

x x x E t t x x E t

t x x E t

 

In the following figures, we will show the behaviors the solution in case 3α = , 2β = and 
1

2
γ =  for 

different initial conditions. 

 
 

 

 

 
 

 

 

7. Conclusions:  

   In this paper, a new equivalent system to the higher order (CFS) has been introduced. This equivalent system 

has multiple different orders (CFDs) . The fundamental solution for linear CFS with multiple different orders 

CFDs  is derived. New criteria for studying the stability (asymptotic stability) of the  linear multiple different 

orders CFDs are investigated. These criteria are  depending on the position of eigenvalues of the matrix system in 

the complex plane.  As well as, these criteria are considered as a generalized of the classical criteria which is  used 

The solution with the initial conditions 

1 1 2 2 3
(0) 1, (0) 1 (0) 0, (0) 2, (0) 1′ ′= = = = = −x x x x x  

The solution with the initial conditions 

1 1 2 2 3
(0) 1, (0) 1 (0) 1, (0) 2, (0) 1′ ′= − = − = = − =x x x x x  
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to study the stability of linear first ODEs. Also, these criteria are considered  as generalized of the criteria 

theorem (2.10) and theorem (2.11). To show the behavior of the  solution near the equilibrium, several examples 

are illustrated.  
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