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In this paper, we prove some common fixed point theorems for weakly compatible maps in intuitionistic
fuzzy metric space.
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1.Introduction:

It proved a turning point in the development of fuzzy mathematics when the notion of fuzzy set was
introduced by Zadeh [Zadeh, 1965]. Atanassov [Atanassov,1986] introduced and studied the concept of
intuitionistic fuzzy sets. Coker [Coker, 1997] introduced the concept of intuitionistic fuzzy topological
spaces. Alaca et al. [Alaca, C. et. Al.2006] proved the well-known fixed point theorems of Banach [Banach
1932] in the setting of intuitionistic fuzzy metric spaces. Later on, Turkoglu et al. [Turkoglu et al. ,2006]
proved Jungck’s [Jungck, 1998] common fixed point theorem in the setting of intuitionistic fuzzy metric
space.Turkoglu et al. [Turkoglu et al. ,2006] further formulated the notions of weakly commuting and R-
weakly commuting mappings in intuitionistic fuzzy metric spaces and proved the intuitionistic fuzzy
version of Pant’s theorem [Pant, 1994]. Gregori et al. [Gregori et al. ,2006], Saadati and Park [Sadati et. al.
2006] studied the concept of intuitionistic fuzzy metric space and its applications.No wonder that
intuitionistic fuzzy fixed point theory has become an area of interest for specialists in fixed point theory as
intuitionistic fuzzy mathematics has covered new possibilities for fixed point theorists. Recently, many
authors have also studied the fixed point theory in fuzzy and intuitionistic fuzzy metric spaces (Dimri et.al.
2010, Grabiec1988,Ibdad et. al. 2006).

2.Preliminaries:

We begin by briefly recalling some definitions and notions from fixed point theory literature that we will
use in the sequel.

Definition 2.1 [Schweizer st. al.1960] - A binary operation = : [0,1] X [O,l] - [0,1] is a continuous t-
norms if * satisfying conditions:

(i) = is commutative and associative;
(if) = is continuous;

(i) a*1=aforall a€[0,1];
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(iv) a*b<cxd whenever a<cand b<d forall a,b,c,d e [0,1] .
Examples of the t-norms are a*b =min{a,b} and a*b=ab.

Definition 2.2[Schweizer st. al.1960] A binary operation ¢ : [O,l]x[O,l] - [0,1] is continuous t -

conorm if ¢ is satisfying the following conditions:
(i) ¢ is commutative and associative;
(i) O is continuous;

(iii) a 0 0 =a for all ae[o,l];
(iv) a0 b<c¢dwhenevera<candb<dforall a,b,c,d E[O,l].

Examples of the t-norms are  adb = max{a, b} and adb = min{l,a+b}.

Definition 2.3[Alaca, C. et. Al. 2006] A 5-tuple (X M/, N, = <>) is said to be an intuitionistic fuzzy metric
space if X is an arbitrary set, = is a continuous t -norm, ¢ is a continuous t -conorm and M, N are fuzzy

setson X * x (0, 00)satisfying the following conditions:

@) M (X, y,t)+N(x,y,t)<lforall X,y e X and t>0;

(i) M (x,y,0)=0forall X,y e X;

(i) M (X, y,t)=1forall X,y e X and t >Oifand only if X=y;

(iv) M(x,y,t)=M (y,x,t) forall X,y e X and t >0;

V) M(x,y,t)xM(y,z,5) <M (X,z,t+s) forall X,y,ze X ands, t >0;

(vi) forall X,ye X, M (X, y,.):[O,oo)—>[O,1] is left continuous;

(vii) !Lrg M (X,y,t)=1for all X,y € X and t >0;

(viii) N(X,y,0)=1forall X,y e X ;

(ix) N(x,y,t)=0 forall X,y e X and t >0 ifand only if X =y

) N(xy,t)=N(y,xt)forall X,y e X and t >0;

(xi) N(X,¥,t)ON(y,z,5)>N(x,z,t+s)forall X,y,ze X ands, t >0;

(xii) for all, X,y € X,N(X,Y,.):[0,00) —[0,1]is right continuous;

(i) iIMN (X, y,t)=0forall X,y € X ;

(I\/I , N)is called an intuitionistic fuzzy metric on X . The functions M (X, y,t)and N (X, y,t)denote
the degree of nearness and the degree of non-nearness between X and Y with respect tot, respectively.

Remark 2.4[Alaca, C. et. Al. 2006]. An intuitionistic fuzzy metric spaces with continuous t-norm = and
Continuous t -conorm ¢ defined by a*a=a,ae [0,1] and (1— a)<>(1— a) < (l— a) for all

ae [0,1] , Thenforall X,y e X,M (X, Y, *) is non-decreasing and, N (X, Y, 0) is non-increasing.
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Remark 2.5[Park, 2004]. Let (X, d) be a metric space .Define t-norm a*b =min{a,b} and t-conorm
adb = max{a,b}and forall X,y e X and t >0

__t __d(xy)
Md(x’y’t)_ter(x,y) 'Nd(x'y't)_Hd(x,y)

Then (X, M, N,*,O) is an intuitionistic fuzzy metric space induced by the metric . It is obvious that

N(xy,t)=1-M(xy,t).

Alaca, Turkoglu and Yildiz [Alaca, C. et. Al. 2006] introduced the following notions:
Definition 2.6. Let (X M, N, 0) be an intuitionistic fuzzy metric space. Then

(i) a sequence {Xn} in X is said to be Cauchy sequence if, for all t>Q0andp>0
limM (x,,, %,t)=LlimN(x,_,xt)=0

n+p, n,
N—o0 n—oo P

(ii) a sequence {Xn} in X is said to be convergent to a point X € X if, forall t >0,
limM (x,xt)=1limN(x,xt)=0

Since * and ¢ are continuous, the limit is uniquely determined from (v) and (xi) of respectively
Definition 2.7. An intuitionistic fuzzy metric space (X, M, N,*,O) is said to be complete if and only if

every Cauchy sequence in X is convergent.
Definition 2.8. A pair of self-mappings ( f, g)of an intuitionistic fuzzy metric space (X M /,N, = 0) is

said to be compatible if lImM ( fgxn'gfxn't) =1 and limN ( ngn,ngn,t) =0for everyt >0,

whenever {X, }isasequencein X such that lim fx, =limgx, =z for some z e X .

nN—o0 N—o0

Definition 2.9 A pair of self-mappings ( f, g)of an intuitionistic fuzzy metric space (X M, N, = 0) is
said to be non-compatible if limM ( fox, ngnt) # Lor nonexistent and lim N ( fox, ngnt) # Qor
n—o0 ’ ’ N—0 ' '
non-existent for every t >0, whenever {X, } is a sequence in -such that lim fx, = lim gx, = z for some
n—oo

n—oo
zeX.

In 1998, Jungck and Rhoades [Jungck et. al. 1998] introduced the concept of weakly compatible maps as
follows:

Definition 2.10. Two self maps f and g are said to be weakly compatible if they commute at coincidence
points.

Definition 2.10[Alaca, C. et. Al. 2006]. Let (X, M, N, =, 0) be an intuitionistic fuzzy metric space then

f,g: X — X are said to be weakly compatible if they commute at coincidence points.

Lemma 2.10 [Alaca, C. et. Al. 2006]: Let (X M, N,*,O) be an intuitionistic fuzzy metric space and

{yn} be a sequence in X if there exists a number k e (0,1) such that:
i M (Yoo Yo k) =M (Yo Yt
i N (Voo Yo k) <N (Vo Yat)
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forall t>0and n=12,3.... then {yn} is a Cauchy sequence in X .

3.Main Results:

Theorem3.1: Let (X, M, N, = O) be an intuitionstic fuzzy metric space with continuous t-
norm * and continuous t-conorm ¢ defined by t*t>t and (1-t)0(1—t) <(1—t) Vte[0,1]. Let
A,B,S and T be self mappings in X s.t.

a) A(X)c S(X) and B(X) <= T(X).

b) M (AX,By,t) = #{min{M(Tx,Sy,t), M (Tx, Ax,t)} «max {M (Ax, Sy,t), M (Sy,Tx,t)}}
N(AXx, By,t) < w{min {N(Tx, Sy,t), N(Tx, Ax,t)} Omax {N (Ax, Sy, t), N (Sy,Tx,t)}}
VX,y € X and t >0 where ¢, :[0,1] —[0,1] is a continuous function s.t. ¢(s) >S and
w(s)<s foreach 0 <s<1and ¢(1) =1 and y(0) =0 with M(X,y,t) >0.

c¢) Ifoneofthe A(X),B(X),S(X) and T(X) is acomplete subspace of X
then {A, T} and {B, S} have a coincidence point.

Moreover, if the pairs {A, T} and {B, S} are weakly compatible , then A,B,Sand T have a unique

common fixed point.
Proof: Let Xoe X be any arbitrary point since A(X) < S(X), there is a point X1€ X s.t.

AXo = Sx1. Again since B(X) < T(X) for this X1 there is an X2€ X s.t. Bxt=TX2 and so on.

Inductively we get a sequence { yn} s.t.

Yon = AXon=SXzn+1 and Yzn+1=BXan+1=TXan+2 ,n=0,1,2...
Putting X = X2n, Y = X2n+1 in (b) we have ,

min{M (TXzn, SX2n+1,t), M (TXan, AXan, )}
+max {M (AXzn, SX2n +1,t), M (SXan +1,Tin,t)}}
min {M (yzn -1, yan,t), M (y2n -1, yon, t)}
+max {M (yan, yan,t), M (y2n, yon,t)} }
=¢{M(yan-1,yan,t) «1}
ie. M(yan, y2n+1,t) = ¢{M(yan-1, yon,t)} > M (y2n-1, yan 1), (1)
as ¢(s) >s foreach 0 <s<1.

M (AXZn, BX2n +1,t) > ¢{

M (yZn, Yan +1,t) > ¢{

and

min{N (TXan, SXzn +1,t), N (TXan, AXan, t)}
Omax { N (Axan, SXan+1,t), N (SX2n+l,TX2n,t)}}
min{N(yzn-1,yzn,t),N(yzn-1, yan,t)}

Omax {N(yan, yan,t),N(yan, yzn,t)} }

= {N(yzn-1, yan, 1)00}

N (AX2n, BXan +1, t) < l//{

N(yZn, y2n+1,t) < l/l{
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ie. N(yan, yan+1,t) < l//{N(yzn -1, yzn,t)} <N(yzn-1,yan,t), (2
as y(s) <s foreach 0<s<1.

Thus {M (Yan, yan+1,t),n> 0} is an increasing sequence of positive real numbers in [0,1] which tends

to a limit | <1.We assertthat | =1.1fnot | <1, which on letting N —> o0 in (1) one gets
| > ¢(I) > 1 ,a contradiction yielding thereby | =1. Therefore for every ne | * using analogous

argument one can show that {M (Y2n+1, Yon+2,t),n> 0} is an increasing sequence of positive real
numbers in [0,1] which tends to a limit | =1. Also {N 2n, N2 0} is a monotonic decreasing sequence of

positive real numbers in [0,1] and therefore tends to a limit k >0 .Weassert that K=0.1fnot,k >0,
which on letting N — oo in (2) one gets k <y (K) <k ,a contradiction yielding thereby

k =0 .Therefore for every n e | * using analogous argument one can show that
{N (Yan+1, Y2n+2,t),n> 0} is a decreasing sequence of positive real numbers in [0, 1] which tends to a

limitk =0. Therefore foeevery ne | *
M (yn, Yn+1,t) > M (Yn-1,¥n,t) and  liIMM (yn, yn+1,t) =1
And N(yn, Yn +1,t) <N (yn -1, yn,t) and limN (yn, yn+1,t) =0.
Now for any positive integer P ,we obtain

M(yn, Yn + p,t)ZM(yn, yn+1,t/ p)* ..... *M(yn+p—l, Yn + p,t/ p)
And N(yn, Yn + p,t)ﬁ N(yn, yn+1,t/ p)<> ...... ON(yner—l, yn+p,t/ p)

Since  limM (yn, yn+1,t) =1 and lim N(yn, yn+1,t) =0 for t >0, it follows that
limM (yn, Yn + p,t) >1+1+1+..+1=1and

lim N (yn, yn+ p, t) <000009...00 = 0, which shows that {yn} is a Cauchy sequence in X .

Now suppose that S(X) is a complete subspace of X .Note that the sequence {yzn} is contained in
S(X) and hasalimitin S(X) callit U.Let We S™U then SW=U. We shall use the fact that
subsequence {yzn +1} also converges to U. Now by putting X = Xan, Yy =W in (b) and taking N —> oo
min {M (Txzn, SW,t), M (TXan, AXzn, )}
+max { M (Axan, Sw, t), M (SW,Tin,t)}}
M(u,BW,t)2¢{m|n{M(u,u,t),M(u,u,t)} }
smax {M (u,u,t), M (u,u,t)}

= g(1) =1
i.e. M (u, Bw,t) >1 ...(3)

M (AXzn, Bw, 1) 2¢{

Also,
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N (Axen, BWLA) < {min{N (Txzn, SW, t), N (TXan, AXen,t)} }

omax { N (Axan, Sw,t), N (Sw, Txzn, )}

min{N(u,u,t), N(u,u,t)}
N(u.Bw.D Sl/l{omax{N(u,u,t), N(u,u,t)}}
=y (0)=0 ...(4)
i.e. N(u,Bw,t) <0

from (3) and (4) U = Bw.Since SW=U we have SW=Bw=U i.e. W is the coincidence point of
Band S.

As B(X)cT(X), u=Bw=ueT(X).Let veT U then Tv=U.
By putting X =V, Yy = Xa2n+1 in (b), we get
min {M (Tv, Sxzn+1,t), M (Tv, Av, t)} }

M (Av, BXan +1,t) > ¢
+max { M (AV, Sxan +1,t), M (Sxan+1, TV, t)}

as N —» o0
M(Av,u,t)2¢{m|n{M(u,u,t),M(u,Av,t)} }
smax {M (Av,u,t), M (u,u,t)}
=¢{M(u, Av,t)+1}
=¢{M(u, Av,t)} > M(u, Av,t) ...(5)
And

N(AV, Bxanss.t) Sl//{min{N(Tv, Sxan+1,t), N(Tv, Av,t)} }

omax { N (AV, Sxan+1,t), N (Sxan+1,Tv,t)}
as N—oo
min{N (u,u,t), N (u, Av,t
N(Av,u,t) <y N N )
omax{N(Av,u,t),N(u,u,t)}
=y {N(u, Av, )00}
=y {N(u, Av,t)00} < N(u, Av,t) ...(6)
From (5) & (6) we get Av=U.
**Tv=U we have Av=TV=U. Thus V is a coincidence point of A and T .If one assumes T (X) to

be complete ,then an analogous argument establishes this claim.
The remaining two cases pertain essentially to the previous cases. Indeed if B(X) is complete then

ueB(X)cT(X)andif A(X) iscomplete then U e A(X) < S(X). Thus

(c) is completely established.

Since the pairs {A,T} and {B, S} are weakly compatible i.e. B(Sw)=S(Bw) = Bu=Su and
A(TV) =T(Av) = Au=Tu.
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Putting X=U, Yy =X,,,, in(b) ,we get

M (AU, BX,,,,,t) = #{min {M (Tu, Sx,,.,,t), M (Tu, Au,t)} s max {M (AU, SX, ;,t), M (SX,,.,, Tu,t) }}
taking N — o0

M (Au,u,t) = g{min{M (Au,u,t),M (Au, Au,t)} xmax {M (Au,u,t), M (u, Au,t)}}

M (Au,u,t) = ¢{{M (Au,u,t)} +{M (Au,u,t)}}

M (Au,u,t) > ¢{M (Au,u,t)} >M (Au,u,t) .7

And

N (AU, B, ;,t) < {min {N(Tu, S, ,,t), N(Tu, Au,t)} omax {N (Au, SX,,;,t), N(SX,, ;. Tu,)} |
taking N —> oo

N(Au,u,t) <y {min{N(Au,u,t), N(Au, Au,t)} omax {N(Au,u,t), N (u, Au,t) }}
N(Au,u,t) <y {min {N(Au,u,t),0} omax {N(Au,u,t), N(u, Au,t)}}

N (Au,u,t) <y {0oN(Au,u,t)}

N(Au,u,t) <y {N(Au,u,t)} < N(Au,u,t) ...(8)

(7) & (8) impliesthat Au=U,so = Au=Tu=u
Similarly by putting X =X,,, Y =U in(b) andas N —> o0, we have U=Bu=Su.
Thus Au=Bu=Su=Tu=uU i.e. U isacommon fixed pointof A,B,S and T .

Uniqueness: Let W(W = U) be another common fixed point of A, B,S and T .then

By putting X =U, Y =W in (b), we have

M (Au, Bw, t) > g{min {M (Tu, Sw,t), M (Tu, Au,t)} - max {M (Au, Sw, t), M (Sw, Tu, 1)}
M (U, w,t) = g{min {M (u,w,t), M (u,u,t)} »max {M (u,w,t), M (w,u,t)}}

M (U, W, t) > ¢{M (u,w,t)} > M (u,w,t)

And

N (Au, Bw,t) <y {min {N(Tu, Sw,t), N (Tu, Au,t)} Omax {N(Au, Sw,t), N(Sw, Tu,t)} |
N (u, w,t) <y {min{N(u,w,t), N(u,u,t)} omax {N(u, w,t), N(w,u,t)}}

N (u,w,t) <y {OON (U, w,t)} < N(u,w,t)

Hence U=W for all X,ye X and t>0. Therefore U is the unique common fixed point of
A, B,S &T .This completes the proof.

Theorem3.2: Let : Let (X, M, N, = 0) be an intuitionstic fuzzy metric space with continuous t-norm =
and continuous t-conorm ¢ defined by t=t>t and (1-t)O(L-t)<(1-t) Vte[0,1]. Let
A B,S,T,Pand Q be self mappings in X s.t.
a) P(X)<ST(X) and Q(X) = AB(X),
b) There exists a constant k e (0,1) s.t.
(a+ )M (Px,Qy, kt) — M (Qy, ABX, 2kt)
>aM (Px, ABx,t) + SM (STy, ABXx, t) — 7{M (STy,Qy, kt) = M (STy, ABX, kt)}
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And
(a+ B)N(Px,Qy, kt) — N (Qy, ABx, 2kt)
< aN(Px, ABx,t)+ SN (STy, ABx,t) —  {N(STy, Qy, kt)ON (STy, ABx, kt)}
VX,ye X and t >0 where ¢+ £ >0.
c) If one of the P(X),Q(X),ST(X) and AB(X) is a complete subspace of X
then {AB, P} and {Q, ST} have a coincidence point.
d) AB=BAST =TS,PB=BP&QT =TQ

Moreover, if the pairs {AB, P} and {Q, ST} are weakly compatible , then A,B,S,T,Pand Q have a
unique common fixed point.

Proof: Let Xoe X be an arbitrary point. since P(X)<Z ST(X), there exist X, € X st
PXo=STxi=Yyo. Again since Q(X)< AB(X) for this X1 there isX, e X an st
Qx1=ABX2=Yy, and so on. Inductively we get a sequence {Xn} and {yn} in X st

Yon=PXz2n=STXan+1 and Yan+1=0QXzn+1=ABXan+2 ,N=0,1,2... Putting X =Xzn, Y = Xan+1
in (b) we have ,

(a+ B)M(Px,,,QX,, ,, kt) —yM (QX,,.,, ABX,,, 2kt)
> aM (PX,,, ABX,,,t) + M (STX,,1, ABXy,, 1) = 7 {M (STXy1, QX KE) M (STX,, 1, ABX,,, ki) }
. (o + BIM (Yans Yanias KE) = ¥M (Vo0 Yon s 2K1)
2 aM (Y0, Yanso D) + BM (Va1 Yo as ) = 7 AM (Y, Yana KO * M (V0 Voo s KE) |
(@+ BYM(Yzn Yansas KO = M (Yanas Yan 1 2KE) 2 (@ + BIM (Vs Vi 10) = 7 {M (Yz 1, Vinens 2K0) |
Le. (a2 + BIM (Yzn: Yania: KE) 2 (@ + BIM (Va0 Yanao 1)
ie. M(Yans Yoruas KO 2 M (Vs Yo ast)
and
(a+ B)N(Px,,,Qx,, ,, kt) — ¥N(QX,, .., ABX,,, 2kt)
< aN(Px,,, ABX,,, t) + BN(STX,,., ABX,,, 1) = 7 {N(STX, 111 QXpia s KE)ON (STX,,1, ABX,,, kt) }
(@+ BIN(Yans Yanias KO = PN (V.11 Yon-1: 2KE)
< aN(Yzns Yon 1 1) + BN (Vans Yan D) = 7 AN Yans Vaners KON (Y, Yoo s, KO |
@+ BINVans Yoniar KO =N (Yanas Yon 10 2KE) < (@ + BN (Yans Yon 1 8) =7 {N(Vania Yon 1s 2K0) |
(@ + BIN(Yzns Yonaao KO < (@ + B)N(Yan, Yo 101
N(Yan: Yaner: KO S N (Yo, Yon o)
Hence we have M (Van: Yoner K =M (Y, 1, Yor s t) and
N (y2n, Yoriis kt) <N (ym, yZn,t) Similarly, we also have M (y2n+1, Youios kt) >M (ym, y2n,t)
and N (Yonias Yonsos KE) SN (Y, Yonot) .In general, for all N even or odd, we have
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M (y2n, Yonas kt) >M (ym, yzn,t)and M (y2n+1, Yonios kt) >M (ym, y2n,t) . Hence by Lemma
2.10,{yn} is a Cauchy sequence in X . Now suppose AB(X) is complete . Note that the subsequence
{Yanua) is contained in AB(X) and has a limit in AB(X) call it z. Let we AB™(z) .Then
ABW = 7 .We shall use the fact that subsequence { y2n} also converges to z.

By putting X =W, Y = X,,,, in(b) and taking limit as N — oo,we have

(a+ PIM (Pw,QX,,, ,, kt) —¥M (QX,,.,, ABW, 2kt)

> aM (Pw, ABW,t) + BM (STX,,,,, ABW, t) — 7 {M (STX,,.;, Q%o k) x M (STX,,,,, ABW, kt) }
as N — oo

(a+B)M(Pw, z,kt) - yM(z,2,2kt) > aM (Pw, z,t) + BM (2, ,t) — ¥ {M (z, Z, 2kt) }
(a+ M (Pw, z,kt) > oM (Pw, z,t) + S > aM (Pw, z,kt) +

PM (Pw, z,kt) >

M (Pw, z,kt) >1 .09

And

(a+ BIN(Pw,QX,, ,, kt) — 7N (QX,,.,, ABW, 2kt)

< aN(Pw, ABW,t) + BN (STX,,,,, ABW, t) — 7 { N (STX,,,;, QX k) « N(STX,,,,, ABW, kt)}
As N — o0

(a+ B)N(Pw, z,kt) - yN(z,z,2kt) < aN(Pw, z,t) + SN(z,2,t) — y {N(z, 2, kt)ON(z, Z, kt)}
(a+ B)N(Pw, z,kt) - yN(z,z,2kt) < aN(Pw, z,t) + B(0) —  {N(z, z, 2kt) }

(a+ B)N(Pw, z,kt) < aN(Pw, z, kt) + £(0)

LN(Pw, z,kt) <0

N(Pw, z kt) <0 ...(10) from (9) and (10)
z = Pw. Since ABW =7 thus we have Pw =z = ABW that is W is coincidence point of P and

ABW Since P(X) < ST(X),Pw=z impliesthat z € ST(X).Let Ve ST Z.Then STv=12.

By putting X =X, and Yy =V in (b) ,we have

(a+ BIM (PX,,,Qv,kt) —yM (Qv, ABX,,, 2kt)

> aM (Px,,, ABX,,,t)+ M (STv, ABX,,,t) —» { M (STv,Qv, kt) » M (STv, ABX,,, kt)}

asnN — o0,
(a+ M (z,Qv, kt) — M (Qv, z, 2kt)

>aM(z,z,t)+ BM(z,2,t) -y {M (z,Qv,kt) M (z, z,kt)}

(a+ BIM (z,Qv, kt) —yM(Qv, z, 2kt) > (a + B) — y {M(z,Qv, 2kt) }

(a+ )M (z,Qv, kt) > (ax+ B)

M (z,Qv,kt) >1 ~.(11)

And

(a+ BIN(PX,,,Qv,kt) — N (Qv, ABX,,, 2kt)

< aN(PX,,, ABX,,,t) + SN (STv, ABX,,,t) — 7 {N(STv,Qv, kt)ON (STv, ABX,,, kt) }
asnN — oo,
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(a+ B)N(z,Qv,kt) —yN(Qv, z, 2kt)
<aN(z,z,t)+ AN(z,z,t) - 7 {N(z,Qv, kt)ON(z, z, kt)}

(a+ B)N(z,Qv, kt) — ¥N(Qv, , 2kt) < (a + B)(0) — 7 {N(z,Qv, 2kt) }

N(z,Qv,kt)<0 ..(12)

From (11) & (12), z=QV.Putting X=2,Y =X,,,, in (b) andas N —> oo

(a+ )M (Pz,z,kt) — yM (z, Pz, 2kt)

>aM (Pz,Pz,t)+ M (z,Pz,t) -y {M(z,z,kt) M (z, Pz, kt)}

(a+ )M (Pz,z,kt) >+ M (z,Pz,t)

(a+ )M (Pz,z,kt) > a+ fM(z, Pz, kt)

aM(Pz,z,kt) > «

M (Pz,z kt) >1 ...(13)

and

(a+ BIN(Pz,z,kt) — yN(z, Pz, 2kt) < aN(Pz, Pz,t) + BN(z, Pz,t) - y {N(z, z, kt) « N(z, Pz, kt)}
(a+ PBIN(Pz,z,kt) < fN(z,Pz,t)

N(Pz,z,kt) <0 ..(14)

From (13) & (14) z=Pz.So Pz=ABz =12.

By putting X=X,,,Y=2 in (b) and taking limit as N —>o0 we have I\/I(Z,QZ,kt)Zl and
N (z,Qz,kt)<0.Thus,z=Qz.and Qz=STz=1z.

By putting X =2,y =Tz in (b) and using (d), we have M (z,Tz,kt) >1 and N(z,Tz,kt) <0. Thus,
Z=Tz.Since STz =2z therefore Sz =2 . To prove, Bz =2z we put X=Bz,y =z in (b) and using (d),
we have M(z,Bz,kt)>1 and N(z,Bz,kt) <0. Thus, z=Bz. Since ABz =2 Therefore Az=12.
By combining the above results we have Az=Bz=Sz=Tz=Pz=Qz=1z. Thatis Z is a common
fixed point of A,B,S,T,Pand Q.

Uniqueness: Let W(W # Z) be another common fixed point of A, B,S,T,Pand Q then
Aw=Bw=Sw=Tw=Pw=Qw=w.

By putting X=2,Y =W in (b), we have M(z,w,kt)>1 and N(z,w,kt) <0. Hence z=Ww for all
X,ye€ X and t>0. Therefore z is the unique common fixed point of A,B,S,T,Pand Q .This
completes the proof.
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