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Abstract 

The aim of this paper is to prove some common fixed point theorems for weakly compatible mappings in 

Generalized cone metric space. 
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1.Introduction: 

The concept of   -metric space was introduced by Dhage (Dhage, 1992). It was shown that certain theorems 

involving Dhage’s   -metric space are flawed and most of the results claimed by Dhage and others are invalid. 

These errors were pointed out by Mustafa and Sims (Mustafa and Sims, 2006), among others. They also introduced 

a valid generalized space structure, which they call   -metric spaces. 

Huang and Xian (Huang and Xian, 2007)  introduced the notion of cone metric space by replacing real numbers with 

an ordering Banach space and obtained some fixed point theorem. Afterwards some common fixed point theorems 

in cone metric spaces are studied by Abbas , Jungck and Rhoades (Abbas and Jungck, 2008, Abbas and Rhoades, 

2008). Recently, Rezapour and Hamlbarani (Rezapour and Hamlbarani, 2008) omitted the assumption of normality 

in cone metric space, which is a milestone in developing fixed point theory in cone metric space.  

Jungck (Jungck, 1996) defined a pair self mappings to be weakly compatible if they commute at their coincidence 

point. In 2009, J.O.Olaleru (Olaleru, 2009) proved some common fixed point theorems in cone metric spaces for 

weakly compatible mappings. More recently Ismat Beg et. al (Beg et.al, 2010) introduced the concept of G-cone 

metric space by replacing the set of real numbers by an ordered Banach space, proved  convergence properties of  

sequences and proved some common fixed point  theorems  in this space. 

In this paper, we prove common fixed point theorems for two self mappings satisfying the concept of weak 

compatibility in G-cone metric spaces which generalizes the result of Ismat Beg et.al. 

2.Preliminaries: 

Let    be a real Banach space. A subset        is called a cone if and only if: 

(a)   is closed, non empty and         

(b)                                  ; More generally if         

                                        

(c     (       . 

Given a cone     , we define a partial ordering  ≤  with respect to   by      if and only if        . A cone 

  is called normal if there is a number       such that for all       , 
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                 ‖ ‖      ‖ ‖. 

The least positive number satisfying the above inequality is called the normal constant of P, while     stands for 

            (interior of P): 

Rezapour and Hamlbarani (Rezapour and Hamlbarani, 2008) proved that there are no normal cones with normal 

constants       and for each       there are cones with normal constants      : 

 

Definition 2.1(Beg et. al, 2010): Let   be a nonempty set. Suppose a mapping             satisfies: 

(G1)  (                        

(G2)    (                                      , 

(G3   (        (                      , 

(G4)  (         (         (         (Symmetric in all three variables), 

(G5)  (        (         (                         

Then   is called a generalized cone metric on X, and X is called a generalized cone metric space or more specifically 

a    cone metric space. 

The concept of a    cone metric space is more general than that of a   metric spaces and cone metric spaces.  

 

Definition 2.2 (Beg et. al, 2010) : A    cone metric space    is symmetric if 

 (        (                   . 

Following are examples of symmetric and non symmetric   cone metric spaces respectively. 

Example 2.3: Let (     be a cone metric space. Define              by  (         (       (     
 (    . 

Example 2: Let                 (                . Define             by 

 (       (         (      , 

 (       (        (        (      , 

 (       (        (        (       

Note that   is nonsymmetric   cone metric space as  (        (        

 

Proposition 2.5(Beg et. al, 2010): Let X be a    cone metric space, define           by 

  (      (        (       

Then (      is a cone metric space. 

It can be noted that  (       
 

 
  (    . If   is a symmetric    cone metric space, then 

  (       (       

for all       . 

 

Definition 2.6 (Beg et. al, 2010): Let   be a    cone metric space and      be a sequence in  .We say that      is: 

(a) Cauchy sequence if for every     with    , there is   such that for all n          (             . 

(b) Convergent sequence if for every        with    , there is   such that for all      ,   (              

for some fixed   in  . Here   is called the limit of a sequence       and is denoted by             or     . 

 

A     cone metric space   is said to be complete if every Cauchy sequence in   is convergent in  . 
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Proposition 2.7(Beg et. al, 2010): Let   be a    cone metric space then the following are equivalent. 

(i)       is converges to  . 

(ii)  (           as     . 

(iii)  (          as     . 

(iv)  (           as        

 

Lemma 2.8 (Beg et. al, 2010): Let       be a sequence in a    cone metric space   and    . If       converges 

to    , then      is a Cauchy sequence. 

 

Definition 2.9 (Jungck, 1996): Let   and   be two self-maps defined on a set    then   and   are said to be weakly 

compatible if they commute at coincidence points. 

 

3. Main Results: 

Theorem3.1: Let   be a complete symmetric  -cone metric space and         be a mapping satisfying one of 

the following conditions 



 (            (            (            (            (            (          

                               (                                                                                                                 …(1)                                                

Or 

 (            (            (            (            (            (          

                               (                                                                                                                 … (2)             



For all         where             [     and              . Suppose   and   are weakly 

compatible and  (    (   s.t.   (   or  (   is a complete subspace of   , then the mappings   and   have a 

unique common fixed point. Moreover, for any     , the sequence       ,  defined by            for all  , 

converges to the fixed point.   

 

Proof : Suppose that T  satisfies condition (1) and (2), then for all       

  (            (            (          (     (            (            (           

                                                                                                                                                            … (3)                                                                                                                                                                                           

 And  

 (            (            (          (     (            (            (              

                                                                                                                                                            … (4)                                                                                                                                                                                  

 

Since   is a symmetric  -cone metric space therefore by adding (3) and (4) we have , 

 

   (          (       
     

 
  (       

     

 
  (       

   

 
  (       

   

 
  (                                                    

Let      
     

 
     

   

 
     

             

Or 

    (          (          (          (          (          (             …(5)      
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If            for all     then      
 
 is a Cauchy sequence. If           for all     then put    

          in (5), we get  

  (           
   (              (                (            (           
                                     (                     

Using the fact that            for all n, we have 

  (           
   (              (              (              (         
                                    (                 

  (           
   (              (              (              (         
                                     (  (             (                                       

 Or 

   (       (                    (           

 

It further implies that  

  (              (           

 

where   
       

   (     
   

 

Consequently  

  (               (                                                                                                        (6) 

 

Now  for all       with     , we have 

  (           (             (                 (                                                                                           

                          (                 (         

                           
  

   
  (         

 

Let     be given. Following similar argument to those given in [9, theorem 2.3] , we conclude that  
  

   
  (          . So we have   (           , for all     . Therefore       

 
 is a Cauchy sequence. 

Since  (   or   (   is a complete subspace of  , then there exist      such that         and       . Let  

    such that       . We claim that       . From (5) we have, 

 

  (           (           (            (          (           (            

 

Letting     

  (  
         (  

         (  
         (          (          (  

          

  (  
      (      (           

 

Hence          .   

Since         and        are weakly compatible then       (     (       . 
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Next we show that            . Suppose       ,  then we have  

  (           (  
         (             (          (           (             

                         (           (           (         

                     (        (           (         

This is a contradiction and hence           . Thus     is a common fixed point of      . The uniqueness 

follows from (1). 

 

Theorem3.2: Let   be a complete symmetric  -cone metric space and         be a mapping satisfying one of 

the following conditions: 



 (                (           (           (           
                                                                         (           (           (           
                                                                        (           (           (         }                         …(7) 

                                                       

For all       where         s.t.      . Suppose   and   are weakly compatible and  (    (   s.t 

 (   or  (   is a complete subspace of   , then the mappings   and   have a unique common fixed point. 

Moreover ,for any     , the sequence       ,  defined by           for all  , converges to the fixed point.  

 

Proof: Putting               in (7), we get 

 (                     (                    (                (                
                                                 (                (              (              
                                                (                (                (                } 

 (                     (                  (              (             
        (                  (                (               
       (              (                (                   

Or 

 

 
  (               {

 

 
  (              }  

    {
 

 
  (          

 

 
  (          

 

 
  (          }           

 

 
  (           

 

 
  (            }          

                                                                                                                                                                                        …(8) 

 

 
   (              (             

 

 
  (             

  (            
 

   
  (           

Which implies that 

  (               (           

Where   
 

   
   

Consequently  

  (                (           
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 Now  for all       with     , we have 

  (         
  

   
  (         

Let     be given. Following similar argument to those given in (Rezapour and Hamlbarani, 2008, theorem 2.3) , 

we conclude that  
  

   
  (          . So we have   (           , for all     . Therefore        

 is a 

Cauchy sequence. Since  (   or   (   is a complete subspace of  , then there exist      such that         

and       . Let      such that       . We claim that      .  

Putting           in (7), we get 

 

 
  (            {

 

 
  (        

 

 
  (        

 

 
  (       }  

    {
 

 
  (       

 

 
  (       

 

 
  (      }         

 

 
  (        

 

 
  (        

 

 
  (       }                                                        

When     

 

 
  ( 

           {
 

 
  ( 

       
 

 
  (        

 

 
  (       }

     {
 

 
  ( 

        
 

 
  (        

 

 
  (       }

        
 

 
  (       

 

 
  ( 

       
 

 
  ( 

       

 

 
(      ( 

       
 

 
  (        

or    

  ( 
       

 

   
  (          ( 

       

which is a contradiction and so         . 

Since         and       are weakly compatible then      (     (       .  

Next we show that            . Suppose       . 

Let            
 
  in (7) ,we have  

 

 
  (             {

 

 
  (         

 

 
  (         

 

 
  (        }

     {
 

 
  (  

       
 

 
  (        

 

 
  (      }

        
 

 
  (        

 

 
  (         

 

 
  (         
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  (             {

 

 
  (         

 

 
  (         

 

 
  (        }

     {
 

 
  (         

 

 
  (        

 

 
  (      }

        
 

 
  (        

 

 
  (         

 

 
  (         

 

i.e.  
 

 
(      (         

 

 
(      (        

Or   (         
   

   
  (          (        

which is a contradiction and hence x Tx Sx    . Thus  x
 is a common fixed point of  &T S . The 

uniqueness follows from (1). 
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