
Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

8 

DESIGN AND IMPLEMENTATION OF A LANGUAGE 

SCANNER GENERATOR (KnitAutoGen) 
 

 

Chile-Agada B. U. N.2 *, Offiong N. M.1, Adehi M. U.1,  

1Department of Mathematical Sciences, Nasarawa State University, Keffi, Nigeria. 

2Department of Computer Science Education, Alvan Ikoku Federal College of Education, Owerri, Nigeria. 

Abstract 

The need for fast, efficient and simple scanner generator that has the primary responsibility to perform efficiently 
gave rise to this paper. This is due to the fact that, on daily basis new technologies arise which brings a great 
improvement on the design of computer architecture. However, attention was given to speed, run time and 
resource availability of the design machine to be used since lexical analysis has an impact on how the compiler 
works. This paper seeks to develop a lexical analyzer (scanner generator) automatically by specifying the 

lexemes patterns to a lexical analyzer generator and compiling those patterns into a code that functions as a 
lexical analyzer. The scanner accepts characters as input and breaks them down to produce tokens by grouping 
the characters and not deviating from specifications. The project employs one of the different methods of lexical 
analyzer generator to perform pattern-matching on text using regular expression over a global character set. The 

paper shows how input is matched and specifies what to do when a pattern is matched. This was achieved with 
the use of regular expressions (RE) which were converted to non-deterministic finite automata (NFA) or 
deterministic finite automata (DFA). The regular expression and the regular grammar were thus joined together 
mathematically. Various results are presented and further work on micro compilers was proposed. 

Keyword: Scanner generator, Regular expression, KnitAutoGen, DFA, NFA. 

DOI: 10.7176/CTI/8-02 

 

INTRODUCTION 

The world revolves around computing and mankind seeks diverse ways to make computation easy. Programming 
actually makes computation easy for the user and describes computation to the machine. Without the complier, a 
computer program cannot run effectively because the compiler helps to translate the source code into machine 
understandable language and subsequently produce output in another language. To that end, scientists have come 

up with different compilers and the first complier took about 18 working years to be produced. After the first 
FORTRAN complier was produced, several other compliers were produced and they are all useful to the 
computing world. 

The compiler is broken down into phases to handle the source code till output is generated. The first phase of a 
compiler is called lexical analyzer or scanner. The lexical analyzer read the streams of character making up the 
source program and groups the characters into meaningful sequences called lexemes (Aho A., Lam M., Sethi R 
and Ullman J, 2007). In computer science, lexical analysis is the process of converting a sequence of characters 
into a sequence of tokens. A program or function which performs lexical analysis is called a lexical analyzer, 
lexer or scanner. Typically, the lexical analyzer (scanner) is the input routine or the translator, reading successive 
lines of input programs, breaking them down into individual basic items and feeding these items to the latex 

stage of the translator to be used in the higher level of analysis. The lexical analyzer must identify the type of 
each lexical item and attach a type-tag to it. In addition, conversion to an internal representation is often made 
for items such as numbers, symbols etc. 

Developing a language scanner generator to accept language and produce output is very important in the design 
of a compiler because without accepting inputs, tokens will not be produced and that will affect subsequent 
phase of the complier. This project deals with analyzing the design of a language scanner generator and coming 

out with a scanner generator  that does the same function of the existing lexical analyzers without deviating from 
the specifications of a reliable and efficient scanner generator. The study of compliers is mainly a study of how 
we design the right mathematical models and choose the right algorithms, while balancing the need for 
generality and power against simplicity and efficiency. Some of the most fundamental models are finite-state 

machines and regular expressions and they shall form the basis of this project. These models are useful for 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

9 

describing the lexical units of programs (keywords, identifiers, and symbols) and for describing the algorithms 
used by the complier to recognize those units. The program we are going to use in the scanner design, will 
harness the parallel nature of the computer architecture to deliver high performance to other phases of the 
complier.      

OVERVIEW OF LEXICAL ANALYZER 

The lexical analyzer is at the phase of compiler and its main task is to read the input character of the source code, 
group them into lexemes and produce as output, a sequence of tokens for each lexeme in the source program. 
This is done not without interaction with the symbol table.  

                                                                                                                  Source Code  

     

 

  

 

Fig.1: Lexical analysis 

Symbol Table: The symbol table is a data structure containing a record for each variable name, with fields for 

the attributes of the name. The data structure should be designed to allow the compiler to find the record for each 

name quickly and to store or retrieve data from that record quickly.  

Error Handler: This interacts with the lexical analyzer to handle errors that might arise. The error handler is 

there to handle error so that compilation can continue to allow for further error detection. At the lexical phase 

can be detected where the characters remaining in the input do not form any token of the language specification.  

 

METHODOLOGY OF GENERATING SCANNERS (lexical analyzer)  

Presently, we have two ways of generating scanner namely:  

Hand Implementation: Hand implementation can be achieved in the following ways.  

Manual Implementation: This is a case whereby we manually generate scanners diagram to produce tokens.  

Transition Diagram: This is a case where we convert a transition diagram into a state machine. 

 
 

                 Letter/Digit              Delimiter            Identifiers/Keywords   

    

 

 

Fig.2: Transition Diagram 

 

Automatic Generator: This is a process of generating scanners automatically by specifying the pattern of the 

lexemes to a lexical analyzer generator and compiling those patterns into codes that functions as a lexical 

analyzer. There are many automatic generators already in existence and they include: Flex (Fast Lexical 

Analyzer), JFlex (Java Flex), GPlex (Garden Point Lexical Analyzer) etc. 

 

 

    Tokens  
Identifier  
Keywords  
Constants  
Delimiters  

Error  
Handler 

 

Symbol 
Table     Scanner  

1 0 
Letter Delimiter 

2  Identifiers/Keywords 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

10 

SOME TYPE OF SCANNER GENERATORS  

There are several types of scanner but I am going to review three of them which are: Flex, JFlex and GPlex.  

Flex: This is also known as lex and it works by reading the given input files, or its standard input if no file names 

are given, for a description of a scanner to generate. The description is in the form of pairs of regular expressions 

and C code, called rules. Flex generates as output a C source files which defines a routine. This is compiled and 

linked with library to produce an executable. When the executable is run, it analyzes its input occurrences of the 

regular expressions. Whenever it finds one, it executes the corresponding C code. The following flex input 

specifies a scanner which whenever it encounters the string “username” will replace it ith the user’s login name:  

Username printf (“%S”, getlogin ( ) ; 

 

By default, any text matched by a flex scanner is copied to the output, so the net effect of this scanner is to copy 

its output files to its output with each occurrence of “username” expanded. In this input, there is just one rule. 

“Username” is the pattern and the “Printf” is the action. The “%%” marks the beginning of the rules.  

JFlex: JFlex is a lexical analyzer generator for Java written in Java. It is also a rewrite of the very useful tool 

JLex that was developed by Elliot Berk at Princeton University. As Vern Paxson states for his C/C++ tool flex: 

they do not share any code though. JFlex generates a java file with one class that contains code for the scanner. 

The class will have a constructor taking a java.io.Reader from which the input is read. The class will also have a 

function yylex() that runs the scanner and that can be used to get the next token from the input (in this example 

the function actually has the name next token () because the specification uses the %cup switch/). 

GPlex: Gardens Point Lex (GPLex) is a scanner generator which accepts a “LEX-like” specification and 

produces (# output file. The implementation shares neither code nor algorithms with previous similar programs. 

The tool does not attempt to implement the whole of the POSIX specification for LEX, however the program 

moves beyond LEX in some areas, such as support for Unicode. The scanners produced by gplex are threading 

safe, in that all scanner state is carried within the scanner instance. The variables that are global in traditional 

LEX are instance variables of the scanner object. Most are accessed through properties which expose only a 

gettter. The implementation of gplex makes heavy use of the facilities of the 2.0 version of C#. These are two 

main ways in which gplex is used. In the most common case, the scanner implements or extends certain types 

that are defined by the parser on whose behalf it works. Scanners may also be produced that are independent of 

any parser, perform pattern matching on character streams. 

 

METHOD FOR DESIGNING THE SCANNER GENERATOR (KnitAutoGen) 

This section targets the method adopted in the development of a lexical analyzer (scanner) automatically. In this 

section we explored the fastest possible method to the design of the scanner generator. Since the paper is also 

concerned about how to carry out the implementation on the computer system, we are going to look at the 

requirements that will enable us do those efficiently. To that end regular grammar, regular expressions (RE), 

non-deterministic finite automaton, (NFA) and deterministic finite automaton (DFA) will have to come in here.  

PROJECT (SYSTEM) ANALYSIS  

Scanner: 

1.  This maps characters into tokens – the basic unit of syntax e.g. 

 x = x+y 

This becomes  

<id, x> = <id, x> + <id, y>; 

2. Characters string value for a token is a lexeme e.g.  

Score = initial * rate + 30  

The mapping of the above expression is clearly shown below:  

 

Lexemes   Tokens  

Score   <id, 1> 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

11 

                              =                                     < = > 

Initial    <id, 2> 

*   <*> 

Rate   <id, 3>  

+   <+>  

30   <30>  

 

3. It should also be noticed that the blanks separating the lexemes would be discarded by 

            the lexical analyzer. It therefore means that the expression above will appear thus: 

 <id,1> <id,2> <*> <id,3> <const, 4>  

4. In the representation above, the token = * + are abstract symbols for the assignment, 

            multiplication and the addition operators respectively. 1, 2, 3 and 4 are internal 

            representation of the identifiers score, initial, rate and the integer 30.  

5. The main tokens in our examples are:  

 Id, =, *, and const  

The key issue here is speed and specialize recognizers will be used (as against lex) but we are going to sacrifices 

a little space to achieve speed.  

Specifying Patterns: A scanner must recognize various tokens some of these are quite easy e.g.  

White space  

<ws> : : = <ws> ‘ ‘ 

Keywords and operators  

Specified as literal patterns: do, end  

Comments  

Opening and closing patterns delimiters /*….*/ 

Some are quite hard:  

Identifiers  

Alphabets followed by k alphanumeric (^, $, &,…)  

Numbers  

Integers: 0 or digit from 1-9 followed by digits from 0-9  

Decimals: integer’. ‘digits from 0-9  

Reals: (integer or decimal) ‘E’ (+ or -) digits from 0-9  

Complex: ‘(‘ real’, ‘real’)’.  

To specify the above patterns, we need a more powerful notation.  

Regular expressions are convenient for specifying lexical tokens, but we need a formalism that can be 

implemented as a computer program. For this we can use finite automata (N.B the singular of automata is 

automaton). A finite automaton has a finite set of states, edges lead from state to another, and each is labeled 

with a symbol. One state is the start state, and some of the states are distinguished as final states.  

 

Table 1: OPERATIONS LANGUAGES 

OPERATION DEFINITION  

Union of L and M 

Written as L U M 

L U M = {s/s e L or Se M} 

Concatenation of L and M 

Written as LM 

LM = {st/se L and t e M}  

Kleen closure of L  

Written as L*  

L* = Ut =o ∝ 

Positive closure of L 

Written as L+ 

 

 

    Recognizers: From a regular expression we can conduct a deterministic finite automaton 

    (DFA).  



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

12 

 

 

 

 

 

 

                 

 

 

Fig.:3 Finite State Machine 

 

Identifier  

Letter            (a/b/c…/Z/A/B/C/…/Z) 

Digits             (0/1/2/3/4/5/6/8/9) 

id                (letter/digits)* 

 

 

pseudo code for the recognizer  

start: goto state 0  

state 0: read x  

if x = letter goto state 1 

if x = digit goto state 3  

accept string  

state 1: read x  

if x = letter goto state 1 

if x = digit goto state 1  

state 2: accept string  

 

We will specify lexical tokens using the formal language of regular expressions to implement 

lexers using deterministic finite automata, and use mathematics to connect the two. This will 

make simpler and more readable lexical analyzers.  

In writing regular expressions, we will sometimes omit the concatenation symbol or the 

epsilon, and we will assume that Kleene closure “binds tighter” than concatenation, and 

concatenation binds tighter alternation; so that ab/c means (a.b) / c, and (a/). Thus, using 

regular expression we specified lexical tokens of any source code.  

1. If       If 

 2. [a-z] [a-z0-9]*     ID 

 3. [0-9]+       REAL 

 4. [0-9] + “. “[0-9]*” / [0-9]*”. “[0-9]+)   no token, just white space  

 5. (“--"[A-Z]*\N”) | (“ “|”\N”|” \N”)+   no token, just white space  

6.       error  

 

Accept 0 0 0 0 

0 0 

        

Letter 

          Letter/digits 

Delimiter 

Digit/delimiter 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

13 

The fifth line of the description recognizes comments or white spaces but does not report back to the parser. 

Instead, the white spaces are discarded and the lexer is resumed. The comments for this lexer begin with two 

dashes, contain only alphabetic characters, and end with new line.  

Finally, a lexical specification should be complete, always matching some initial substring of the input; we can 

always achieve this by having a rule that matches any single character (and in this case, “illegal character” error 

message and continues).  

In a deterministic finite automaton (DFA), no two edges leaving from the same state are labeled with the same 

symbol. A DFA accepts or rejects a string as follows. Starting in the start state, for each character in the input 

string the automaton follows exactly one edge to get to the next state. The edge must be labeled with the input 

character.  

After making n transitions for an n-character string, if the automaton is in a final state, then it accepts the string. 

If it is not in a final state, or if at some point there was no appropriately labeled edge to follow, it rejects.  The 

language recognized by an automaton is the set of strings that it accepts.  
                     Letter|Digits 

 

 

 

 

 

Fig. 4 Deterministic Finite Automata 
 

It is clear that any string in the language recognized by automaton ID must begin with a letter. Any single letter 

is state 2, which is final; so a single-letter string is accepted. From state 2, any letters and digits or also accepted.  

A non-deterministic finite automaton (NFA) is one that has a choice of edges – labeled with the same symbol – 

to follow out of a state. Or it may have special edges labeled with (the Greek letter epsilon) that can be followed 

without eating any symbol from the put.  

Below is an example of an NFA.  

 

 

 

 

 

Fig. 5 Non-deterministic Finite Automata 

 

In the start state, on input character a, the automaton can move either right or left. If left is chosen, then strings of 

a’s whose length is a multiple of three will be accepted. If right is chosen, then even-length strings will be 

accepted. Thus, the language recognized by this NFA is the set of all strings of a’s whose length is a multiple of 

two or three.  

On the first transition, this machine must choose which way to go. It is required to accept the string if there is 

any choices of paths that will lead to acceptance. Thus, it must “guess” and must always guess correctly.  

Edges labeled with  may be taken without using up a symbol from the input.  

 

DESIGN APPROACH  

The design approach adopted here is very simple and easy to implement on computer. Implementing 

deterministic finite automat (DFA) as computer programs is easy. But implementing NFAs is a bit tough, since 

most computers do not have good “guessing” hardware. So this paper adopts the simplest approach. Here we are 

going to convert a regular grammar to finite automata.  

 

 

 

0 1 2 
      Delimiter Letter 

     

a a a a 

 

a 

a a 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

14 

CONVERSION FROM REGULAR GRAMMAR TO FINITE AUTOMATA 

Given: G (VN, VT, P, S)  

Out: M (K, VT, , s, F)  

Where; 

(i) State of M is the variables of G plus additional state A not in VN  

(ii) Initial state of M is S  

(iii)If P contains the production S     

  Then F = {S, A}  

  Otherwise F = {A}  

(iv)  State A is  (B, a) if B            a  

  In addition, (B, a) contain all C such that  

  B            aC is in P 

(v) (A, a) =  for all a  VT  

With the above information, we can convert a regular grammar to a DFA and subsequently implement it on a 

computer after converting it to a pseudo code. 

 e.g.  

 G: P: S            0 

 B            0B | 1s  

 B            0 

 From the example above, we can obtain the following result:  

 VT = {0, 1} 

 S = {S} 

 VN = {S, B}  

The finites state machine above can be represented using a transition table:  

 

Table 2: A DFA transition table 

STATE  0 1 

S A - 

B A S 

A - - 

 

SCANNER IMPLEMENTATION (AUTOMATIC)  

A finite state scanner takes the form of a big loop. We can sketch it roughly as follows:  

Repeat  

Pick the next input character 

Find the new state-table entry. 

If this is a final state for some token,  

Isolate the token; pass it to the parser,  

And may be decrement character.  

Until input used up.  

Handling accepting states was done by a huge case statement with branches for all the final states.  

 

Conversion of NFA to DFA 

Implementing NFA on the computer is not a straight forward task, but it does not mean that we cannot 

implement NFA on a computer system. We are going to look for a way to convert NFA to DFA before we can 

successfully implement it on a computer system. 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

15 

In this section we shall first show how to convert NFA’s to DFA’s.  Then, we use the technique, known as “the 

subset construction,” to give a useful algorithm for simulating NFA’s directly, in situations (other than lexical 

analysis) where the NFA-to-DFA conversion takes more time than the direct simulation. The general idea behind 

the subset construction is that each state of the constructed DFA corresponds to a set of NFA states. After 

reading input a1a2a3…an, the DFA is that state which corresponds to the set of states that the NFA can reach. 

From its start state, following paths labeled a1a2a3….an, it is possible that the number of DFA states is 

exponential in the number of NFA states, which could lead to difficulties when we try to implement this DFA. 

However, part of the power of the automaton-based approach to lexical analysis is that for real languages, the 

NFA and DFA have approximately the same number of states, and the exponential behaviour is not seen. 

Algorithm: the subset construction of DFA from an NFA 

OUTPUT: A DFA D accepting the same language as N 

METHOD:  Our algorithm  constructs a transition table Dtran for D. each state of D is a set of NFA states, and 

we construct Dtran so D will simulate “in parallel” all possible moves N can make on a given input string. Our 

first problem is to deal with ε-transitions of N properly. In the table below, we see the definitions of several 

functions that describe basic computations on the states of N that are needed in the algorithm. Note that S is a 

single state of N, while T is a set of states of N. 

Table 3: State Table 

Operation  Description 

ε-closure (s) Set of NFA states reachable from NFA set ε-transitions only 

ε-closure (T) Set of NFA states reachable from some NFA sets in set T on ε-transitions 

only; Us in Tε-closure (s). 

Move (T,a) Set of NFA states to which there is a transition on input symbol a from some 

states T 

 

Suppose the start state of the NFA is S, then the start state for its DFA is ε-closure (s), the final states of the 

DFA are those that include a NFA-final-state. 

Algorithm: converting an NFA N into a DFA D…… 

Dstates= {ε-closure (s0), s0 is N’s start state} 

Dstates are initially “unmarked” 

While there is an unmarked D-state X do { 

Mark X 

For each a in S do { 

T= {states reached from any si in X via a} 

Y= ε-CLOSURE (T) 

 if Y not in Dstates then add Y to Dstates “unmarked” 

 Add transition from X to Y, labelled with a 

  } 

} 

We can also convert regular expressions directly to NFA and subsequently convert it to DFA so that it would be 

easily implemented on the computer using the algorithm above. 

 



Control Theory and Informatics                                                                                                                                                         www.iiste.org 

ISSN 2224-5774 (Paper) ISSN 2225-0492 (Online) DOI: 10.7176/CTI 

Vol.8, 2019 

 

16 

CONCLUSION 

This paper has developed a strategy for efficient and faster scanner generator implementation. It accepts a LEX-

like specification but produces a Java output file. The implementation shares neither code nor algorithm with any 

existing similar program. The tool does not attempt to implement the whole of the POSIX specification for LEX, 

however the program moved beyond lex in some areas, such as support for Unicode. The scanner produced by 

this scanner generator are thread safe, in that all scanner state is carried within the scanner instance. 

 

REFERENCES 

Aho A., Lam M., Sethi R and Ullman J., Compliers Principle techniques and Tools, Addison  Wesley, 2007. 

Elliot B., Jflex scanner generator manual, Princeton University Press, Princeton 2006 

Hennessy, J.L. and D.A. patterson, Computer Organization and Design:  The hardware/Software Interface, 

morgan-Kaufmann, San Francisco, CA, 2004. 

Hopcroft, J.E., R. Motwani, and J.D. Ullman, Introduction to Automata Theory Language, and Computation, 

Addison-Wesley, Boston MA, 2006. 

Huffman, D.A., “The synthesis of sequential machines,” J. Franklin Inst. 257 (1954), pp 3-4, 161, 190, 275-303 

John G., The Garden point LEX Scanner generator documentation, Queensland University of Technology Press, 

QueensLand, 2009. 

 

 


