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Abstract 

This paper investigates the capability of forecasting models for bankruptcy prediction referring to annual balance 

sheet information of Italian firms in the limited liability sector. The performance of default risk models in terms 

of forecast accuracy is mainly related to the selection of the set of best predictors. Therefore our main research 

question refer to the identifications of the determinants of corporate financial distress, comparing the 

performance of innovative selection techniques. Furthermore, several issues involved in default risk analysis are 

considered, such as the structure of the data-base and the sampling procedure The predictive performance of the 

proposed default risk model has been assessed by means of different accuracy measures. The results of the 

analysis, carried out on a data-set of financial ratios expressly created from a sample of industrial firms annual 

reports, give evidence in favour of the proposed model over traditional ones. 

Keywords: Default Risk, Bankruptcy, Variable Selection, Lasso. 

 

1. Introduction 

Business failure is one of the most investigated topics in corporate finance and the empirical approach to 

bankruptcy prediction has recently gained further attention from financial institutions, mainly due to the 

increasing availability of financial information (Agarwal and Taffler, 2008; Alberici, 1975; Altman, 2006; 

Amendola et al., 2011; Becchetti, Sierra, 2003; Bisogno, 2012, Hotchkiss, 2006; Platt & Platt, 2002; Quagli, 

1990; Teodori, 1994). 

Starting from the seminal paper of Beaver (1966), that first proposes to use financial ratios as failure 

predictors in a univariate context, and from the following paper of Altman (1968), that suggests a multivariate 

approach based on discriminant analysis, there have been many contributions to this field (Balcæn and Ooghe, 

2006; Ohlson, 1980, Poddighe and Madonna, 2006; Ravi Kumar and Ravi, 2007). 

In addition to the Multivariate Discriminant Analysis (MDA), different statistical approaches have 

been declared throughout the years, such as Logit and Probit models (Ohlson, 1980; Zmijewski, 1984; Lennox, 

1999), classification trees and artificial neural network (Wilson and Sharda, 1994; Serrano, 1997; Charalambous 

et al., 2000; Perez, 2006). Furthermore, the development of computer intensive methods has led to the use of 

machine learning techniques (Hardle et al., 2009). 

In spite of numerous empirical findings, significant issues still remain unsolved, such as arbitrary 

definition of failure; non-stationarity and instability of data; choice of the optimization criteria; sample design 

and variable selection. Furthermore, despite the increasing number of data warehouse, it is not an easy task to 

collect data on a specific set of homogeneous firms related to a definite geographic area or a small economic 

district. 

The focus of this paper is to investigate different aspects of bankruptcy prediction, focusing in 

particular on the variable selection problem. 

In corporate failure prediction, the purpose is to have a methodological approach which discriminates 

firms with a high probability of future failure from those which could be considered to be healthy, using a large 

number of financial indicators as potential predictors. In order to select the relevant information, several 

selection methods can be applied, leading to different optimal predictions set.  

In Amendola et al. (2011) we have proposed to use modern selection techniques based on penalized 

regression models and compare their performance over traditional variable selection methods. 

In this paper, the analysis have been extended on a larger sample of industrial firms of the South of 

Italy, aims at evaluating the capability of a regional model to improve the forecasting performance over different 

optimal prediction sets and different sampling approaches. An out-of-sample validation procedure has been 

implemented by means of properly chosen accuracy measures. 

The structure of the paper is as follows. The next section introduces sample characteristics and data-set. 

Section 3 briefly illustrates the variable selection techniques. The proposed models are described in section 4, 

while the results of the prediction power’s comparison of the different models are reported in Section 5. The 

final section will give some concluding remarks. 

 

2. The data 

In the literature business failure has been defined in many different ways, although it there is not a widely 

accepted definition (Crutzen and van Caillie, 2007). 
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In many studies, business failure is defined as a series of different situations that lead to the closing down of the 

firm due to relevant financial problems (Morris, 1997). However, this definition only concentrates on the 

financial disease without taking into account other difficulties that can affect the firms’ health in the early stages 

of the failure process (Argenti, 1976). 

Therefore, it is necessary to clarify the meaning of business failure our study refers to. In a predictive 

prospective, the empirical literature distinguishes between two main aspects of the definition of business failure: 

economic and juridical. 

In this paper the juridical concept have been considered, focusing on those companies that have 

experienced permanent financial disease, not including companies with temporary financial problems or 

companies which, for any reasons, have voluntarily chosen liquidation. 

The data-set includes industrial companies that had undertaken the juridical procedure of bankruptcy in 

the South of Italy in a given time period, t. The information on the legal status and the annual reports was 

extracted from the Infocamere database and the AIDA database of Bureau Van Dijk (BVD). 

In particular, the disease set is composed of those industrial firms that had entered the juridical 

procedure of bankruptcy in the South of Italy at t=2008, for a total of 486 failed firms and five years of financial 

statement information prior to failure (t- i; i = [1; 5]). Not all the firms in the dataset provide full information 

suitable for the purpose of our analysis. In order to evaluate the availability and the significance of the financial 

data, a preliminary screening was performed (Table 1) dividing, for each year of interest, the whole population 

of failed firms into two groups: firms that provided full information (i.e. have published their financial 

statements) and firms with incomplete data (i.e. did not present their financial statements, presented an 

incomplete report or stopped their activity) (Amendola et al., 2010). 

 

Table 1. Failed firms sample 

 2003 2004 2005 2006 2007 

Published Statement 416 367 306 245 171 

Total Firms 486 486 486 486 486 

Percentage 85,60% 75,51% 62,96% 50,41% 35,19% 

We chose the year 2008 as a reference period, t, in order to have at least 4 years of future annual reports 

(at t + i; i = [1; 4]) to assure that the company selected as healthy at time t does not get into financial problems 

in the next 4 years. 

The healthy set was randomly selected among the South Italy industrial firms according to the 

following criteria: were still active at time t; have not incurred in any kind of bankruptcy procedures between 

2008 and 2012; had provided full information at time (t - i; i = [1; 4]) and (t + i; i = [0; 4]). 

In order to have a panel of full information, i.e. each firm provides complete financial data for each time 

period t, the analysis has been limited to the three years of interest (2004, 2005, 2006). 

One of our aims is to investigate the performance of the developed default risk models over different 

sample designs. The relation between forecasting performance and sample choice has been debated in the 

literature without ending up with a clear evidence in favor of a unique solution. 

A common approach is to adopt a balanced-sample, by choosing the same sample size for both classes 

of failure and healthy firms. The reason is that the population proportion significantly favours active firms and 

so a non-balanced sample would select a reduced number of failed firms and might lead to a biased 

estimator. In addition, the true proportion among the two conditions is not easy to calculate in practice (Cortes et 

al., 2008). 

However, there are also reasons in favour of different choices, such as oversampling the failing 

companies with unbalanced proportion (Back, 1997). 

The sampling procedure for selecting the panel data set is based on both balance and unbalanced cluster 

sampling designs. The cluster scheme refers to the geographical distribution of the industrial firm. A cross- 

sectional approach is considered as benchmark. 

The predictors data-base for the three years of interest (2004, 2005, 2006) was elaborated starting from 

the financial statements of each firm included in the sample. We computed nv = 55 indicators selected as 

potential bankruptcy predictors among the most relevant in highlighting current and prospective conditions of 

operational unbalance (Altman, 2000; Dimitras et al., 1996). 
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Table 2. Financial indicators and financial area  

N. Financial Indicator Area 

1 Net Proceeds/Invested Capital Profitability 

2 Return on Equity Profitability 

3 Return on Investment Profitability 

4 Return on Assets Profitability 

5 Return on Sales Profitability 

6 Net Proceeds/Current Assets Profitability 

7 Leverage Profitability 

8 Liquidity/Total Assets Liquidity 

9 Current Ratio I Liquidity 

10 Current Ratio II Liquidity 

11 Quick Ratio Liquidity 

12 Equity Ratio Size and Capitalization 

13 Net Worth/Capital Stock Size and Capitalization 

14 Equity - Intangible Assets Size and Capitalization 

15 Gross Income/Financial Charges Profitability 

16 Net Capital - Net Capital Assets Size and Capitalization 

17 Net Worth/Sales Size and Capitalization 

18 Capital Stock/Sales Profitability 

19 Inventory/Sales Turnover ratios 

20 Total Debts/Total Assets Size and Capitalization 

21 Net Worth/Fixed Assets Size and Capitalization 

22 Capital Stock/Fixed Assets Size and Capitalization 

23 Current Assets/Fixed Assets Liquidity 

24 Inventory/Current Assets Liquidity 

25 Gross Working Capital/Total assets Liquidity 

26 Capital assets/Total Assets Size and capitalization 

27 Liquid Assets/Total Assets Liquidity 

28 Net Worth/Total Assets Size and capitalization 

29 Capital Stock/Total Assets Size and Capitalization 

30 Net Worth/Total Debts Size and Capitalization 

31 Capital Stock/Total Debts Size and Capitalization 

32 Financial Debt /Total Assets Size and Capitalization 

33 Cash Flow Liquidity 

34 Cash Flow/Sales Profitability 

35 Cash Flow/Total Assets Liquidity 

36 Cash Flow/Net Worth Liquidity 

37 Cash Flow/Capital Stock Liquidity 

38 Cash Flow/Total Debts Liquidity 

39 Cash/Sales Liquidity 

40 Account Receivable/Sales Turnover ratios 

41 Total Debts/Sales Turnover ratios 

42 Net Income/Sales Profitability 

43 Net Income/Total Assets Profitability 

44 Net Income/Total Debts Profitability 

45 Sales/Fixed Assets Profitability 

46 Sales/Advances from Customers Turnover ratios 

47 Sales/Inventory Turnover ratios 

48 Sales/Total Assets Profitability 

49 Labour Cost/Production Cost Operating structure 

50 Labour Cost/Production Value Operating structure 

51 Labour Cost/Net Sales Operating structure 

52 Finance Charges/Debt Operating structure 

53 Finance Charges/Financial Debt Operating structure 

54 Finance Charges/Production Value Profitability 

55 Finance Charges/Net Sales Profitability 

The explanatory variables considered in the analysis have been chosen on the basis of a few different 

criteria. They have a relevant financial meaning in a failure context, and have been commonly used in failure 
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predictions literature, and also the information needed to calculate these ratios is available. 

Furthermore, the selected indicators reflect different aspects of the firms’ structure, as synthesized in Table 3. 

 

Table 3. Financial Predictors 

Area Nv 

Liquidity 14 

Operating structure 5 

Profitability 17 

Size and Capitalization 14 

Turnover 5 

For each sample set, the 70% of the observations has been included in the training data set used for 

estimating the forecasting models, while the remaining 30% has been selected for the test set used for evaluating 

the predictive power of those models. 

 

3. Selection techniques  

A relevant problem, for the analysts who attempt to forecast the risk of failure, is to identify the optimal subset 

of predictive variables. This has been perceived as a real challenge since Altman (1968) and largely debated both 

in the financial literature and in the more general context of variable selection. 

Different selection procedures have been proposed over the years, mainly based on: personal judgment; 

empirical and theoretical evidence; meta-heuristic strategies; statistical methods. We focused our attention on the 

last group developed in the context of regression analysis. Goals in variable selection include: accurate 

predictions, predictors easily to interpret and scientifically meaningful, robustness (i.e. small changes in the data 

should not result in large changes in the subset of predictors used). 

One of the widely used techniques in this domain is the subset regression, which aims at choosing the 

set of the most important predictors to be included in the model. In this class we can allow different methods: all-

subset; forward (backward) selection; stepwise selection. 

More specifically, forward stepwise regression begins by selecting a single predictor variable which 

produces the best fit given a collection of possible predictors. Another predictor, which produces the best fit in 

combination with the first, is then added, and so on. This process continues until some stopping criteria are 

reached. The process is aggressive and unstable, in that may eliminate useful predictors in the early steps and 

relatively small changes in the data might cause one variable to be selected instead of another, after which 

subsequent choices may be completely different. 

In contrast, all-subsets regression is exhaustive, considering all subsets of variables of each size, 

limited by a maximum number of best subsets (Furnival and Wilson, 1974). The advantage over stepwise 

procedure is that the best set of two predictors does not include the predictor that was best by itself. The 

disadvantage is that biases in inference are even greater, because it considers a much greater number of possible 

models.  

These traditional methods focus on variable selection, rather than estimating coefficients. A different 

approach is given by the penalized regression methods. 

They allow a variable to be partly included in the model via constrained least squares optimization. 

That is, the variable is included but with a shrunken coefficient. Shrinkage often improves prediction accuracy, 

trading off decreasing variance for increased bias (Hastie, Tibshirani and Friedman, 2009). 

Among this frame, a widely used approach is the Least Absolute Shrinkage and Selection Operator, 

LASSO proposed by Tibshirani (1996) defined as: 

������� � argmin	���� � �� ������
��� ����

���
�
 

Subject to ∑ �������� �  . 
The Lasso allows for simultaneous execution of both parameter estimation and variable selection. It 

shrinks some coefficients in the linear regression and sets others to 0, and hence tries to retain the good features 

of both subset selection and ridge regression. Since a small value of the threshold δ or a large value of the 

penalty term λ will set some coefficients to be zero, therefore the Lasso performs a kind of continuous subset 

selection. Correlated variables still have a chance to be selected. The Lasso linear regression can be generalized 

to other models, such as GLM, hazards model, etc. (Park and Hastie, 2007). In the early stage, when it was first 

proposed, the Lasso techniques have not had a large diffusion because of the relatively complicated 

computational algorithms. This has been overcome by more recent proposals.  
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4. Default-risk models and performance evaluation  

The main aim of the analysis is in developing forecasting models for the predictions and diagnosis of the risk of 

bankruptcy, addressing the capability of such models of evaluating the discriminant power of each indicator and 

selecting the best optimal set of predictors. 

For this purpose we compared different selection strategies, evaluating their performances in terms of 

predicting the risk that an industrial enterprise would incur in legal bankruptcy, for different sample sets and at 

different time points. 

In particular, we considered the traditional Logistic Regression with a stepwise variable selection 

(Model 1) and the regularized Logistic Regression with a Lasso selection (Model 2). As benchmark we estimated 

a Linear Discriminant Analysis with a stepwise selection procedure (Model 3). 

The logistic regression can be written as: "# $ %&�'1 � %&�') � �� * ���� * ���� *⋯* ���� 

The Regularized logistic Regression consider the penalty term, as illustrated in the previous session, via 

the Lasso. 

For the evaluation of the estimation and forecasting performance of the considered models we refer to 

the literature on Classification techniques.  

The classification results can be summarized in a two-by-two confusion matrix (also called a 

contingency table) representing the dispositions of the set of instances (Table 4). In particular, given a classifier 

and an instance (firm), there are four possible outcomes: 

- True Positive: a failed firm classified as failed; 

- False Negative: a failed firm classified as healthy; 

- True Negative: a healthy firm classified as healthy; 

- False Positive: a healthy firm classified as failed. 

 

Table 4. Confusion Matrix 

  Predicted Class 

  Failed Healthy 

Actual Failed True Positive False Negative 

Class Healthy False Positive True Negative 

    

From this framework two types of error can be defined: the Type I error rate, i.e. a failing firm is 

misclassified as a non-failing firm, and the Type II error rate, i.e. a non-failing firm is wrongly assigned to the 

failing group. An overall index, the Correct Classification Rate, (CCR), i.e. correct classified instances over total 

instances, can be computed. 

The results of this matrix are the input data for some accuracy measures, widely used in a bankruptcy 

prediction study (Engelmann et al., 2003; Fawcett, 2006). A first approach is based on the Cumulative Accuracy 

Profile (CAP) and its summary statistic, the Accuracy Ratio, calculated by relating the area under the CAP plot 

to the area under the CAP of a hypothetical "perfect" rating system. 

A different approach is based on the Receiver Operating Characteristics (ROC) analysis that shows the 

ability of the classifier to rank the positive instances relative to the negative instances. Although the construction 

of the ROC curve differs from the CAP approach, the summary measures of both curves essentially contain the 

same information. The Area under the ROC curve (AUC) can be defined as the probability that the classifier will 

rank a randomly chosen failed firm higher than a randomly chosen solvent company. 

It can be shown that the Accuracy Ratio can be also calculated referring to the Area under the ROC 

curve with following equation: 

AR = 2 * AUC – 1. 

The Accuracy Ratio is normalized between -1 and 1, while the Area under the ROC curve lies between 

0 and 1. The area is 1.0 for a perfect model. Testing the performance of a default model means to investigate its 

ability to discriminate between different levels of default risk. The outcomes of the performance measures 

strongly depend on the overall framework such as the structure of the true default probabilities in the underlying 

portfolio, the time of default, etc. Clearly, comparisons of different classification techniques have to be referred 

to the same point in time and for a given sample data. 

 

5. Empirical Results 

The predictive performance of the developed models has been evaluated by means of training and test sets, 

considering appropriate accuracy measures. Namely, we compare the results in terms of: Correct Classification 

Rate (CCR); Area under the ROC curve (AUC); Accurancy Ratio (AR). 

The accuracy measures have been computed on the training and test sets for each forecasting model, 
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previously described (Model 1, Model 2 and Model 3) and each sample design. 

For the unbalanced sample (Table 5-6), the correct classification rate of the three models increases as 

approaching the bankruptcy year, both in training set and in test set. Looking at the Type I and II error rates, it 

can be noted that in the training set, the Type I error rate of Logistic Model has a non-steady trend. In fact, it 

increases from 2004 to 2005, but decreases from 2005 to 2006, while the Type II error rate has a constant 

progress. For the other two models (Lasso and Discriminant Analysis), in the training set, the trend of the two 

errors is steady, while in the test set they do not have a constant increasing or decreasing behavior. Though the 

two error rates do not have a uniform trend, the values of the AUC and the AR show an improvement in the 

prediction accuracy, as the failure time is approaching. 

An exception is the values of the Logistic Regression model in training set. The effect of the sample 

design seems to be no so relevant, in fact the trend of the accuracy measures for the balanced sample (Table 7-8), 

is quite similar to that in the unbalanced sample. Looking at the error rates, the values for the balance sample are 

on average slightly worse than the unbalanced. 

Now, comparing the performance of the three models, it can be noted that the Lasso has a better 

performance in each year, in both sets and for both samples, compared to Logistic Regression and Discriminant 

Analysis. 

Thus, the forecasting accuracy of Model 2 (Lasso Regression) in both balanced and unbalanced 

settings, is higher if compared with Logit and Discriminant Analysis for almost all the time intervals considered.  

The results give evidence in favor of forecasting models based on unbalanced sample and shrinkage 

selection methods. The Lasso procedure leads to more stable results and gives advantage also in terms of 

computational time and number of variables selected as predictors. Overall, the models performance increases, 

as the forecasting horizon decreases even if some drawbacks can be registered for the Logistic Regression in the 

year 2005. The indicators selected as predictors for the three estimated models are in line with those included, at 

different levels, in many other empirical studies (Amendola et al., 2010; Dimitras et al., 1996). 

 

Table 5. Unbalanced sample: Accuracy measures for training set 

 Model 1  Model 2  Model 3  

 2004 

Correct Classification Rate 0.82651 0.87322 0.82695 

Miss Classification Rate 0.17349 0.12678 0.17305 

Type I Error 0.33264 0.36185 0.56124 

Type II Error 0.09092 0.00253 0.02398 

AUC 0.85692 0.92711 0.84567 

AR 0.75469 0.87422 0.66773 

 2005 

Correct Classification Rate 0.83362 0.89803 0.87702 

Miss Classification Rate 0.16638 0.10197 0.12298 

Type I Error 0.38365 0.23856 0.33286 

Type II Error 0.04985 0.02199 0.03388 

AUC 0.85402 0.95842 0.91120 

AR 0.71804 0.91868 0.86238 

 

 2006 

Correct Classification Rate 0.92443 0.93262 0.89425 

Miss Classification Rate 0.07557 0.06738 0.10575 

Type I Error 0.12285 0.12390 0.24518 

Type II Error 0.34462 0.02088 0.04498 

AUC 0.95269 0.95480 0.92344 

AR 0.91894 0.92850 0.90688 
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Table 6. Unbalanced sample: Accuracy measures for test set 

 Model 1  Model 2  Model 3  

 2004 

Correct Classification Rate 0.7500 0.85428 0.79436 

Miss Classification Rate 0.2500 0.14572 0.20564 

Type I Error 0.45556 0.42206 0.72223 

Type II Error 0.15218 0.03705 0.00022 

AUC 0.69632 0.90172 0.66746 

AR 0.40266 0.83594 0.34896 

 2005 

Correct Classification Rate 0.87526 0.89424 0.81765 

Miss Classification Rate 0.12474 0.10576 0.18235 

Type I Error 0.25667 0.25667 0.53333 

Type II Error 0.07906 0.05205 0.05106 

AUC 0.92496 0.96287 0.84602 

AR 0.84576 0.92585 0.68205 

 2006 

Correct Classification Rate 0.92506 0.94682 0.90685 

Miss Classification Rate 0.07494 0.05318 0.09315 

Type I Error 0.05987 0.05987 0.43333 

Type II Error 0.07906 0.0000 0.0000 

AUC 0.97654 0.99857 0.96852 

AR 0.93813 0.99219 0.94215 

 

Table 7. Balanced sample: Accuracy measures for training set 

 Model 1  Model 2  Model 3  

 2004 

Correct Classification Rate 0.84285 0.87142 0.79561 

Miss Classification Rate 0.15715 0.12858 0.20439 

Type I Error 0.10829 0.13986 0.16892 

Type II Error 0.21125 0.11249 0.24845 

AUC 0.90812 0.93182 0.87581 

AR 0.84026 0.89284 0.77156 

 2005 

Correct Classification Rate 0.78918 0.88543 0.86956 

Miss Classification Rate 0.21082 0.11457 0.13044 

Type I Error 0.21757 0.11457 0.13886 

Type II Error 0.24876 0.11457 0.11457 

AUC 0.86455 0.93681 0.88532 

AR 0.72268 0.89184 0.79852 

 2006 

Correct Classification Rate 0.93627 0.96854 0.96214 

Miss Classification Rate 0.06373 0.03146 0.03786 

Type I Error 0.08479 0.00000 0.05618 

Type II Error 0.05692 0.05692 0.031847 

AUC 0.97121 0.99165 0.98364 

AR 0.95128 0.98564 0.95974 
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Table 8. Balanced sample: Accuracy measures for Test set 

 Model 1  Model 2  Model 3  

 2004 

Correct Classification Rate 0.77876 0.82505 0.74565 

Miss Classification Rate 0.22124 0.17495 0.25435 

Type I Error 0.27667 0.27667 0.35453 

Type II Error 0.20125 0.13333 0.20125 

AUC 0.75889 0.91425 0.75667 

AR 0.52868 0.84446 0.48956 

 2005 

Correct Classification Rate 0.82000 0.90000 0.83333 

Miss Classification Rate 0.18000 0.10000 0.16667 

Type I Error 0.13333 0.13333 0.06667 

Type II Error 0.26667 0.09667 0.02667 

AUC 0.89333 0.96444 0.90778 

AR 0.77889 0.93789 0.80556 

 2006 

Correct Classification Rate 0.84000 0.94333 0.90000 

Miss Classification Rate 0.16000 0.05667 0.10000 

Type I Error 0.19333 0.05667 0.13333 

Type II Error 0.12333 0.05667 0.05667 

AUC 0.90333 0.99456 0.95224 

AR 0.78667 0.98911 0.89456 

 

Table 9. Cross-Sectional sample: Accuracy measures for training set 

 Model 1  Model 2  Model 3  

Correct Classification Rate 0.88651 0.93895 0.88467 

Miss Classification Rate 0.11349 0.06105 0.11533 

Type I Error 0.28619 0.16238 0.33286 

Type II Error 0.06854 0.01246 0.02986 

AUC 0.93219 0.97827 0.91861 

AR 0.86219 0.96253 0.84182 

 

Table 10. Cross-Sectional sample: Accuracy measures for Test set 

 Model 1  Model 2  Model 3  

Correct Classification Rate 0.83205 0.96821 0.86027 

Miss Classification Rate 0.16795 0.03179 0.13973 

Type I Error 0.33333 0.06667 0.35778 

Type II Error 0.13607 0.01786 0.05464 

AUC 0.84291 0.98251 0.88207 

AR 0.68082 0.97257 0.74973 

 

6. Concluding remarks 

In this study the Regional industrial enterprise default risk models have been developed by investigating the role 

of variable selection procedures and sample designs in the overall forecasting performance. A data-set of 

financial statements of balanced and unbalanced samples of companies in South Italy for a given time period 

have been analysed. To select the two classes of healthy and failed firms, we used the concept of legal failure to 

include those firms which had gone bankrupt during the year 2008. In particular, the opportunity to implement 

shrinkage techniques in defining the optimal predictions set has been evaluated. The performance of the 

proposed forecasting models has been evaluated at different time horizons and by means of properly chosen 

accuracy measures. From the reached results, we find that models based on a Lasso selection procedure 

significantly outperform the traditional methods, specifically logistic regression and discriminant analysis, and 

are more stable in terms of error rates. 

This can be observed for both balanced and unbalanced sample, highlighting the marginal effect of the 

sample design. Therefore, the proposed approach seems to be a promising and valid alternative. As expected by 

the dynamical nature of the problem, the overall performance depends on the time horizon. Taking into account 

the time dimension and the evolutionary behaviour of the financial variables may leads to better results in terms 

of forecast accuracy. Furthermore the empirical finding can be generalized extending the analysis to a larger data 
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set including a wide geographic area such as the whole country. 
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