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Abstract 

This study examines a mathematical model to determine the timing and consequently volume of transactions to 

be audited in a continuous audit system to detect potentially fraudulent transactions. The interactions between 

the audit system and a potential fraudster are modeled as Continuous Time Markov Chain and the transition 

probabilities from one state to another are determined using game theoretic approach. We believe that such a 

model has the potential to be deployed in an audit system to detect potentially fraudulent or malicious 

transactions. In this research, the information system is modeled as a continuous time Markov chain (CTMC), 

where the transition from one state to another occurs due to actions of a person with malicious intent. The 

present state of the system depends only on the past state. At each state, the fraudster can either continue with the 

next step in the fraud or can cease and desist from the fraud. The interaction between the actions of the audit 

module and fraudster is modeled as a two-player simultaneous zero-sum game and the probability of transition 

from one state to another is derived from the payoff table. This payoff will be decided by the outcome of a game 

theoretic model. A sensitivity analysis showed that when an organization has strong anti-fraud controls, the 

probability of fraud decreases and the need for frequent audit decreases. The limitations of the model are that, 

the game theory model assumes a zero-sum game where the payoffs are known and certain. 

Keywords: Continuous Audit Systems, Game Theory, Audit Timing, Fraud prevention, Sensitivity analysis.  

 

1. Introduction 

During the last decade, continuous audit systems (CAS) have become widely used in large transaction 

processing systems (PricewaterhouseCoopers, 2006; 2009). These systems are defined as “a continuous 

(concurrent) monitoring technique in which a set of programmed modules are directly integrated into the 

organization's application system” (Groomer and Murthy, 2003).  

In a manual audit, the scope and scale of the audit procedures is limited by the amount of physical data that an 

auditor can process. CAS can process vastly more data than what can be handled by manual means. However, 

this increase in scale and scope of data poses its own set of problems. If the CAS scans too much data it will find 

a lot of spurious items of interest, or false positives. Scan too little data and the CAS finds only trivial issues that 

would just as easily have been detected by manual means. This key issue regarding the timing and volume of 

transactions to be examined is highlighted in the problem statement below. 

Consider the problem of access controls in a database. Operating system objects, such as files, are unrelated 

items, whereas records, fields, and elements of a database are related. Although a user cannot determine the 

contents of one file by reading others, a user might be able to determine one data element just by reading others. 

The ability to determine data values from other related data values is called inference (Weber, 1998). 

This could happen in two ways. One is by using “Context Dependent” queries. Using diverse set of queries, a 

user may be able to infer data that would not normally be available to him. In order to secure against such 

improper access, access is restricted to all contextual references to data with higher security. For example, even 

though a user may not have access to income data of customers, he may query the database and obtain a list of 

customer making high value purchases, which allows him to infer the income of the customer. The second way 

is by using “History Dependent” queries. Here a user may construct a series of queries in such a way that each 

query and its answer does not violate the security policy. But all the answers of these queries together would 

give her information, for which she is not authorized (Weber, 1998). 

A similar problem arises when a malicious user attempts a fraud in an accounting system. Usually, in order to 

perpetrate the fraud, the user must succeed in creating a series of false entries, over a period of time that 

ultimately results in financial loss to an organization. Each fraudulent entry in itself does not necessarily cause a 

loss, and may not trigger an alert from the CAS in the early stages. However, at a later stage, by analyzing the 

series of transactions entered by that user, the audit module is in a better position to flag a transaction as a 

potentially fraudulent.  

To prevent these leakages of information or loss, the CAS must keep track of the queries or transactions that 

each user has run in the past. However, the key question is how far back the audit module has to scan to 
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determine if an attempt has been made to violate information security. Or to put it differently, how much and 

how soon must the audit module scan the history of a user’s actions to determine potential fraud. 

In this paper, we use game theoretic and stochastic modeling tools to determine the length of time for which the 

audit module must scan the past history of transactions. To determine this, one needs a metric which tells the 

module the amount of time it takes to violate an information system. We model the interactions between the user 

(“the fraudster”) who wishes to obtain data to which she is not privileged and the audit module using a stochastic 

model, where the decision to commit the fraud is based on the payoffs determined by a game theory model.  

 

2. Literature Review 

Reliability of a system is usually measured by estimating how long a system can operate without failing, usually 

termed as mean time to failure, or mean time between failures. This enables one to measure reliability in terms of 

a behavior that can be perceived by the user. Users are more interested in the measures of reliability in terms of 

failure rate rather than knowing it in terms of its static features, properties, or mode of construction (Littlewood 

et al., 1993). Though such static features, properties or mode of construction do influence reliability, they are not 

adequate in themselves to determine reliability. In a similar vein, feature set, design philosophy of firewalls, 

intrusion detection systems and access controls systems are not enough to determine whether a particular system 

is capable of maintaining integrity or confidentiality of data. What is required is a measure of actual achieved 

information integrity, analogous to how mean time to failure is used, as a yardstick for measuring reliability 

(Littlewood et al., 1993). 

One of the earliest attempts to quantify security was taken by Littlewood et al., (1993), who commented on the 

scarcity of literature on the probabilistic treatment of system security. Littlewood et al., (1993) drew an analogy 

between the problem of reliability and problem of security, and elucidated on the similarities and differences. 

They pointed out that the key difference between reliability and security is the presence of malicious threats in 

the security domain.  

Another early attempt at quantification of information security metrics was undertaken by Ortalo, Deswarte, and 

Kaâniche (1999). They attempted to provide a quantitative assessment system security level at a point in time.  

They modeled system vulnerabilities as a privilege graph, where each arc in the graph is assigned a weight that 

estimates the degree of effort required by a potential attacker to make a move from a less privileged state to 

another with greater privileges. They setup an experimental system to capture data on actual system 

vulnerabilities and attempts to circumvent controls.  

These early researchers concentrated on measuring static measures that measure actual security at a point in time. 

They fail to take into account the fact that once a vulnerability has been identified, administrators take steps to 

fix that vulnerability and concurrently, attackers modify their behavior and seek other vulnerabilities. To address 

this dynamic nature of the security modeling, researchers have resorted to game theory.   

The use of game theory to model information security issues is fairly recent. Hamilton, Miller, and Saydjari 

(2002) pointed out that it is possible to formulate attack and defense scenarios as a game of moves and counter 

moves. Game theory already has algorithms to predict the likelihood an action would be selected in such 

scenarios. Alpcan and Başar (2003) pointed out that game theory provides a rich set of tools for modeling and 

analyzing information security issues. These game theoretic tools can also be used to develop practical and cost 

effective solutions that can be implemented in the real world. Alpcan and Başar (2003) modeled an Intrusion 

Detection System (IDS) as a network of sensors. They modeled the behavior of an attacker and the IDS as a two-

person, nonzero-sum, noncooperative game. They applied game theoretic concepts to develop a formal decision 

and control framework for a platform-independent IDS.  

Lye and Wing (2005) constructed a two-player stochastic game to represent the interaction between a system 

administrator and an attacker. They computed the Nash equilibria or best response strategies for the attacker and 

administrator. They used a two-player game model and pointed out that a team of attackers or team of 

administrators can be modeled as a single omnipresent attacker or defender. Thus, a two player game is 

sufficient for the modeling problems of information security.  

Liu, Zang, and Yu (2005) used a game-theoretic approach to inferring attacker intent, objectives, and strategies 

(AIOS) and captured the inherent interdependency between AIOS and defender objectives. The authors were 

primarily interested in examining the characteristics of attackers rather than attacks themselves. The attacker’s 

intent is modeled using game theoretic models. They make the case that the attacker’s intent can be inferred from 

the nature of the attack and this in turn influences the nature of defense strategy to be adopted.   

Cavusoglu et al. (2005; 2008) demonstrated that firms incur lower costs when they use the game theory as 

opposed to the decision theory. According to them, the firm’s payoff is maximized when the firm credibly 

commits and communicates its strategy to the hacker. Even if the communication of strategy is not credible, the 

firm enjoys a higher payoff if the firm and attacker play a sequential game. Their research focused on the overall 

economics of investment in information security.  

Sallhammar and Knapskog (2004) built upon the work of Alpcan and Başar, 2003; Liu, Zang, and Yu, 2005; Lye 
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and Wing, 2005 and modeled a security breach as a series of state changes from an initially se

compromised state. They used game theory to model and compute the probabilities of malicious user actions.

Loss of integrity implies that purity of an information system has been compromised in some way. This loss of 

integrity could be accidental or malicious. While accidental events are usually not recurring, once a malicious 

event occurs, the perpetrator is usually emboldened to carry out further attacks. These events carry huge 

financial and reputational risks for the organization concerned

intentional events can viewed as a series of changes from an initially uncompromised state to a state that 

represents a severe loss of integrity. 

In order to successfully carry out a history dependent attack, 

that each breaches the integrity of the system, but does not necessarily cause a monetary loss. For example, in 

order to obtain fraudulent disbursement, a fraudulent invoice, payroll slip, expense repo

must be created. Some of these may require additional documents. In order to support a fraudulent pay slip, it 

may be necessary to substantiate it with a forged timecard. 

In this paper, we are not concerned with the actual nature of

and/or confidentiality of the system would eventually cause a loss, if undetected would constitute a fraud. Given 

a measure of how long it takes for a fraudster to compromise the system, it would be easy to 

to scan that length of time and corresponding volume of transactions to detect potential frauds. If it scans for a 

shorter period of time, it is likely to miss the fraud. We use the approach of Sallhammar and Knapskog (2004) 

and demonstrate how their model can be used to determine the timing of audit in an continuous audit system. 

From a programming standpoint, the audit modules are subroutines that are executed when certain criteria set by 

the auditor are met. In this environment, the audi

will be subject to audit once a trigger event occurs. A trigger event could be, for example, queries or transactions 

from a particular user, which is far in excess of the usual number of trans

historical usage patterns. While Sallhammar and Knapskog (2004) proposed a model to quantify security, in this 

paper we look at how the model can be adapted to improve the effectiveness of continuous audit system. In 

particular, this paper attempts to determine that extent of transactions to scan in order to detect a potentially 

malicious attempt.  

The problem of determining audit timing and volume has been studied analytically by two other researchers, 

Hughes (1977), and Morey and Dittman (1986). Hughes (1977) modeled the audit timing problem as an infinite 

state time varying Markov decision process and solved it using dynamic programming.  Morey and Dittman 

(1986) attempted to determine optimal elapsed time between audits or

should occur before an audit should be initiated. They used two models, one for protecting against overstatement 

errors and the other for both overstatement and understatement. They provided a closed form solution

for determining the optimal timing of audit. Both these researchers did not consider the possibility of deliberate 

fraud. Instead, they assumed that errors occur at a finite rate and that these errors are caused by non

factors. 

The key contribution of current study is the determination of audit timing and volume in an continuous audit 

system. In traditional audits, the timing and periodicity is usually determined by statute (in most countries, 

statutory audits are annual and internal au

inadequate in an CAS. To the best of our knowledge, this paper represents one of the first attempts to determine 

the timing and frequency of audits through game theoretic methods. 

 

3. Mathematical model and empirical test

In the state transition diagram as shown in figure 1 (appendix), the present state of the system depends only on 

the past state. And the time spent in any given state is stochastic. In case the fraudster fails at an inter

state (state i) and resigns, the system continues to remain in a compromised state until the audit system restores it 

back to a pristine state. 

An information system’s fraud-free operating time is modeled as having an exponential distribution. The 

exponential distribution is widely used in modeling system reliability (

Chander, 2008) due to its memory less property. Experimental data from an experiment on intrusion detection 

experiment also supports the view that an

security (Goseva-Popstojanova et al., 2001

as an exponential distribution (whose cumulative distribution function is given 

(where λfraudis the average rate at which fraudulent transactions are intitated). Thus,  
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compromised state. They used game theory to model and compute the probabilities of malicious user actions.

Loss of integrity implies that purity of an information system has been compromised in some way. This loss of 
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that each breaches the integrity of the system, but does not necessarily cause a monetary loss. For example, in 

order to obtain fraudulent disbursement, a fraudulent invoice, payroll slip, expense repo

must be created. Some of these may require additional documents. In order to support a fraudulent pay slip, it 

may be necessary to substantiate it with a forged timecard.  

In this paper, we are not concerned with the actual nature of fraud. Any action that undermines the integrity 

and/or confidentiality of the system would eventually cause a loss, if undetected would constitute a fraud. Given 

a measure of how long it takes for a fraudster to compromise the system, it would be easy to 

to scan that length of time and corresponding volume of transactions to detect potential frauds. If it scans for a 

shorter period of time, it is likely to miss the fraud. We use the approach of Sallhammar and Knapskog (2004) 

e how their model can be used to determine the timing of audit in an continuous audit system. 

From a programming standpoint, the audit modules are subroutines that are executed when certain criteria set by 

the auditor are met. In this environment, the auditor needs to specify the extent and timing of transactions that 

will be subject to audit once a trigger event occurs. A trigger event could be, for example, queries or transactions 

from a particular user, which is far in excess of the usual number of transactions from that user based on 

historical usage patterns. While Sallhammar and Knapskog (2004) proposed a model to quantify security, in this 

paper we look at how the model can be adapted to improve the effectiveness of continuous audit system. In 

lar, this paper attempts to determine that extent of transactions to scan in order to detect a potentially 

The problem of determining audit timing and volume has been studied analytically by two other researchers, 

ey and Dittman (1986). Hughes (1977) modeled the audit timing problem as an infinite 

state time varying Markov decision process and solved it using dynamic programming.  Morey and Dittman 

(1986) attempted to determine optimal elapsed time between audits or the number of financial transactions that 

should occur before an audit should be initiated. They used two models, one for protecting against overstatement 

errors and the other for both overstatement and understatement. They provided a closed form solution

for determining the optimal timing of audit. Both these researchers did not consider the possibility of deliberate 

fraud. Instead, they assumed that errors occur at a finite rate and that these errors are caused by non

contribution of current study is the determination of audit timing and volume in an continuous audit 

system. In traditional audits, the timing and periodicity is usually determined by statute (in most countries, 

statutory audits are annual and internal audits are usually conducted on a quarterly basis). These strategies are 

inadequate in an CAS. To the best of our knowledge, this paper represents one of the first attempts to determine 

the timing and frequency of audits through game theoretic methods.  

hematical model and empirical test 

In the state transition diagram as shown in figure 1 (appendix), the present state of the system depends only on 

the past state. And the time spent in any given state is stochastic. In case the fraudster fails at an inter

) and resigns, the system continues to remain in a compromised state until the audit system restores it 

free operating time is modeled as having an exponential distribution. The 

exponential distribution is widely used in modeling system reliability (Littlewood et al., 1993

) due to its memory less property. Experimental data from an experiment on intrusion detection 

experiment also supports the view that an exponential distribution can be applied to modeling information 

Popstojanova et al., 2001). The time between any two successive fraudulent entries is modeled 

as an exponential distribution (whose cumulative distribution function is given by 

is the average rate at which fraudulent transactions are intitated). Thus,   

Once a fraudulent transaction is initiated, the system enters state i = 1. The time for the next fraudulent entry 
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lar, this paper attempts to determine that extent of transactions to scan in order to detect a potentially 
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ey and Dittman (1986). Hughes (1977) modeled the audit timing problem as an infinite 

state time varying Markov decision process and solved it using dynamic programming.  Morey and Dittman 

the number of financial transactions that 

should occur before an audit should be initiated. They used two models, one for protecting against overstatement 

errors and the other for both overstatement and understatement. They provided a closed form solution technique 
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) and resigns, the system continues to remain in a compromised state until the audit system restores it 

free operating time is modeled as having an exponential distribution. The 

Littlewood et al., 1993; Singh and 

) due to its memory less property. Experimental data from an experiment on intrusion detection 

exponential distribution can be applied to modeling information 

). The time between any two successive fraudulent entries is modeled 

) with parameter λfraud 
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(1/λi) and the time needed for the audit subsystem to detect (1/

also modeled by exponential distributions.

and

and  are the cumulative dis

respectively. Thus, and  will be the respective mean time that a fraudster and the system spend in state 

the model. State i represent an intermediate situation, where t

fraudulent transactions, but no monetary loss has occurred. The two processes, 

fraudster and the audit process can be merged into one Poisson process. Now due to 

the exponential distribution, the state transition model can be transformed into a continuous time Markov chain 

(CTMC) with discrete space (Ross, 2006

{X(t): t ≥ 0}, Xs= {0,1,2,…, n},  

where, the subscript s refers to the state the system is in. Thus, if 

time t. The model as described here is shown in Figure 2 in appendix. 

At each intermediate state i, the fraudster has two possible courses of action. S

next step in the fraud or she can cease and desist from the fraud. The probability of continuing with the fraud is 

, and the probability that she would cease is 

with the fraud has to be computed, since at each stage she will evaluate the payoff of continuing with the fraud. 

Also, in order for the fraud to have financial repercussions, at each step the fraudster must succeed. The 

probability of success in each case must also be computed and this is indicated by 

incorporated into the model.  

The fraudsters and the audit module’s action rates and the transition probabilities allow the computation of the 

instantaneous transition rates between state

and the state between state 

Since the stochastic model is a continuous time Markov chain, it is possible to compute the limiting probabilities 

of each state in the model. The transition probabilities are also shown in Figure 2. In order for Markov chain to 

have a steady state solution, the rate at which the transition to state 

out of state i. This results in a series of ba

probability of being in fraudulent state, 

With this information one can compute the mean time taken for the fraudster to commit the first fraud with the 

following equation.  

Mean time to first loss from fraud   =  

For a system that starts in an initially secure state, this metric provides a quantitative measure of the system’s 

ability to maintain integrity.  

To illustrate, consider a transaction processin

compliance with business rules, and are concurrently checked for abnormalities to ensure that they are not 
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) and the time needed for the audit subsystem to detect (1/µi) and restore the system to the pristine state 0 are 
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and the state between state i and state 0 as 
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odel. The transition probabilities are also shown in Figure 2. In order for Markov chain to 

have a steady state solution, the rate at which the transition to state i occurs should match the rate of transitions 

. This results in a series of balance equations. Solving these equations, one can obtain the stationary 

probability of being in fraudulent state, .  
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erroneous. A transaction that is compliant with normal business rules may still be abnormal.

assume that a system checks the orders entered by salespersons to ensure that they are not erroneous or 

fraudulent. The system could compare the order entered with previous history of orders entered by a particular 

salesperson to ensure that orders are free from error or fraud. Suppose, at a particular point in time, the system 

detects that an order entry by a salesperson is four times the average order for that salesperson. Such transactions 

may need further validation or investigation. In th

constitute an attempt at fraud.  The CAS may need to scan several similar transactions before it can assess the 

probability that the transaction may be fraudulent. The above metric provides an estimat

must elapse for someone to commit fraud on an initially pristine system. This time estimate, in turn, provides an 

estimate of the volume of transactions that must be scanned to have a reasonable chance of detecting the fraud.

One issue to be addressed in the above model is the probability of continuing with the fraud at each state. One of 

the ways is to run an experiment on a real system and observe the actual actions of persons (

and Kaâniche, 1999). This is an extremely

the use of game theory to estimate this probability, 

a game, where a fraudster’ choice of action is based on his utility der

benefits and costs of the fraud. The actions of the audit module and the fraudster can be modeled as a two player 

simultaneous game. In each state the fraudster has two possible courses of action, either to continue t

withdraw.  

The fraudster and the audit module have two actions each:

, represents the action that changes the state of the system from 

discovering a weakness in the control system, initiates o

ri, represents the action, wherein the fraudster decides to resign and desists from carrying out any other actions.

di, represents the action where the audit module detects the fraud. 

Φi, represents the action (or situation) where the audit module fails to detect the fraud. 

A game model can be constructed for each state 

defined by  

N(number of players) ={1, 2} = {fraudster, audit 

Ai(Action Set)= {fi, ri , di, Φi}, and  

is the payoff received by the fraudster for each possible combination of action and 

response by the audit module. Here, we are assuming a zero sum game, where the payoff received by the 

fraudster is exactly equal loss suffered by the audit system. 

 =  

 

fi 

ri 

 

In the above case, the fraudster’s expected payoff for a course of action is, 

νi(fi) = p(di) · γi1 + p(Φi) · γi2 

νi(ri) = p(di) · γi3 + p(Φi) · γi4 

Given that a fraudster is unlikely to know the exact probability of being detected, he can assume that the audit 

module is rational and seeks to minimize the expected payoff of the fraudster. If one assumes a zero sum game, 

where one player gain is another’s loss, th

(Gibbons, 1992).  

To summarize, we have a stochastic model that depicts a fraud as a series of state transitions from a initially un 

compromised state to a compromised state through one or 

has to evaluate the risk vs. reward trade off of continuing with the fraud or desisting from continuing with the 

fraud. The game theory model determines this risk vs. reward tradeoff and provides an inp

model.  The stochastic model outputs the time required to commit the fraud, assuming the system starts of in 

clean state. The estimate of time indirectly provides an estimate of the volume of transactions to be examined.

 

4. Model testing 

Consider a scenario wherein an employee creates a fraudulent invoice and submits it to his employer and the 

employer makes a payment based on the fraudulent invoice. In order to successfully carry out the fraud, the 

perpetrator must have generated a fraud
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erroneous. A transaction that is compliant with normal business rules may still be abnormal.

assume that a system checks the orders entered by salespersons to ensure that they are not erroneous or 

fraudulent. The system could compare the order entered with previous history of orders entered by a particular 

orders are free from error or fraud. Suppose, at a particular point in time, the system 

detects that an order entry by a salesperson is four times the average order for that salesperson. Such transactions 

may need further validation or investigation. In the above scenario, a single abnormal transaction may not 

constitute an attempt at fraud.  The CAS may need to scan several similar transactions before it can assess the 

probability that the transaction may be fraudulent. The above metric provides an estimat

must elapse for someone to commit fraud on an initially pristine system. This time estimate, in turn, provides an 

estimate of the volume of transactions that must be scanned to have a reasonable chance of detecting the fraud.

o be addressed in the above model is the probability of continuing with the fraud at each state. One of 

the ways is to run an experiment on a real system and observe the actual actions of persons (

). This is an extremely resource-intensive approach. Another less resource intensive way is 

the use of game theory to estimate this probability, pi(f). One can view each transition in the stochastic model as 

a game, where a fraudster’ choice of action is based on his utility derived from a rational considerations of 

benefits and costs of the fraud. The actions of the audit module and the fraudster can be modeled as a two player 

simultaneous game. In each state the fraudster has two possible courses of action, either to continue t

The fraudster and the audit module have two actions each: 

, represents the action that changes the state of the system from i to i+1. This is when a fraudster upon 

discovering a weakness in the control system, initiates or continues a fraud by entering a fraudulent transaction. 

represents the action, wherein the fraudster decides to resign and desists from carrying out any other actions.

, represents the action where the audit module detects the fraud.  

, represents the action (or situation) where the audit module fails to detect the fraud.  

A game model can be constructed for each state i in the stochastic model. The game model 

N(number of players) ={1, 2} = {fraudster, audit module} 

 

is the payoff received by the fraudster for each possible combination of action and 

response by the audit module. Here, we are assuming a zero sum game, where the payoff received by the 

is exactly equal loss suffered by the audit system.  

di Φi 

  

  

In the above case, the fraudster’s expected payoff for a course of action is,  

a fraudster is unlikely to know the exact probability of being detected, he can assume that the audit 

module is rational and seeks to minimize the expected payoff of the fraudster. If one assumes a zero sum game, 

where one player gain is another’s loss, the minimax solution of the game is the Nash Equilibrium of the game 

To summarize, we have a stochastic model that depicts a fraud as a series of state transitions from a initially un 

compromised state to a compromised state through one or more intermediate states. At each state the fraudster 

has to evaluate the risk vs. reward trade off of continuing with the fraud or desisting from continuing with the 

fraud. The game theory model determines this risk vs. reward tradeoff and provides an inp

model.  The stochastic model outputs the time required to commit the fraud, assuming the system starts of in 

clean state. The estimate of time indirectly provides an estimate of the volume of transactions to be examined.

Consider a scenario wherein an employee creates a fraudulent invoice and submits it to his employer and the 

employer makes a payment based on the fraudulent invoice. In order to successfully carry out the fraud, the 

perpetrator must have generated a fraudulent purchase order and a fraudulent goods received note, before the 
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assume that a system checks the orders entered by salespersons to ensure that they are not erroneous or 

fraudulent. The system could compare the order entered with previous history of orders entered by a particular 

orders are free from error or fraud. Suppose, at a particular point in time, the system 

detects that an order entry by a salesperson is four times the average order for that salesperson. Such transactions 

e above scenario, a single abnormal transaction may not 

constitute an attempt at fraud.  The CAS may need to scan several similar transactions before it can assess the 

probability that the transaction may be fraudulent. The above metric provides an estimate of how much time 

must elapse for someone to commit fraud on an initially pristine system. This time estimate, in turn, provides an 

estimate of the volume of transactions that must be scanned to have a reasonable chance of detecting the fraud. 
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the ways is to run an experiment on a real system and observe the actual actions of persons (Ortalo, Deswarte, 
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. One can view each transition in the stochastic model as 

ived from a rational considerations of 

benefits and costs of the fraud. The actions of the audit module and the fraudster can be modeled as a two player 
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r continues a fraud by entering a fraudulent transaction.  

represents the action, wherein the fraudster decides to resign and desists from carrying out any other actions. 

in the stochastic model. The game model G(i) would be 

is the payoff received by the fraudster for each possible combination of action and 

response by the audit module. Here, we are assuming a zero sum game, where the payoff received by the 

a fraudster is unlikely to know the exact probability of being detected, he can assume that the audit 

module is rational and seeks to minimize the expected payoff of the fraudster. If one assumes a zero sum game, 

e minimax solution of the game is the Nash Equilibrium of the game 

To summarize, we have a stochastic model that depicts a fraud as a series of state transitions from a initially un 

more intermediate states. At each state the fraudster 

has to evaluate the risk vs. reward trade off of continuing with the fraud or desisting from continuing with the 

fraud. The game theory model determines this risk vs. reward tradeoff and provides an input to the stochastic 

model.  The stochastic model outputs the time required to commit the fraud, assuming the system starts of in 

clean state. The estimate of time indirectly provides an estimate of the volume of transactions to be examined. 

Consider a scenario wherein an employee creates a fraudulent invoice and submits it to his employer and the 

employer makes a payment based on the fraudulent invoice. In order to successfully carry out the fraud, the 

ulent purchase order and a fraudulent goods received note, before the 
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fraudulent invoice is paid.  In this scenario, 

Initially, the system has no fraudulent entries and is in a pristine state. We call this State 0.

The fraudster realizes that the system h

She initiates the fraud by first entering a fraudulent purchase order, circumventing any controls. The system 

enters State 2, an intermediate state. 

In case the fraudster’s transaction continues un

paid in due course. The fraud would then be complete.  

At each stage(except state 0 and 1), the audit module will have an opportunity to detect the fraud and take 

corrective action to rollback the transaction and restore the integrity of the system. In a database, in order to 

prevent an unwarranted inference only the last query has to be prevented but the audit module must remember to 

scan an unspecified number of previous transactions.

The stochastic model for this is depicted in Figure 3. To make the exposition easier, the fraudster’s payoff 

function at each state is assumed to be as given below.

γi =  

 

Fraud 

Resign 

This implies that if the fraudster enters a fraudulent transaction and remains undetected she will receive a 

positive payoff (γi2 = 2). In case the fraud is detected or if the fraudster resigns, the pa

she gives up after being detected, the payoff is zero.

The minmax strategy which will provide the highest payoff to the fraudster is given by,

0.25  

The other numerical values are as given as given below:

● The probability of fraud (

distribution, the probability that a single event will occur during the time interval is proportional to the size of 

the interval. 

● Probability of committing the first step in a fraud (

● Probability of committing the second step in the fraud (

● Probability of that the first step (

● Probability of that the second step

● Probability of audit module detecting the fraud in the first stage (

● Probability of audit module detecting the fraud in the second stage (

By inserting the values from the above table into the following set of equations, we can calculate the mean time 

before the first loss from fraud occurs. 

Mean time to first loss from fraud   =  

We can now answer the question that is posed in the

will need to examine the data or transactions relating to the last 17 days in order to detect the loss of 

confidentiality or integrity.   
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fraudulent invoice is paid.  In this scenario,  

Initially, the system has no fraudulent entries and is in a pristine state. We call this State 0.

The fraudster realizes that the system has vulnerabilities and decides to commit fraud (State 1). 

She initiates the fraud by first entering a fraudulent purchase order, circumventing any controls. The system 

 

In case the fraudster’s transaction continues undetected, she finally enters the fraudulent invoice which later gets 

paid in due course. The fraud would then be complete.   

At each stage(except state 0 and 1), the audit module will have an opportunity to detect the fraud and take 

llback the transaction and restore the integrity of the system. In a database, in order to 

prevent an unwarranted inference only the last query has to be prevented but the audit module must remember to 

scan an unspecified number of previous transactions. 

he stochastic model for this is depicted in Figure 3. To make the exposition easier, the fraudster’s payoff 

function at each state is assumed to be as given below. 

detected undetected 

 -1 2 

 0 -1 

This implies that if the fraudster enters a fraudulent transaction and remains undetected she will receive a 

= 2). In case the fraud is detected or if the fraudster resigns, the payoff would be negative. If 

she gives up after being detected, the payoff is zero. 

The minmax strategy which will provide the highest payoff to the fraudster is given by, 

The other numerical values are as given as given below: 

The probability of fraud ( ) is 1 in 1,000,000. Note that since we are using Poisson 

distribution, the probability that a single event will occur during the time interval is proportional to the size of 

the first step in a fraud ( ) is 1 in 20,000. 

Probability of committing the second step in the fraud ( ) is 1 in 20,000. 

Probability of that the first step ( ) will succeed is 90%. 

Probability of that the second step ( ) will succeed is 70%. 

Probability of audit module detecting the fraud in the first stage ( ) is 1 in 80,000.

Probability of audit module detecting the fraud in the second stage ( ) is 1 in 4,000.

lues from the above table into the following set of equations, we can calculate the mean time 

before the first loss from fraud occurs.  

 

Mean time to first loss from fraud   =   = 17.07 days. 

We can now answer the question that is posed in the problem statement. Give the assumptions above the CAS 

will need to examine the data or transactions relating to the last 17 days in order to detect the loss of 
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Initially, the system has no fraudulent entries and is in a pristine state. We call this State 0. 

as vulnerabilities and decides to commit fraud (State 1).  

She initiates the fraud by first entering a fraudulent purchase order, circumventing any controls. The system 

detected, she finally enters the fraudulent invoice which later gets 

At each stage(except state 0 and 1), the audit module will have an opportunity to detect the fraud and take 

llback the transaction and restore the integrity of the system. In a database, in order to 

prevent an unwarranted inference only the last query has to be prevented but the audit module must remember to 

he stochastic model for this is depicted in Figure 3. To make the exposition easier, the fraudster’s payoff 

This implies that if the fraudster enters a fraudulent transaction and remains undetected she will receive a 

yoff would be negative. If 

) is 1 in 1,000,000. Note that since we are using Poisson 

distribution, the probability that a single event will occur during the time interval is proportional to the size of 

) is 1 in 80,000. 

) is 1 in 4,000. 

lues from the above table into the following set of equations, we can calculate the mean time 

problem statement. Give the assumptions above the CAS 

will need to examine the data or transactions relating to the last 17 days in order to detect the loss of 
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In order to examine the internal validity of the model, we per

examining the results. The first parameter, 

, is the probability of continuing with the fraud at each stage, which is 

model. The results are presented in Table 1.

We see from Table 1, that when the initial probability of fraud increases from 1 in 1,000,000 to 1 in 100, the 

audit interval decreases from 17 days to 13 days. The increase in th

increased probability of fraud, but it is not a linear relationship. While the probability of fraud increases 100

the increase in audit frequency is only about 30%. Similarly, when 

fraud at each stage decreases, there is a corresponding decrease in audit frequency. Again the relationship is non

linear. For example, when the probability decreases from 20% to 10%, the decrease in audit frequency is of the 

order of 17%. Note that the when the audit frequency decreases, the volume of transactions that are to be audited 

also correspondingly decreases. 

Note that the any change in the payoffs only affect 

reward from fraud outweighed the risk from detection, then the probability of continuing with the fraud goes up 

and this in turn reduces the audit frequency. 

We also look at the effect of varying the probability of success at each stage. The probability of s

first stage is  and the probability of success in the second stage is 

probabilities form 90% to 10% independently, while keeping the other variables constant, is shown in Table 2.

It can be seen that it as the probability of success reduces, the audit frequency decreases. This is makes intuitive 

sense as the when an organization has strong anti

implies that the need for frequent au

volume of transactions to be audited during each audit goes up.

 

5. Conclusions 

In current study, we present a simple model that probe at the expected behavior of a fraudster in an acco

transaction processing system. We have used a stochastic model to look at the behavior and of the system and 

used game theory for modeling the expected behavior of a fraudster.  This allows us to compute how far back a 

CAS must scan transactions in order to detect a potential breach of system security. A pressing concern while 

applying traditional external audit techniques to large transaction systems is that the audit data is gathered long 

after the economic events are recorded and is too late to

even when a detailed audit trail exists, examining the data after the fact does not prevent losses from occurring. 

This necessitates the evaluation of controls and data in real time or as close to r

systems are called continuous audit systems. There is a dire need to determine the volume, timing and frequency 

of the audit in continuous audit systems as it can materially affect the conclusions drawn from the data.  Given 

that a fraudster is unlikely to know the exact probability of being detected and can assume that the audit module 

is rational and seeks to maximize audit systems payoff, which is equivalent to minimizing the expected payoff of 

the fraudster in a zero sum game. In this scenario, the minimax solution of the game is the Nash Equilibrium of 

the game.  

This work presents some limitations as well. We have assumed one single profile for a potential perpetrator of 

fraud. However, realistically, there are many kinds of 

payoffs. An extension of this work would be extrapolating this model to include more than one type of threat to 

integrity. A further limitation of this model is that we are assuming that all informat

is known. This may not hold in practice. However, this limitation could be addressed in future studies by looking 

at game theoretic tools which can incorporate incomplete information as well.
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Figure 1: State Transition Diagram for Fraud 
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Figure 2: State Transition Rates

 

 

Figure 3: Stochastic Model of Fraud

 

 Days 

0.000001 17.08 

0.00001 14.49 

0.0001 13.19 

0.001 13.06 

0.01 13.05 

 

Table 1: Simulation Results 

 
Days 

0.9 17.08 

0.8 17.24 

0.7 17.44 

0.6 17.72 

0.5 18.11 

0.4 18.68 

0.3 19.65 

0.2 21.59 

0.1 27.36 

Table 2: Simulation Results 
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: State Transition Rates 

: Stochastic Model of Fraud 

  Days 

 0.25 17.08 

 0.20 17.73 

 0.15 18.82 

 0.10 20.99 

 0.05 27.51 

 

 
 

Days 

 0.9 16.78 

 0.8 16.91 

 0.7 17.08 

 0.6 17.30 

 0.5 17.61 

 0.4 18.07 

 0.3 18.84 

 0.2 20.38 

 0.1 25.01 
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