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Abstract 

This paper considers nonholonomic system modelling and control of a single degree of freedom. The model is 

based on a linear ordinary differential equation using the principles of vibrations in the area of feedback control 

system which is applied in many industrial applications. In this field, actual motion deviate significantly from the 

desired motion, and as a result of this deviation, performance, precision and accuracy of the system may not be 

acceptable. The problem is solved using the principles of PID and Routh-Hurwitz criterion of stability. At end the 

system was stable and the actual motion is the same as desired motion. The system was controllable and observable.  
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1. Introduction 

In applications of theories in solving of problems of motion and equilibrium of mechanical systems, one may make 

use of the constraints to unearth a hidden fact about the systems under the discussion.  One in which the mechanical 

state of a given system is defined by a finite number of parameters that can completely describe the position of the 

system at any given time. In this description certain conditions arises which are handicap of the system. These 

handicaps conditions are termed constrains. In terms of this, systems are classified as holonomic and 

nonholonomic. Mathematically, Holonomic system are systems in which all constraints are integrable into 

positional constraints of  the form
1 2( , ,..., , ) 0 n

n if q q q t q   and t is time. In such a system, it can be used 

to reduce the number of degrees of freedom in the system.  In case of the nonholonomic systems, it cannot be used 

to reduce the number of degrees of freedom in the system and can be defined as systems which 

have constraints that are nonintegrable into positional constraints. Intuitively, Holonomic system where a robot 

can move in any direction in the configuration space whereas Nonholonomic systems are systems where the 

velocities (magnitude and or direction) and other derivatives of the position are constraint and can not move in any 

direction in the configuration space. Moreover, the controllable degree of freedom is less than the total degrees of 

freedom, then it is known as non-Holonomic drive. A car has three degrees of freedom; i.e. its position in two axes 

and its orientation. However, there are only two controllable degrees of freedom which are acceleration (or braking) 

and turning angle of steering wheel. This makes it difficult for the driver to turn the car in any direction (unless 

the car skids or slides). Hence a car is nonholonomic system. 

The origin of nonholonomic system can be divided into two classes namely: 

 • Bodies of motion  in contact with each other as they roll/move without slippage. 

 • Conservation of moments in a multi-body system associated with under-actuated control (Neimark & Fufaev, 

1972) . 

For the Unicycle example nonholonomy arises because at the touching point between disk and surface, the 

velocity are confined to be aligned with the heading angle, no slippage is allowed. For UAV model, since the 

engine thrust is always aligned with body’s longitudinal direction, it can be considered approximately that there is 

no side slippage. For the car-like model the two nonholonomic constraints arise because there are no side slippage 

at both front and rear wheel. For the hopping robot model nonholonomy arises because when it flies in the air, the 

angular moment is conserved since there is no external force applied to the system . (Neimark & Fufaev, 1972). 

This paper we shall deal with nonholonomic systems with a single degree of freedom and the focus was robot.  

An important application of the theory of vibration is the area of feedback control system. In many industrial 

applications, a robot system is designed to perform, with high precision of a specified task or follow a desired 

motion. However, due to disturbances or the effect of unknown parameters such as friction, wear, clearances in 

the joint etc., the desired motion of the system cannot be achieved. The actual motion deviates significantly from 

the desired motion, and as a result of this deviation, performance, precision and accuracy of the system is not be 

acceptable. It is therefore important to be able to deal with this problem by proper design of a control system that 

automatically reduces this deviation and if possible, eliminates it.  

 

2.Concept of Ordinary Differential Equations in Relation to Vibration Mechanics 

In this section mathematical concept underpinning vibration mechanics will be considered. Below are the strands 
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showing the flow of discussion: 

 Second-order ordinary linear differential equation with constant coefficient 

 Vibration Mechanics 

 

2.1 Second-Order Ordinary Linear Differential Equation with Constant Coefficient 

Application of Newton’s second law to the study of motion of physical systems leads to second-order ordinary 

differential equations. Generally, in order to examine, understand, and analyse the behaviour of physical systems, 

we must first solve differential equations that governs vibrations of systems. 

Considering nth   order ordinary linear differential equation with constant coefficient of the form 
(n) ( 1) (2) (1)

1 2 1 0.... (y).......................................1n

n na y a y a y a y a y f
       

           with the coefficient  1, 0,1, 2,...,a i n   are real constants , 0na    and  if (y) 0f   the equation is 

known as nonhomogeneous . 

For homogeneous equation  (y) 0f   and we have  

(n) ( 1) (2) (1)

1 2 1 0.... 0.......................................2n

n na y a y a y a y a
       

We begin by considering the special case where 2n   for homogeneous case.  That is  
(2) (1)

2 1 0 0.......................................3a y a y a y    

In terms of linear theory of vibration mechanics, 0 1,a a  and 2a  are constant coefficient that represent respectively 

stiffness, damping and inertia constants. In equation 1 ( )f x  is forcing function. 

The auxiliary (characteristic) equation for equation 2.3 is given as  

                                            
2

2 1 0 0.................................................4a a a      

where 0ty e  . The roots of quadratic equation in equation 2.4 is  

        1 2

2 1 1 2 00.5 4 1,2.....................................................5i a a a a a i        

There exist three forms of the general solution to equation 2.3 corresponding to the three cases: 

   Case I:   1  and 2  are real and distinct  2

1 2 0
4 0a a a   

   Case II:   
1

  and 
2

  are real and equal  2

1 2 0
4 0a a a   

   Case III:   
1

  and 
2

   are conjugate complex numbers  2

1 2 0
4 0a a a   

   Case I:  Distinct Real Roots 

                      1 2

1 2( ) ............................................................6
t t

y t c e c e
     

   Case II: Repeated Real Roots 

                          1 1

1 2( ) ............................................................7
t t

y t c e c te
    

    Case III: Conjugate Complex Roots 

In this particular case 1,2.i j i        

                      1 2( ) cos sin ...................................................8ty t e c t c t      

In all the equations from 6 to 8, 
1

c  and 
2

c  are constants.  

 

2.2 Controllability and Observability of Systems 

Considering a system of the form  

                               

( ) ( )
........................................10

( ) ( )

, , , , 1 , 1 , 1 .

y Ax t Bu t

y Cx t Du t

where A B C and D are respectively n n n n n matrices

  


  
   

&

 

The sufficiently condition for complete state controllability is that the n n  controllability matrix,  

                                 
2 1: : : ... : ...............................11n

C
M B AB A B A B     

contain n linearly independent row or column vectors (i.e.  rank n ) that is, the matrix is non-singular. In  
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this wise the rank of the controllability matrix is equal to the order of the system.  

Moreover, for complete observability, if n n  the observability matrix.  

                                1

: : ... : ....................................12
n

T T T T T

OB
N C A C A C

    
   

is of rank n ,i.e. is non-singular having a non-zero determinant. 

 

2.3 Vibration Mechanics 

The coefficient of second order ordinary differential equation in application to mechanics are acceleration, velocity 

and displacement. As already mentioned in the previous section, the coefficients also represent physical parameters 

such as inertia, damping, and restoring elastic forces. These coefficients not only have a significant effect on the 

response of the mechanical and structural system, but they also affect the stability as well as the speed response of 

the system to a given excitation. Changes in these coefficients may result in a stable and unstable system, and /or 

oscillatory or non- oscillatory system. In all this situations, control of vibration is critical and important (Inman, 

2017) 

 

3. Mathematical model of Robotic Arm  

In order to demonstrate the use of control system theory based on mathematical principles in solving the problem 

stated, we consider industrial single robotic arm as illustrated figure 1 below. 

 
Figure 1.  Motion control of a single robotic arm 

Suppose T  is the torque applied by motor placed at the joint at .O   

The equation of motion of the system is given in terms of angular orientation of the arm as 

                                    
(2)

0 cos( ) .............................................13
2

l
I mg T     

Where 0I  is the mass of the inertia of the robotic arm defined with respect to point ,O m  and l  are, respectively, 

mass and length of the arm. Moreover, g  is the gravitational constant, and   is the angular orientation of the arm 

as shown in figure 1. For any applied torque, equation 1 represent the motion of the robotic arm and if 
a

  denotes 

actual motion, equation 1 can be written as  

(2)

0 cos( ) .............................................14
2

a a

l
I mg T    

Due to disturbances and the effect of motion unknown parameters whose effect is not account for in equation 2, 

the actual motion a  may deviates from the desired motion d . In order to obtain desired motion d , we choose 

the motor torque T  in the form  

(2) (1) (1)

0 ( ) ( ) cos( ) .............................................15
2

d v a d p a d a

l
I k k mg T            

where vk  and 
pk  represent  velocity and position gain respectively which is selected in such a manner that the 

deviation  from the desired displacement is eliminated. 

Assumptions 

i. 
(1),d d   and 

(2)

d are assumed to be known because of the desired motion is assumed to be specific. 

ii. The inertia properties and dimension of the robotic arm are assumed to be known.  
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Using proper sensors to measure the actual displacement a   and its derivatives due to the fact that the sensor 

measure the angular orientation, velocity and acceleration of the robotic arm during the actual motion. At this 

point, equation 3 can be calculated and proper signal is given to motion in order to produce this torque.   

Equating equations 2 and 3, we have,  
(2) (2) (1) (1)

0 ( ) ( ) ( ) 0.............................................16a d v a d p a dI k k            

Since the error is the deviation of the actual motion from the desired motion, we have  

                                                
(1) (1) (1)

(2) (2) (2)

( ) ( ) ( )

( ) ( ) ( ) ...................................................17

( ) ( ) ( )

d a

d a

d a

e t t t

e t t t

e t t t

 

 

 

  


  
  

  

Substitute equation 3.5 into equation 3.4, we have  

                                                 
(2) (1)

0 ( ) 0.............................................18v pI e t k e k e    

which is damped single degree of freedom system. The velocity and position gain ( i.e. vk  and 
pk ) is selected 

such that error  which is the displacement of the actual motion from desired motion goes to zero faster as time 

elapses. 

The natural frequency of oscillation   of the error in equation 6 is given by  

                                                        
1

0 .................................................................19n pk I    

 Damping coefficient, 
dampC  is given by  

                                                  
0 02 2 ........................................20damp n pC I k I   

The damping factor,   is found using the relation 

                                    
0.5

0

0

0.5 ( ) .............................................21
2

v v
v p

n damp

k k
k k I

I C



       

If the system is critically damped, 1.    In this wise, 

                                                

2

0

4.........................................................22v

p

k

k I
   

For the error to approach zero in a relatively short time   vk  and 
pk  should be selected such that it satisfies 

equation 21 (Inman, 2017) (Singiresu , 2018)  . 

 

3.1 Control Systems of the Robotic Arm  

Figure 2 below illustrate the block diagram of the equation 3,                            

 
Figure 2. Block diagram 

In this section, control action concept which is based on control law was used to further analyse the system.  

Considering equation 18, it is clear the control action is proportional –derivative (PD). Despite PD control action 

improves the transient response of the system, very effective when all the system parameter are known. Moreover, 

when there are no disturbances. Since some of the system parameters are not known in addition to existence of 

disturbances, the PD control will result in non-zero state error. Hence not appropriate. For   Proportional – integral 
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(PI) control action improves the steady state of the system. Due to this reason the combination of the two i.e. 

proportional –integral - derivative (PID) control action improves overall time response of the robotic arm system 

and also, solves all the problems the other two control actions could not perform. Hence PID was used in this 

situation. To be able to used it, an additional term ik   was added to the torque T in equation 18 given as  

                                               
(2) (1)

0 ( ) 0.............................................23v p iI e t k e k e k      

where   is defined as  

                                                   
(1) ........................................................24e   

Equation 23 and 24 must be solved simultaneously in order to determine the error as a function of time. 

From equation 24,  

                                                      ..................................................25edt                                                      

Substitute equation 25 into equation 23 we have, 

                                                  
(2) (1)

0 ( ) ( ) ( ) ( ) 0.............................................26v p iI e t k e t k e t k e t dt     

Equation 26 depends on equation 9 for determination of  vk and pk . Apart from this, the system should obey 

stability condition that is roots of 26 should negative or lie on the left part of the complex plane. This testify the 

motion stability of the of the system. Hence the error function should belong a family of decay functions according 

to the form of equations 6,7, and 8 (Inman, 2017) (Singiresu , 2018). 

 

4. Data Analysis 

The researcher used a of mass 7.2kg and length of the rod ( )l  is 10m . Hence mass of inertia is given as  

                                
 22

2

0

7.2 10
60

12 12

ml
I kgm    

 From equation 9, we have  

0.5

0

2
2

0

2

0

0.5

( )

4

4

v

p

v

p

v p

k

k I

k

k I

k k I













 

 The researcher considered, 1pk  and 
2

0 60I kgm  

2
240 ...............................................27vk   

Since the theory of robot depends largely on the principles of pendulum with the primary objective of oscillating, 

the researcher considered the condition of underdamping. For this condition the damping factor 1  . 

Now considering 0.5 1   ,  

                                                   120 10.95vk    

Equation 6 is rewritten as  

                                           

 (2) (1)60 ( ) 10.95 ( ) ( ) 0, .........................................28e t e t e t T T       

The simulation block diagram for equation 28 is given below. 
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Figure 3:  Simulation closed loop block diagram without integral controller 

 
Figure 4. A graph of error function against time without Integral controller 

Now From the graph in figure 4, it is clear the control action is proportional –derivative (PD). Despite PD control 

action improves the transient response of the system very effective when all the system parameter are known and 

when there are no disturbances. Since some of the system parameters are not known in addition to existence of 

disturbances, the PD control will result in non-zero state error. Hence not appropriate. For   Proportional – integral 

(PI) control action improves the steady state of the system. Due to this reason the combination of the two i.e. 

proportional –integral - derivative (PID) control action improves overall time response of the robotic arm system. 

Hence PID was used in this situation. To be able to used it, an additional term ik   was added to the torque T in 

equation 6. Therefor using equation 26 and substitution  
2

0 60 , 10.95, 1v pI kgm k k    we have 

 

 (2) (1)60 ( ) 10.95 ( ) ( ) ( ) 0, .............................................29ie t e t e t k e t dt T T        

This equation 29 is an integral equation because the variable of interest is under the integral sign. Finding Laplace 

transform we have  
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2

3 2

( ) 60 10.95 ( )

( )

( ) 60 10.95

i

i

k
E s s s s T s

s

E s s

T s s s s k

     
 


  

 

The choice of ik is critical in the determination of the stability of the system and marking error function of the 

system approaches zero as time elapses. Hence for stability, we solve the equation 
3 260 10.95 0is s s k     

to determine the position of the poles in the complex plane.  Using Routh -Hurwitz stability criterion we have, 

                                                    

3

2

1

0

60 1 0

10.95

10.95 60
0

10.95

i

i

i

s

s k

k
s

s k

  

For stability,  

i. 0ik   

ii. 
10.95 60

0
10.95

ik
  

Solving the inequality equations 

          0 0.1828 0,0.1825i ik k     

This implies that any value of which lies within the interval of 0 to 0.1825, the system will make the sable. 

Now choosing   0.02 0,0.1825ik   , we have  

                                            
3 260 10.95 0.02 0s s s     

Solving this cubic equation, we have   

                                              0.02663, 0.7793 0.08026s j      

Since the Real parts of the poles are located in the negative part of the complex plane, the system is stable under 

Routh -Hurwitz criterion.   This also implies that  

                             

 
    

 
    

0( )

( ) 0.02663 0.7793 0.08026 0.7793 0.08026

0
( ) ( )

0.02663 0.7793 0.08026 0.7793 0.08026

sE s

T s s s j s j

s
E s T s

s s j s j




    




    

 

Considering 
1

( ) ( )T s U s
s

  we have the simulation block diagram, 

 
Figure 5. Simulation Open loop- Block diagram with Integral Controller 
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Figure 6.  A graph of error function against Time with Integral controller 

From  the graph in figure 6, it is clear that the errors in the system has been eliminated as time elapses which means 

that actual motion is the same as desired motion.  The graph also indicates the system is stable. Moreover, 

reliability of a system is a function of errors in the system. Since the  error function moving to zero as time elapses 

implies that the system is reliable. Furthermore, it also implies the system is  controllable and observable. The 

researcher moves further to verify whether the system is totally controllable and observable or not. 

 

4.1Controllability of the System 

Converting equation 29 into state space form where we have 

                                                                       

1

2 1

3 2

( )y e t dt

y y

y y








&

&

 

                            

 

3 1 2 3

1 1

2 2

3 3

1

2

3

0.02 10.95

0 1 0 0

0 0 1 0

0.02 1 10.95 1
....................................30

( ) 1 0 0

y y y y T

y y

y y y T

y y

y

e t dt y

y

    

      
               

                


  
         



&

&

& &

&
     

From equations 10 and 11, 

                                  

 
0 1 0 0

0 0 1 , 0 , 1 0 0 , 0 ...............................31

0.02 1 10.95 1

A B C D

   
          
         
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 2

0 1 0 0 0

0 0 1 0 1

0.02 1 10.95 1 10.95

0 1 0 0 1

0 0 1 1 10.95

0.02 1 10.95 10.95 118.9025

AB

A B A AB

    
         
           

    
           
           

 

Controllability matrix, 
2

0 0 1

0 1 10.95

1 10.95 118.9025

cM B AB A B

 
       
  

 

                   1cM    

Since the determinant is non-zero, the rank is equal to the order of the system. Therefore, the system is state 

controllable. 

 

4.2 Observability of the System 

Using the values in equation 31 

     

 
2

2

1

0 ,

0

12,

0 1 0 0

1 0 0 0 0 1 0 1 0 1

0.02 1 10.95 0

0 0 0.02 0 0.02 0.219 1

1 0 1 0 1 10.93 0

0 1 10.95 1 10.95 118.9025 0

T

T

T TT T

T T T

C

From equation

A C CA

A C C

 
   
 
 

    
           

          

     
            
         

0

0

1

 
 
 
 
 

 

Observability matrix,  2

1 0 0

0 1 0

0 0 1

T T T T T

OBN C A C A C

 
       
  

 

            1OBN   

Since the determinant is non-zero, the rank is equal to the order of the system. Therefore, the system is state 

observable. 

 

5. Conclusion 

We conclude that the mathematically modelled single arm robot system, the actual motion is the same as desired 

motion since error function approaches zero as time elapses. Hence, the system is reliable in terms of executing its 

designed task. Moreover, the system is stable, controllable and observable. 
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