European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) “—,i.l
Vol.7, No.2, 2015 IIS E

Performance-Measurement Framework to Evaluate Softare
Engineers for Agile Software-Development Methodolog

Loay Alnaji"" Hanadi Salaméh
1. School of Business Administration, Al Ain Univegsibf Science and Technology, Al Ain, United Arab
Emirates.
2. School of Business Administration, Middle East Umsity, Amman, Jordan
* E-mail of the corresponding author: LOAY.ALNAJI@WJ.AC.AE

Abstract
In spite of the marked benefits agile developmeamtds, it has several shortcomings in quantitatjuality
measurement, especially in evaluating the perfooman individual software engineers. The evaluatiateria
for software engineers’ performance have been ttoadilly driven by metrics that don't fit into agH
development principles. This study proposes a nreagnt framework to evaluate the performance divsoe
engineers. The proposed measurement frameworksaligh agile-development core values and principldss
framework can be applied to various agile methaddough the research assumes the use of the Scrum
methodology by the software-development team arghrozation. The proposed framework is simple and
doesn’t impose overhead on the development teawrganization, as it is driven by key agile and $tru
development metrics such as team velocity, escdpéztts rate, defect-cycle time, defect spill-oxae, and
individual communication and social skills.
Keywords : Agile Software Management, Software Quality Managetn Software Engineers Performance
Measure, Scrum

1. Introduction

Agile development brings great emphasis on trait skills that are not traditional in the world sdftware
development such as team collaboration, mentoteemnwork, and transferring knowledge; yet, thedees
were not reflected in evaluation of engineers (@ynbCoyle, Wang, &Pikkarainen, 2011). In most agile
software organizations, the criteria for performaewaluation still focuses on technical skills &nel ability to
follow direction, whereas agile development reguigeeater emphasis on social skills, creative thmkand
self-organization. As a result, performance evadmabften did not reflect the true abilities of reanembers.
This study proposes a performance-evaluation fraonevior software engineers functioning in an agile-
development environment using the Scrum developmethod. This framework is simple and is driven by
agile metrics such as team velocity, cycle-time] apill-over rate. The proposed framework doesimpuiose
any overhead on the development team or on thegrags the required metrics are collected andultzaéd
automatically through software development andkiragctools during sprint planning and review phases

2. Importance of the Study

Software projects have a history of cost overrsobedule slips, and quality issues (Standish Gr20p8). For
example, only 34% of software projects are deemextessful, costing over $300 billionannually; 49% o
budgets suffer overruns, and 62% fail to meet theliredules. According to a global survey of ClOsduzted

by IBM in 2008 (Ryman & Reddy, 2009), to overconede obstacles and mitigate risk an cost overruns,
business and technology leaders are directing tearfiscus on return on investment and quantifiedifess
outcomes to mitigate risk and reduce costs. Soffwaganizations should adopt performance-management
programs that align project and team metrics witkifiess goals and objectives. Project and teaniasistiould

be automatically collected from software-developteols to ensure timely decision making and cartdirs
process improvement. By adopting a performance-gemant program that support metric collection,
reporting, and analysis, software-development aegdions will gain better insights about their m@mcis,
engineers, and processes, and consequently they dbilmake better decisions and deliver higherligua
software to customers in a timely matter. Accordioga Businessweek Research Services (2008) study,
organizations implementing performance-managemeaattipes enjoy a 2.4 times greater market return
compared with typical companies. Performance mamagt is the process of continuously measuringveod-
delivery progress and taking actions to achievedgteymined business goals to align individual againt
objectives with organizational objectives (RymanR&ddy, 2009). For companies to effectively mandge t
performance of their software-delivery projectstiatives, and teams, they should have effectivdopmance-
measurement programs in place.

Use of agile-software-development methods in plafcgaditional ones is an example of the softwaigustry
shift to address challenges in meeting projectssc@sope, timeline and constant business change.oDthe
main reasons driving this shift was the inabilifyotd software-development models to respond tostaortly
changing business requirements (Ylimannela, 20ib23pite of the great benefits agile developmeimds, it

183

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) “—,i.l
Vol.7, No.2, 2015 IIS E

has several shortcomings when it comes to qual@gggurements. One of the shortcomings of agile dpuant

is the lack of quantitative quality measurementcpss modeling, and metrics use(Williams, 2007 addition,
Conboy et al. (2011) reported that across all thesdftware organizations they studied, not having agile-
compliant performance evaluation criteria for safter engineers and developers was one of manageis’ m
concerns as well as reason for low morale amongnears. Having a software-development team with the
impression that they are not evaluated fairly Veifld to demotivated engineers, especially when éneypassed
over for promotion. Repercussions are that 29% rafireers left the organization while 82% of engisee
changed their teams (Conboy et al., 2011).

3. Agile Development Methods

Agile methods are a type of iterative and incremkdévelopment methods (Larman, 2004; Larman & IBasi
2003). Agile development is driven by iterative anbement on software product and development pseses
(Curtis, 1989). One unique characteristic of agievelopment is that each iteration is self-conthiméth
activities spanning requirements analysis, desigplementation, and testing(Larman, 2004).Eaclaiten ends
with an iteration release that integrates all safevxcomponents. The purpose of these incremenéalses is to
present the customer and receive feedback anceneéint on the requirements and features of the my®g
doing so, agile methods stratify the main princifde agile-software development: to satisfy thetooser
through early and continuous delivery of valualdéwgare (Beck et al., 2001). Agile development feesi on
value-driven delivery that provides customer witghhpriority requirements early to ensure quick dimdely
market and business presence and penetration. diticax] agile development supports change(Becklet a
2001). Agile processes harness change for custneerhpetitive advantage and emphasizes continuous
attention to technical excellence and process irgrent. Agile development places great importange o
people over processes or tools. According to Bechl.€2001), the quality of people on a project dhdir
organization and management are more importantdj@gt success than tools or the technical apprdaeh
use.

Finally, agile development is driven by the conceptime-box development, which implies that thadté of
each iteration is predetermined. Instead of inéngathe iteration length to fit the scope, the sapreduced to
fit the iteration length. One of the main differesdetween agile development and other iterativibaus is the
length of iteration. With agile methods, the lengftliteration ranges between 1and 4 weeks. It tideally does
not exceed 30 days as a risk and complexity mitigaand control approach (Larman, 2004).

3.1 Scrum Software-Development Definition

The Scrum development process is driven by manatgngtions that are called sprints. Scrum develmunns
driven by software-development teams that aredigdizted and self-organizing (Highsmith, 2002). Téam is
given the authority, responsibility, and autonoraydecide how best to meet the goal of iteratiorfoBeeach
sprint, the team plans the sprint and chooses #uklthg items to be developed and tested in thentspri
(Highsmith, 2002).In Scrum, there are three maiifieaits: the product backlog, the sprint backlagd éhe sprint
burn-down chart (Schwaber &Beedle, 2002). Thesailshioe openly accessible and visible to the Scremmt
The product backlog is an evolving, prioritizedt lef business and technical functionality that re¢al be
developed into a system and defects that shouftkéa. A sprint backlog is a list of all businessdaechnology
features, enhancements and defects selected dbesaed in the current iteration (called sprifRty. each task
in the sprint backlog, the description of the task,owner, the status, and the number of hoursaieng to
complete the task are recorded and tracked. Thiet dfacklog is updated on a daily basis to reftbet number
of remaining hours to complete a task. The teamti@sight to increase or decrease the numbermdirgng
hours for a task as team members realize that thik was under- or overestimated. The sprint burnwrdohart
illustrates the hours remaining to complete spiasks. The team assigns the sprint items amongdtabers.
During the sprint, the team writes the code, tiéstsd documents the changes.

At the end of the sprint, the team demonstrates fdatures developed in a sprint-review meetingh wit
stakeholders and the customer. During this meethrgteam might add new backlog items and assslssas
necessary. Agile development is driven by the cpho time-box development, implying that the lengtf
each sprint is predetermined and the scope fosphiat is chosen to fill its length. Instead of ieasing the
sprint length to fit the scope, the scope is reduodit the sprint length.

3.2 Agile and Scrum Software Sizing and Estimation

Software estimation is a difficult but importantrpaf the software-development process. It is ingifde to
perfectly predict a software-development projeaii@ 2004), but there are a number of ways to astithem.
The process is called estimation, not exactimatfamour, 2002). Agile development focuses on vadui@en
delivery. As a result, it is important to start d®pment and delivery of high-priority requiremeidsensure
high return on investment. It is the responsibitifystakeholders to prioritize requirements andrégponsibility
of developers to provide the estimation (AmblerQ20 In Scrum development, to be able to accurgiatyect
and estimate, the team velocity should be calcdldtbree ways to determine team velocity are detengn the

184

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) “—,i.l
Vol.7, No.2, 2015 IIS E

historical average, running one or more iteratibmsobserve the velocity, or making a forecast. gilea
development, software requirements are expressedses stories. A user story is a system feature or
functionality written in normal language. User ssrdescribe problems to be solved by the systenybmuilt;
they do not describe a solution or use technicgjuage (Cohn, 2010).

In agile development, to estimate as accuratelyassible, the team velocity should be calculateglo®tty is
the amount of work that a team can complete in é@chtion (Schuh, 2005). Usually the amount of kvis
measured in story points. According to Schuh (20@8)ry points have proven to be the best measfire o
software size in agile development in general an8drum methodology specifically. Story point isaabitrary
measure used by Scrum teams used to measure ohereéfuired to implement a story (Schofield, Arrment,
&Trujillo, 2013). Story points are a number thalisehe development team how hard or easy a reqpeaing
story is. Difficulty could be related to risk, net@chnology, complexity, unknown factors, and effakn
estimate is a probability; hence, it is not pogsiol make a commitment to a probability, only wede (Armour,
2002). It is of utmost importance to separate estis of size from estimates of duration (Cohn, 2008e way
to do this is to use a measure of size that igivelan a unit that people do not associate withatlan. Story
points are perfect for that.

A popular scale for estimating story points is fibonacci scale, which sums the previous two nusither
derive the next number in the sequence. The sequenk&s like this: 1, 2, 3, 5, 8, 13,... . The maanéfit of
the Fibonacci scale is that enough separationsekittveen the numbers to prevent the team fromtidgbaver
slight differences. For example, if the scale wkrg, 3, 4, 5, 6, 7, 8, 9, 10, team members migbate whether
a feature was a 7 or an 8. It is easier for teaminees to reach agreement if the scale jumps fraan&(Smith
& Sidky, 2009) .Story points don't specify the timben a story will be completed. To estimate theetheeded
to implement a story, the number of story pointstfe feature is divided by the team’s velocity agile, it is
proven beneficial to have the entire team makeeiienates because when planning the product baeitltwe
beginning of the project, it is not yet known whdlwo the work (Cohn, 2004; Schuh, 2005). If tearmn does
not agree on any estimates, they are discussddagntiement is reached. In agile development, titieeeteam
should agree on one estimate for each story, riegardf the team member or engineer who will dovibek
(Cohn, 2006). Doing so brings two main advantadiest, it emphasizes the team rather than indivistua
second, it leads to reduction in the amount of whek has to be done.

Planning poker (Georgsson, 2011) is one of thet mogular and reliable ways to estimate the nunalbetory
points associated with a feature (Cohn, 2006; Gngnr2002). Planning poker also helps increasesyimergy
on the agile team because it requires the involveroé various types of development stakeholderd sag
programmers, testers, designers, and databasetexpimning poker is used to estimate the stoigt@dor
each user story in the product backlog. Plannirkepds reliable and recommended for several rea@Bohn,
2006). First, in this game, people with variouselevof experience and background are involved aocking
together to reach a reasonable estimation. Seahmihg the planning-poker game, the discussion anibe
team members to clarify any missing or unclear rimfation ensures system and requirements understandi
Group discussions of estimates (Jgrgensen & Molmk&@02) and averaging team members’ estimates &l6s
Wohlin, 1998) lead to better results.

4. Agile-Team Velocity

The proposed evaluation criterion for software eegrs in this research is driven by agile-teamaigiphence
this section elaborates on the definition of Scagité-team velocity and how it is calculated. Teagtocity is
the amount of story points a team can completeninteration/sprint (Schuh, 2005). Of the three ways
estimate velocity, the first approach is to usdohnisal averages of previous projects, if there amg (Cohn,
2006). However, the difference among projects aads in technology, domain, product, and tools sbedld
be considered. The second approach is to obsesveethcity of one or more iterations or sprints aattulate
the velocity based on those. The velocity will tcalated as the average of the number of storptpoi
completed by the development team in all complefaihts. The third alternative is to forecast. Tikisiseful
when there are no historical averages and ther® ipossibility to wait for several iterations to bble to
calculate velocity average. The second approackcemmended (Cohn, 2006) although in practice ghinbe
challenging to postpone planning and estimatiorctarple of iterations to calculate team velocityh&i using
this approach, explain to the customer that théloise to avoid giving inaccurate estimates (Cob0g2.

Team velocity is considered one of the most impuintaetrics of an agile team. Velocity provides aligtic idea

of how much work (story points) can be completearniteration. Hence, by estimating the size ofgheduct
backlog in story points, the software team can rdgitee with relative accuracy when project releaaed
milestones will take place. Without determining neavelocity and estimating the backlog based on
development-team real experience, project andtivgralanning is difficult and less accurate.

185

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) 5-'—,i.l
Vol.7, No.2, 2015 ||$ E

5. Framework to Evaluate Software Engineers’ Perfomance

This proposed framework focuses on evaluating #réopmance of software engineers with agile-develept
core values and principles. This framework canpygied to various agile methods, although in tleisearch the
focus is on the Scrum software-development metlmagolThis study assumes the use of the Scrum saftwa
development methodology by the software-developriearh and organization. This framework is driverkby
agile and Scrum development metrics such as tedmitye escaped-defects rate, defect-cycle timé&aespill-
over rate, and individual communication and soskdlls. The framework evaluates software enginérens five
different perspectives deemed necessary to thessiaf software engineers and the development waaking

in an agile-software-development environment. Theppsed measurements relate to software engineers’
productivity, efficiency, social skills, mentorshgmd team collaboration, and breadth of knowledge.

5.1 Software-Engineer Devel opment-Productivity Measure

The proposed productivity metrics focus on evahgfproductivity in an iteration/sprint. Initial wsds needed
for the performance framework are straightforwarde values shown in Tablel provide the ability teate an
initial baseline to measure individual performance.

Table 1. Input Values to the Software Engineer Betidity Measure

Name Definition

TV Team Velocity—The number of story points a teigrplanned to complete during a given
iteration.

EPSP Engineer Planned Story Points—The numbelaohBd Story Points to be completed by g
software engineer during an iteration

ECSP Engineer Completed Story Points—The numbeowipleted story points by a software
engineer in an iteration

TCP Team Completed Points—Total number of storpiggdlanned for the iteration

The metrics shown in Table 1 are collected duriagation planning and at the end of a sprint. Thmlmers of
planned story points to be completed by the deveéop team (TV) along with the story points to benpteted

by an engineer (EPSP) are defined during sprintrptey. The number of story points actually complebg the

team (TCP) and an engineer (ECSP) are collecté¢deatnd of a sprint. When measuring actual proditygti

only measure completed story points for completedustories. The story points for incomplete useries

should not be measured or counted when measurify T8mpleted user stories are the ones that paséed
functional, and user-acceptance testing. Only staiies that have been accepted by the custometdsbe

counted as complete.

The development/coding productivity of a softwangieeer during a sprint is measured using the oesfiown
in Table 2.
Table 2. Software Engineer Productivity Measures

Name Definition
PPSE Planned productivity for a software engimleging a given iteration/sprint
APSE Actual productivity for a software engineeridg a given iteration/sprint
PV Productivity variance: The difference betweesofiware-engineer planned productivity and
actual productivity
Pl Productivity index.

At the completion of each sprint, four productivieasurement metrics are calculated. These are tosed
measure the development productivity of an indigidioftware engineer

PPSE = EPSP/TV * 100 1)
APSE = ECSP/TCSP * 100 (2)
PV = APSE - PPSE ()
Pl = APSE/PPSE (4)

Planned productivity for a software engineer (dhesratio of the assigned story points to the mewyi (EPSP)
divided by the number of story points planned tcbmpleted by the team in the iteration (TV). A¢tua

186

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) “—,i.l
Vol.7, No.2, 2015 ||$ E

productivity for a software engineer per iterat{bi) is the ratio of the number of story points céeted by the
engineer (ECSP) to the number of completed useestby the team (TCSP). Productivity variancegor
software engineer per iteration (c) is the diffeebetween the actual productivity achieved forethgineer
(APSE) and the planned productivity (PPSE). Theealf variance can be either positive or negativleen
negative, this implies the engineers’ actual praitg is less than was planned. When positivenéans the
engineers’ productivity is better or higher tharsypdanned. Productivity performance index pemaiien (d)
provides an indication of the productivity levek gieration. P1 of 1.0 implies that the actual puotivity
matches the estimated productivity. Pl greater th@rindicates work was accomplished by the devslapa
rate faster than planned. Pl less than 1.0 indicaaéware-engineer productivity deficiency.

It is very important not to evaluate engineers’dudtivity in isolation from other iterations as pretivity can
fluctuate in a release, due to complexity, learringve, or vacation or sick time. Hence, averagmlpetivity
should be calculated among sprints. At the endaohesprint, the team average velocity should belcatated
to consider the completed story points in the ceted sprint. Similarly, the average productivitydeof the
software engineer should be calculated, as sholemvbaheremis the number of completed sprints.

Avg. PPSE =Y™ PPSE /m (5)
Avg. APSE =Y™ , APSE /m (6)
PV =Avg. APSE - Avg. PPSE @)
Pl = Avg. APSE/Avg. PPSE 8)

The metrics shown above are good indicators of ymtidty, but not necessarily a good measure oflityuar
efficiency; that is, delivery of quality softwarefte. As a result, it is quite important to use addal measures
to provide a comprehensive and realistic measusefbivare engineers’ efficiency.

5.2 Software-Engineer Efficiency Measure

Agile software development puts much emphasis endbvelopment of high value and quality product to
customers; hence, it is important to have thisemfld on the software engineer-evaluation metigile
development uses several metrics to measure qualitly efficiency of the software-development teard an
process, such as the average number of escapedsiefgcle-time, and story points/defect spill-oxese. Those
metrics are used in the proposed framework to nmeasaftware engineers’ efficiency. Using these me=sin

an individual engineer’s evaluation emphasizesadftware-development and quality-assurance teantstliea
functionality released should be of a good quality.

Escaped defects are those defects that have bperte@ by the customer after a release (AgileBOK,co
2011b). They are called escaped defects as theydwaped all software-quality processes befoeteage. It is
important to keep the number of escaped defectsdewhe fewer they are, the more confidence atisfied the
customer is with the software product, team, analitpu Moreover, a small number of escaped defestisice
the complexity and cost of software engineeringcaped defects may take from a week to several wekks
effort to correct, including isolation of defeckpair, integration, retest, reconfiguration, andemoyment.
Fixing defects in the development iteration is afsvaimpler and cheaper (AgileBOK.com, 2011b).
Cycle-time for software development is the numbfedays needed between feature or user-story definénd
release to the customer, also referenced as seftiwgsrocess (SIP) (AgileBOK.com, 2011a). In otherds,
cycle-time can be referenced as the time betweenstrecessive deliveries to the customer. A shayele
indicates a healthier and controlled developmeotss and project.

Story-points/defects spill-over rate defines thenbar of story points or defects that were committede
completed in a sprint but did not get completethi sprint as planned; hence they spilled oveutioré sprints
(Georgsson, 2011). The spill-over rate is the ayemumber of story points that got spilled oveoagwvarious
sprints. The lower the rate, the better the teanestimating its workload and meeting the expectad a
committed deliverable to the customer.

When evaluating software engineers’ performancis, iinportant to use the productivity measure idition to
agile metrics driven by agile principles and preess Doing so drives efficiency on all fronts imthg
individual, team, and process. In agile, the metsitown above are used to measure team perforrt@apeosure
continuous process improvement and detection ofpaolglems on the team level. Similarly, these messoan
be used to measure software engineers’ performaiiche end of each sprint, the metrics—escapedatef

187

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) ‘-'—,i.l
Vol.7, No.2, 2015 ||$ E

ratio, average cycle-time, and story-points/defegtiti-over ratio—on the team level and individwaigineer
level are shown in Table 3.

Table 3. Definition of Efficiency Metrics for

Efficiency Metric Definition
Team Defects Escaped Rate | The average number of escaped defects in all tpleded sprints
Defect Cycle-Time The average amount of time it takes to fix a deffeell completed sprints
User Sories Cycle-Time The average amount of time it takes to complete steeies among all completed
sprints
Soill-over Rate for The average number of story points that have shdleer future sprints in all the
competed sprints

The formulas used to calculate the efficiency far team and individual software engineers are shiowrable
4. At the end of each sprint, the efficiency metrfor the team and the individual software enginesr be
calculated using the formulas shown in Table 4isltmportant, when evaluating the efficiency medriof
individual software engineers, to keep it in pectppe with the team'’s efficiency.

Table 4: Formulas for Efficiency Metrics for thefSeare Development Team

Team efficiency metric Formula
Defects escaped rate for the n (5)
team = Z NumberofEscapedDefectsperSprint/n
=m=1
Wheren is the number of completed sprints.
Defect cycle-time for the team * (6)
= z DefectCycleTime /x
k=1
wherex is the number of defects fixed in all completedrgp
User stories cycle-time for the n (7
team = Z UserStoriesCycleTime /n
n=1
wheren is the number of user stories completed and aeddpt the
customer in all completed sprints
Spill-over rate for the team n (8)
= Z Number of spilled over story points/n
m=0
Wheren is the number of completed sprints

5.3 Social-Skill Measure

Agile development in general and Scrum specifichling great emphasis and much reliance on sokili$.s
Agile practices such as co-location, an on-sitéarusr presence, daily stand-up meetings, sprimbspéctives,

and pair programming all are examples of Scrumtmes that markedly emphasize the importance oiakoc
interaction, communication, and presentation sKillsnboy et al., 2011). Consequently, such emprsisisid

be reflected in software engineers’ performanceesssuent. Software engineers who demonstrate good
communication and social skills with peers and @ugtrs should have this boon reflected positivelyhigir
performance evaluation.

5.4 Mentorship and Team-Collaboration Measure

Agile methods advocate people interactions, coliatian, mentoring, teamwork, and transferring krexge
among team members. Engineers who demonstratetsach spirit and play the role of mentors to thessl
senior colleagues deserve to have this trait afuttekflected in their evaluation as well. Implemiag such a
team-based performance evaluation will foster greedllaboration among team members and ensuraltnies
team and development environment.

5.5 Breadth-of-Knowledge Measure

In an agile environment, a developer is required@éocompetent in a broad range of skills. For imsa a
developer needs to be a coder, a tester, an arghiteustomer, and a quality-assurance expertd@oetal.,
2011). Consequently, developers who master a Hreafitvarious roles should be advantaged in their

188

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) “—,i.l
Vol.7, No.2, 2015 ||$ E

performance evaluation. Breadth of knowledge angedise along with having a specialty area showdd b
acknowledged when evaluating software engineers.

Although it is important to evaluate software emgirs on the individual level, in an agile enviromtet is
equally or more important to ensure team-level grenince. It is quite important to keep sight of the
significance of a development team that experiesgasrgy and is functioning as a whole. This sype&an be
guaranteed by developing team-based performanckiatieens with indicators tuned to agile attributes.
Developing team-based performance evaluations oaterf team collaboration and use of agile practices
Creating bonus or performance-acknowledgement progrthat are team-based rather than individualdbise
guaranteed to encourage team collaboration, synemyy consequently the success of software-develnpm
processes and projects. According to Conboy eRCGilY) several software companies have experienced
advancement on the team level, such as voluntartribations and mentoring, due to implementing tdzased
performance evaluation in which “360-feedback” sed.

6. Conclusion

Providing performance appraisal and evaluationsiftware engineers in an agile development envienins
complex. Agile software environments require sofevangineers to be more than good coders. They are
required to be good communicators, presentersergstiesigners, and have sufficient business krigele
Traditional software-engineers-performance-evatuatiechniques don't reflect agile development ppiles
and metrics. This study presents a framework tduete the performance of software engineers usivey f
metrics or measures: productivity, efficiency, sbakills, mentorship and team collaboration, angladth of
knowledge.

When evaluating software engineers using the pmdiace metrics proposed, it is important to ensligament
with the agile development principles and manifesitne primary objective should be to enhance the
development process; the project, the team, anéhtheidual software engineer strive to reach thegst state.

In addition, it is important to link these performea-management metrics to business value. A patgrttblem
most software organizations experience when usémfppmance-management metrics is to confuse metiitbs
business goals (Rayman & Reddy, 2009). For exameplequraging developers to find more bugs in thérig
phase may cause them to allow more bugs to escaypettie coding phase. Metrics are purely a todig¢ased

to attain business goals. The central business fgoany agile development organization is to dalihigh-
quality software to the customer frequently. It dstical that all software managers and team member
understand the goal so they are driven to pri@ribmsiness goals and targets over metrics targste{g &
Reddy, 2009).

Moreover, when using these metrics to measure aodtwngineers’ performances, it is important tainesight

of the team performance as a whole. For instance, af the main agile-development principles is &véh
collective-code ownership among the team so thes aath be altered by any team member (Szalvay, 2004)
This collective-code ownership provides each teaamber with the feeling of owning the whole codejohtin
turn prevents bottlenecks that might hinder thggmtoand team progress when a specialized develspaot
available to make a necessary change (Szalvay,)2@®4viding such emphasis to individual engineer
performance during the development process mighkie drngineers a way from functioning as effectigany
players and contributors.

Finally, implementing a performance-management awgin a software-development organization must be
accomplished in a focused and incremental mannemp@nies should define business goals and link tteem
the performance metrics to be monitored. Theseicsethen become the key performance indicatorstfer
development team and its engineers. One advanfate proposed framework is that it is derived fragile-
related metrics collected automatically via softevdevelopment tools. In addition, the proposed icgeilink
directly to the predominant objective of any aglevelopment environment: the delivery of high-gyali
software frequently to facilitate high-value deliy@nd customers business success.

References

AgileBOK.com. (2011a). Cycle time. Retrieved January 16, 2014, from
http://www.agilebok.org/index.php?title=Cycle_Time

AgileBOK.com. (2011b). Escaped defects. Retrieved January 16, 2014, from http://www
.agilebok.org/index.php?titte=Escaped_Defects

Ambler, S. W. (2009). Agile Requirements Change &mment. Retrieved February 11, 2014, from Agile
Modeling: http://www.agilemodeling.com/essays/chalignagement.htm

Armour, P. (2002). Ten Unmyths of Project Estimati@ommunications of the ACM 45 , no 11:15-18.

Beck, K., Beedle, M., van Bennekum, A., Cockbukn,Cunningham, W., Fowler, M., ... Thomas, D. (2001)
The agile manifesto. Retrieved from http://www.agileAlliance.org

189

European Journal of Business and Management www.iiste.org
ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) 5-'—,i.l
Vol.7, No.2, 2015 ||$ E

Businessweek Research Services. (200Bg payoff of pervasive performance management. Business Week.

Retrieved December 23, 2013, from http://downloackosoft.com
/download/6/6/0/66015B73-82F0-4528-8420-BOB6DD40EMAErvasivePM_HI_3 13
_09.pdf

Cohn, M. (2004)User stories applied for agile software development. Boston, MA: Pearson Education.

Cohn, M. (2006)Agile estimating and planning. Upper Saddle River, NJ: Pearson Education.

Cohn, M. (2010)Succeeding with agile. Boston, MA: Pearson Education.

Coyle, S., & Conboy, K. (2010). People over procksy people challenges in agile development.

Curtis, B. (1989). Three problems overcome with esébral models of the software development process.
Proceedings of the International Conference onvw&a# Engineering for Real Time Systems (pp. 398—
399). Pittsburgh, PA: IEEE.

Georgsson, A. (2011). Introducing story points amgkr stories to perform estimations in a software
development organisation. A case study at Swedbaidnpublished master’s thesis). Umeda University,
Umed, Sweden.

Grenning, J. (2002). Published Articles. Retrievedeebruary 11, 2014, from Object Mentor:
http://www.objectmentor.com/resources/published?es.html

Highsmith, J. (2002). Agile software developmeragstems. Boston, MA: Addison-Wesley.

Host, M., & Wohlin, C. (1998). An experimental syuaf individual subjective effort estimations and
combinations of the estimates. Proceedings of ftle iiternational Conference on Software Enginegrin
(pp. 332—-339). New York, NY: Association for Comimgt Machinery.

Jagrgensen, M., & Molgkken, K. (2002). Combinatidrsoftware development effort prediction intervalghy,
when and how? Proceedings of the 14th Internatiddahference on Software Engineering and
Knowledge Engineering (pp. 425-428). New York, M¥sociation for Computing Machinery.

Larman, C. (2004). Agile and iterative developméninanager's guide. Boston, MA: Addison Wesley.

Larman, C., & Basili, V. (2003). A history of itdiae and incremental development. Computer, 36{6)56.

Ryman, A., & Reddy, A. (2009). IBM: Software despinent and delivery performance measurement and
management: Optimizing business value in softwaRetrieved January 16, 2014, from
http://jazz.net/library/content/articles/insight/fil@mance-management.pdf

Schofield, Joe, Armemtrout, Alan, and Truijillo, Regy (2013) “Function Points, Use Case Points,\SRwints
— Observations From a Case Study”; CrossTalk Jthenal of Defense Software Engineering, Vol 26
No 3, pp 23 - 27

Schuh, P. (2005). Integrating Agile Developmenbitite Real World. Hingham, Massachusetts: CharlesrR
Media.

Schwaber, K., & Beedle, M. (2002). Agile softwarevdlopment with SCRUM. Upper Saddle River, NJ:
Prentice-Hall.

Smith, G., & Sidky, A. (2009). Becoming agile ...dan imperfect world. Greenwich, CT: Manning.

Standish Group. (2008, June 30). Comparative ecanaormalization technology study. Chaos Chronicles
12.3.9.

Szalvay, V. (2004). An introduction to Agile softeadevelopment. Danube Technologies, 1-9.

Williams, L. (2004). A survey of agile developmemhethodologies. URL: http://agile. csc. ncsu.
edu/SEMaterials/AgileMethods. pdf

Ylimannela, V. (2012). A model for risk managemémtagile software development. Retrieved February 3
2014, from http://www.cloudsw.org/under-review/a6849-4857-4206-96ee-
f67df0583d41/file_initial_version

190

The IISTE is a pioneer in the Open-Access hosting service and academic event management.
The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage:
http://www.iiste.org

CALL FOR JOURNAL PAPERS
There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following
page: http://www.iiste.org/journals/ All the journals articles are available online to the
readers all over the world without financial, legal, or technical barriers other than those
inseparable from gaining access to the internet itself. Paper version of the journals is also
available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open
Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek
EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library , NewJour, Google Scholar

@ CO INDEX @ COPERNICUS

ros IN T BERON AT 10N KL
INFORMATION SERVICES

@ vimnsice sounaocs @

N BASE £z Elektronische O
RN . 008 Zeitschriftenbibliothek
open
® "
() ' N—
B v GEORGETOWN UNIVERSITY
ocLC’ <) LIBRARY

http://www.iiste.org/
http://www.iiste.org/journals/
http://www.iiste.org/book/
http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

