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Abstract 
Many studies in the area of portfolio selection have done based on trade-off among various moments especially 
between mean and risk of sample returns. Merton (1980) argued that the instability of portfolio weights and 
sampling errors are due more to estimate the amount of mean. Indeed, it is difficult to estimate the expected 
return from time series of realized expected return. By this paper, we first answer to this question how to 
eliminate the wrong effect of mean sample returns instead of ignoring it from calculating portfolio weights and 
how would be the relation of other moments after this consideration. Second, the substantial evidence from 
experiments shows that hide information exposes ambiguity aversion to investor’s behavior, and hence decision 
making under ambiguity for portfolio choice has led to improving tractability of the main features of asset 
returns. By considering the volatility of utility preferences as ambiguity then individuals prefer to stabilize their 
utility preferences to maximize their expected utility. 
Keywords: utility function, portfolio selection, risk aversion, ambiguity aversion 
 
1. Introduction 
So far, the idea of portfolio selection and diversification has been exhausting in the explaining and understanding 
of risk and return for making a decision by maximizing the expected utility function. tfolio theory (MPT) or 
mean–variance optimization problem (MVO). He provided a suggestion that inveMarkowitz (1952) provided the 
theory of portfolio selection which it is popularly called as a modern por stors should consider jointly return and 
risk on the basis of a trade-off between their security returns and risk to determine how to allocate their funds 
among investment choices. He assumed that utility of terminal wealth is well approximated by a two Taylor 
expansion. Hence, applying the expected operator (E[X]), one can approximate the expected utility which is 
derived from an investment in risky assets by the first two moments of portfolio return distribution. As a result, 
the portfolio selection is a trade-off between expected return and risk. 

Many researchers tried to extend the classical mean-variance framework to higher moments. Scott & 
Horvath (1980), Jean (1971) and Harvey et al. (2004) considered the impact of a higher-order moment of asset 
returns on portfolio selection. They reported that the investors have preferences for higher odd and lower even 
moments. In particular, Harvey & Siddique (2000) found that the investors are willing to accept lower expected 
return and higher volatility in exchange for higher skewness and lower kurtosis.  

A considerable effort has been devoted to the solving portfolio problems and estimating the parameter 
values of them. While these parameter values are estimated from time series sample of past returns, extreme 
various portfolio weights will be obtained over time then this provides unstable portfolios and performs poorly 
out of sample. Although a vast literature is played to handle estimation error of moments, minimum-variance 
portfolio surprisingly outperforms other portfolios and it has a highest sharp ratio (Jorion 1986; Merton 1980; 
Jagannathan & Ma 2003).  They explore the estimation error in sample mean is so larger than variance which 
ignoring the mean improves the portfolio performance. 

The classical portfolio optimization model hypothesizes that the investors are perfectly aware of their 
preferences by a utility function, therefore, they maximize expected utility function. However, some studies 
show that this is Incompatible with actual choices. One in particular surveys on decision-making under 
ambiguity aversion because of poorly performance in actual choices and dissatisfaction of expected theory 
framework introduced by Von Neumann & Morgenstern (1944) and earlier made by Denial Bernoulli in 1738, 
which individual welfare can be measured by computing the expected utility. The linearity (affine 
transformation) of expected utility function with respect to probability and risk preferences implies that the 
expected theory is neutral with any uncertainty about probability and risk preferences effect. By looking 
historical data, the investor may become confident about forecasting returns but there is some hidden 
information that would affect the quality of judgment, therefore, the investors will consider it as ambiguous 
which makes different ambiguous permia from risk premia. The more recent general model of expected theory 
under ambiguity introduced by (Epstein & Schneider (2008), Epstein & Schneider (2010), Ju & Miao (2012) and 
Gilboa & Marinacci (2011)). Under the expected utility theory all idiosyncratic shocks will wash away by well 
diversification and in this framework investors like expected portfolio returns and dislike variance of portfolio 
returns which the effect of imposing this model often perform poorly out of sample but in the general and more 
real preferences model, this no longer holds and well diversified portfolio may collapse ( see, Klibanoff et al. 
(2005), Easley & O’Hara (2009) and Maccheroni et al. (2013) ). As a result, ambiguity does matter then this 
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paper wants to capture ambiguity aversion through smoothing the preferences utility function. 
Our intention with this paper is not to explain and develop the mean-variance or higher moments 

framework and improve the estimation of moments neither. We think it is reasonable for assessing the impact of 
asset returns on portfolio selection, decrease the effect of expected return restriction from models and do 
consider other information. We thus consider that one can approximate the utility of terminal wealth through a 
two Taylor expansion, by applying the variance operator (Var[x]) to both sides of the equation, we can 
approximate the expected variance of utility. We see that risky assets may be approximated by the derivatives of 
the variance of the utility function. Hence, portfolio optimization will be a minimization variance of the utility 
function.  

This paper studies the question to what is the trade-off between moments when we use the variance of 
utility instead of expected utility. First, we answer theoretically to this question. Then, we compare them to a 
possible explanation for using sample moments. To better understand why the aversion coefficient of portfolio 
selection computed from expected utility is different among moments, we will describe mean-variance portfolio 
through Taylor expansion. If the fluctuation in portfolio weight is due almost to estimation error in the first 
sample moment, then one should employ the model which does not corporate it. Then perhaps investors should 
consider more confidently the values of no mean framework such as the approach that we explain. 

The paper is categorized as follows. Section 2 describes the concept of portfolio selection in different 
models and derives the model from the variance of utility. Section 3 discusses the differences among these 
approaches.  

 
2. The Models Description  
In this section, we briefly discuss a set of portfolios framework including Mean-Variance portfolio, Global 
Minimum-Variance and then present our model which we call it “variance-skewness portfolio”. Therefore, we 
answer the question raised in the introduction. 
 
2.1. Mean-variance portfolio 
Markowitz (1952) gives a model that the investor obtains efficient frontier which is the efficient trade-off 
between return and the risk of diversified portfolios. The investor can reduce only unsystematic risk through 
diversification, but systematic risk cannot be moderated in this approach because it is unpredictable. In 
Markowitz’s seminal paperwork, he minimizes the amount of risk portfolio for a given portfolio expected return, 
which is called as the mean-variance framework. The following formulation can express this: 

w

0

min  wΣw

s.t: wμ μ ; w ι=1, ι =[1,1,...,1]

′

′ ′ ′≥
       (1) 

here, 1 2 nw=(w ,w ,...,w )′ is the weight vector of N risky assets, Σ  is an N N×  covariance matrix of returns 

between N risky assets, 1 2 Nμ=(μ ,μ ,...,μ )′  is the vector of expected returns, 0μ  is the target expected return. For 

the single-period framework, a rational investor with U  a utility function and 0W  initial wealth chooses his 

portfolio to maximize his expected utility. At the end of period, his wealth becomes: 

0W=W (1+wμ)′           

 (2). 
Let λ denote an investor risk-aversion coefficient. Under the assumption that an investor’s utility function is 
given by quadratic utility function (that is, asset returns are fully described by mean and variance), the expected 
utility of terminal wealth can be approximated through a second-order Taylor expansion such that the following 
equation holds: 

(2)
2U (E[W])

E[U(W)] U(E[W])+ W-E(W)
2

(E[( )])≈      (3) 

here, (i)U (E[W]) denote ith-order derivative of the utility function, where W is the terminal wealth of investor. 

Then, by considering CRRA1 investors, define (2) (1) 2W-E(W)λ=(-W*U (E[W]))/U (E[W]); Σ=E[( )] . Finally, it can 

be shown that the Markowitz’s model can be written as following:  

w

λ
max  (wμ- w Σ

2
s.t:  wι=1, ι =[1,1,...,1]

w)′ ′

′ ′
        (4) 

for a general utility function, the above problem will no longer be expressed by the Markowitz framework which 
is the trade-off between risk and return. 

                                                           
1 Constant Relative Risk Aversion 



European Journal of Business and Management                                                                                                                               www.iiste.org 

ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) 

Vol.8, No.30, 2016 

 

81 

2.2. Global Minimum-variance Portfolio 
In this model, it only considers variance of historical past return of assets to maximize the expected utility. As 
we have noted this model ignores the mean of sample return and chooses a set of assets which minimize the 
variance of returns. 

w
min  (wΣ

s.t: wι=1, ι =[1,1,...,1]

w)′

′ ′
        (5) 

 
2.3. Variance-Skewness Portfolio Model 
Suppose that the price changes in excess of the risk-free rate are independently and identically distributed with 
mean vectorμ  and define ∑  as the matrix of covariance of asset returns. We will construct the expected 

volatility utility of terminal wealth by: 
2 2 2E[(U(W)-E[U(W)]) ]=E[U (W)]-E[U(W)]Var(U(W))=      (6) 

We then minimize this variance of utility to better diversify efficient portfolios from sample moments. 
This problem can become even more well-diversified portfolios because the extreme behavior of the weights is 
more due to the estimation of the sample first moment which obviously disappear from our analysis in the 
following calculations. 

First, for calculating 2
E[U(W)]  let (i)

μ denote ith central moment. The following equation holds if we 

approximate the expectation of utility wealth by a second-order Taylor expansion atμ=E(W) : 
(2)

(2)U (E[W])
E[U(W)] U(E[W])+ μ

2
≈        (7) 

multiply above equation by itself to get: 
(2)

(2) (2)
2

2 2 (2) 2(U (E[W]))
E[U(W)] (U(E[W])) + μ U(E[W]) μ

4
U (E[W]) ( )≈ +    (8). 

Then, similarly we take the first term 2
E[U (W)]  by implying a second-order Taylor expansion for utility 

function at μ=E(W) gives: 
0 1 2

(1) (2)(W-E(W))
U(W)

(W-E(W)) (W-E(W))
U(E(W))+ U (E(W))+ U (E(W))

0! 1! 2!
≈     (9) 

multiply above by itself to get 
20 1 2

2 (1) (2)(W-E(W))
U(W)

(W-E(W)) (W-E(W))
U(E(W))+ U (E(W))+ U (E(W))

0! 1! 2!

 
≈  
 

 (10) 

applying both sides by expected operation to get 
2 2 (1) 2 (1) 2

(1) 2 (2) 4 (2) 2

E[U(W) ] E[U(μ) +2U(μ)(W-μ)U (μ)+(W-μ) (U (μ))

1
+(U(μ)+(W-μ)U (μ))(W-μ) U (μ)+ (W-μ) (U (μ)) ]

4

≈
   (11). 

Finally, we can use equation (8) and (11) to construct equation (6): 
2 2 2

(1) 2 (2) (1) (2) (3) (2) 2 (4) (2) 2 (2) 2

E[(U(W)-E[U(W)]) ]=E[U(W) ]-E[U(W)]Var(U(W))=

1 1
=[(U (μ)) ]μ +U (μ) U (μ)μ + (U (μ)) μ - (U (μ)) (μ )

4 4

 (12) 

if suppose the investors have CRRA preferences with risk aversion parameterλ , for example, let define 
1-λW

U=
λ

be utility function for CRRA investor. Then higher-order moment tensors can easily parametrize 

portfolio moments as: 
(2)

(3)
3

(4)
4

μ =w

μ =w M (

μ =w M (

Σw

w w)

w w w)

′

′

′

⊗
⊗ ⊗         (13) 

note that 

3

4

M =E[R-E[R]] E[R-E[R]] E[R-E[R]] ,

M =E[R-E[R]] E[R-E[R]] E[R-E[R]] E[R-E[R]]

⊗ ⊗
⊗ ⊗ ⊗     (14) 

by taking the initial wealth as a numeraire, the following explanation can be suggested by our analysis: 
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(1)

(2)

(3)

(3)

U (W)=1

U (W)=-

U (W)= ( 1)

U (W)=- ( 1)( 2)

λ

λ λ
λ λ λ

+

+ +         (15) 
therefore, we can rewrite the investor optimization’s problem as a minimizing the following portfolio moments:  

2 2
(2) (2) 2 (3) (4)(λ) (λ)
μ - (μ ) +λμ (μ )

4 4
+       (16) 

which clearly removes the first moment impact of sample return in trade-off among moments. 

Interestingly, it shows that if only the sample second moment is between zero and2(λ) /4 , the investor 

are willing to accept higher variance in exchange of lower skewness and higher kurtosis, otherwise vice versa. 
As compared to consequences portfolio constructed using mean-variance framework, only when the sample 

second moment is bounded between zero and2(λ) /4 , we find a consistent result. This behavior unlikely can 

explain why optimized portfolios are not optimum. 
 

3. Methodology 
Our methodology, which is motivated by the article from Merton (1980), is on three important dimensions. First, 
we describe how to measure the outperformance of proposed model. This model has some significant 
advantages. Specifically, it avoids estimation of the first moment of past sample returns, it provides a way to 
evaluate the investor portfolio selection problem which assumes the sample mean of returns estimation fluctuate 
a lot when we rebalance the portfolio according to some investigates as the same as Merton (1980) and 
Jagannathan & Ma (2003). Although there has been considerable effort to improve the estimation of the expected 
return such as using Bayesian estimation, robust optimization and option-implied information, the estimation of 
the expected retunes in empirical and simulation-based analysis is poorly behaved and needs very long time 
series data. 

Second, we conclude this section with a discussion on the relation between expected utility and 
variance of expected utility objective function. We focus on minimizing the expected variance utility function as 
it avoids the expected return than maximizing the mean-variance models because the estimation error would 
result in extreme rebalancing portfolios even run the model by robust estimation.  

Finally, we are tremendously interested to discover the behavior of portfolio asset when we bound 
variance in the posited area of the variance-skewness portfolio with empirical data and compare the result with 
mean-variance portfolio. We collect monthly returns stocks listed on the Center for Research in Securities Prices 
(CRSP), from the period January 1971 to December 2010. This gave us over 200-month return series which from 
this estimated sample mean, variance and higher order moments.  

 
3.1. Performance evaluation 
We consider an economy with theR returns vector of N different risky assets. Let M i denote ith higher order 

moment tensor for the assets which is introduced by Jondeau & Rockinger (2003) using Kronecker product as 
equation (17). The investor’s terminal wealth can be defined such that equation (2) and considered the initial 
wealth as a numeraire. Then, the central moments of portfolio returns can satisfy equation (18). 

iM =E[R-E[R]]  ; i>1i⊗         (17) 
(i) (i-1)

iμ =w M w ; i>1⊗′         (18) 

we can rewrite the investor optimization’s problem as a function portfolio of weight vector with two first 
moment tensors (only trade-off between variance and skewness): 

2
2

3
w

(λ)
min  w (w)- (w (w)) +λw M (w w)

4
′ ′ ′Σ Σ ⊗      (19) 

which define the trade-off between variance and skewness. To analyze the out-performance of constructed 
portfolio, we compare certainty equivalents for an investment in different competing portfolios. Differentiating 
the above objective function with respect to (w ) gives optimum weight values of portfolio: 

2
32 w-(λ) w(w w)+3λM (w w)=0′Σ Σ Σ ⊗       (20) 

write the third order moment tensor for n assets: 

3 1 2M =[S |S | | S | | S ]i nL L        (21) 

then the above equation is equivalent to: 
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2

1

2

[2 -(λ) (w w)+3λ( w )]w=0 

                 or 

[2 -(λ) (w w)+3λw ]w=0 

n

i i
i

S

S

=

′Σ Σ Σ

′ ′Σ Σ Σ

∑
      (22) 

so, the explicit solutions can be written as following: 

2 3

2
3

2 3 2
3 3

3λM (w w)
(λ w Σw-2)=

Σw
3λ skew

w={w|(λ var-2)= ; var=wΣw, skew=w M (w w) }
var

(-3M (3M ) 8Σ )Σ
w= or w=0 

-2λ

−

⊗′

′ ′ ⊗

± +

    (23) 

the second optimum solution can help to answer the question of DeMiguel et al. (2009) “How Inefficient is the 
1/N Portfolio Strategy?” because zero matrix gives a kind of naïve diversification, then maybe we can say naïve 
diversification is so close to an optimum solution. 
 
3.2. The role of avoiding the mean on diversification 
Based on our strategy, we can now formally say that variance-skewness portfolio optimization (VSO) is well 
diversified at skewness, therefore, we can make portfolio diversification based on considering jointly securities 
skewness and their co-movements. While it is difficult to make an accurate estimation of return due to the direct 
impact of idiosyncratic volatility on the first moment of individual security rather than other moments, the 
estimation error of mean significantly moves portfolio weights from optimum one. We conclude from our 
obtained objective function (equation 18) that if we decrease the variance of the portfolio, in fact, we increase 
proportionally the variance of expected utility it means that we make worse our utility portfolio. 

This portfolio is the Global Minimum Variance of Utility portfolio (GMVU) which can be formulated 
by the optimization portfolio 

2
2

3
w

(λ)
min VarE(U)=wΣ(w)- (w Σ(w)) +λw M (w w)

4
S.T:

w i=1; i=[1, ,1,1]

′ ′ ′ ⊗

′ L

    (24) 

refer to GMVU we can obtain the efficient frontier of skewness and variance which is totally different with the 
efficient portfolio of risk-return. Another efficient portfolio that we can introduce is an efficient portfolio of 
expected variance and return of utility which we call it EVU. We can formulate it as following 

w
min VarE(U)

S.T:

E(U)

w i=1; i=[1, ,1,1]

≥
′ L

M

        (25) 
 
3.3. Estimation of moments 
Our goal is to analysis the performance of our model compared to a benchmark portfolio on the asset allocation 
of the data set. In order to improve the result of our model, we need to mitigate the impact of estimation error in 
portfolio optimization which it increases exponentially with the number of risky assets. Following the literature 
on improved estimation method, the shrinkage estimators are the most effective approach suggested by Ledoit & 
Wolf (2004) and Martellini & Ziemann (2010) for covariance, skewness and kurtosis respectively, gives better 
performance than original sample estimator and easy to implement which gives us more motivation to consider 
these estimators. They define the posterior misspecification function of convex linear combination estimator as: 

2L(δ)=||δ +(1- ) - ||δ ΩF S         (26) 

here, δ is the shrinkage intensity which is between 0 and 1; F the shrinkage target which we estimate by the 
sample constant correlation approach, S the sample estimator andΩ  is the true moment tensor matrix. Note that 
Frobenius norm of a matrix is defined as  

2 2||s|| i
i

s=∑          (27) 

by finding the optimum shrinkage intensity, the expected value of loss will be minimized and asymptotically 
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behave like a constant over time periodT . This optimal value can be written 

* 1 π-ρ
δ =

T γ
         (28) 

where, π  denotes an asymptotic tensor moment of the sample estimator, ρ represents the asymptotic tensor 

moment between the sample and structured estimator and γ represents misspecification of the structured 

estimator. Then, the shrinkage estimators are calculated by: 
* *δ +(1-δ )F S         (29) 

We now compare the out-of-sample performance of our portfolio with benchmark portfolio (Markowitz 
portfolio model) using “rolling sample-horizon” procedure by the historical market dataset. We chose window 
estimation (M) less than a total number of observations (T) then compute the portfolio's return over the 
estimation window(t=1,2,...,M). To calculate the out-of-sample portfolio return ( t+1 t t+1μ =w R′ ) of each model, 

we should estimate the portfolio weight (tw ) by considering the approach of any strategy. We repeat it by 

including next period and dropping the beginning period until the end of the observed dataset. Finally, in order to 
assess performance of each models following DeMiguel et al. (2009) we measure the out-of-sample sharp ratio, 
certainty-equivalent (CEQ) return, turnover and wealth  for each model which is defined by: 
A: Sharp Ratio 

$

$

μ
SR=

σ
          (30) 

which, 

$

$ $

1

t t+1

2 1 2
t t+1

1
μ (w R )

1
σ (w R μ)

1

T

t M

T

t M

T M

T M

−

=

−

=

′=
−

′= −
− −

∑

∑
      (31) 

B: Certainty-Equivalent return 

$ $
2

CEQ=μ σ
2

λ−          (32) 

C: Turnover 
T-M N

j,t+1 j,t
t=1 j=1

1
TRO= ( w -w )

T-M ∑∑        (33) 

D: Wealth-Loss 

j,t+1 j,t
1

WLR=R-(1+R)*CT

cost of trade(CT)=c* ( w -w )
N

j=
∑

 

Which, c denotes proportional cost of trade. 
E: Utility ratio  

(2)
(2)

2 2 2
(2) (2) 2 (3) (4) 2

3

E[U(W)]

E[U(W)]

U (E[W])
E[U(W)]=U(E[W])+ μ

2

E[U(W)]

UR=
V( )

λ
w μ- w Σ

2

(λ) (λ) (λ)
V( ) μ - (μ ) +λμ (μ )=w Σ(w)- (w Σ(w)) +λw M (w w)

4 4 4

w′ ′=

′ ′ ′= + ⊗

 

 
4. Data and Empirical results  
In this section, we examine the performance of our constructed portfolio using returns from Center for Research 
in Security Prices (CRSP) monthly returns data. 
A. Data 
We consider the sample period January 2004 to October 2013. We select top 7 different firms from CRSP 
database, as seen in table *, and then we collect monthly returns for these stocks from January 2004 to October 
2013. As a result, we obtain valid monthly returns of 7 socks for 118 periods. We first set window estimation 
M=60 and then to measure the stability of each portfolio we estimate moment and comoments parameter which 
obviously are not known by using (Martellini & Ziemann 2010; Ledoit & Wolf 2004) shrinkage estimation 
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method. The relative risk aversion coefficient is taken equal to different cases ofλ=1,3,5,15.  
B. Empirical result 
Although this was presented naïve the rule by some new measurements such as Sharpe ratio has superior out-of-
sample performance than the Markowitz model, we developed the Markowitz model to consider ambiguity and 
hidden information as a novel model. Table 1 describes the summarized results of empirical data for novel model 
and Markowitz mean-variance theory. We see the novel model almost has better Sharpe ratio, CER and Adjusted 
for Skewness Sharpe Ratio than mean-variance strategy. For example, the out-of-sample Sharpe ratio for 
Markowitz is 0.088, while the novel model has 0.091 monthly out-of-sample ratio. Similarly, the Certainty 
Equivalent Return (CER) for Markowitz is negative, while that for the novel approach is strongly positive in 
different coefficients of risk aversion. Moreover, both strategies almost have same Adjusted for Skewness 
Sharpe Ratio around 0.09. The comparison of different measurements typically enhances the improvement 
results of using the novel model at dealing with estimation error. Thus, considering portfolio under ambiguity as 
an optimal target is very successful and much more reasonable measuring with current gauges like Sharpe ratio 
and CER. 
Table 6: how well is the novel model rather than Markowitz? 

PANEL A:  N=7 λ=1  
λ=3  

Measurements\ Models Novel Markowitz Novel Markowitz 

Sharp Ratio 0.091599491* 0.088835632 0.091599491* 0.088835632 

Certainty Equivalent Return 0.003185329* -0.179559716 0.001008434* -0.662098514 

Adjusted for Skewness Sharpe Ratio 0.092350955 0.090964793 0.092036462 0.097386299 

 
5. Conclusion: 
We display that constructing a minimum variance of utility function subject to the ambiguity aversion that 
portfolio manager should consider hidden information is better than to constructing a maximum expected utility 
function without any involving ambiguity and hidden information. This consideration has typically two 
important effects. On the one hand, to the extent a large estimation error is due to estimating the mean of sample 
data rather than other moments, variance of utility function leads to eliminating the effect of first moment of 
sample data and then finally more precise estimation and portfolio weights by covariance of sample data.  

On the other hand, because of poorly performance in actual choices and dissatisfaction of expected 
theory framework introduced by Von Neumann & Morgenstern (1944) and earlier made by Denial Bernoulli in 
1738, which individual welfare can be measured by computing the expected utility, portfolio manager surveys on 
decision-making under ambiguity aversion. The linearity (affine transformation) of expected utility function with 
respect to probability and risk preferences implies that the expected theory is neutral with any uncertainty about 
probability and risk preferences effect. This raises the question of interaction between the property which is 
referred to as the “independent axiom” and “Ellsberg paradox” the most famous challenge has been proposed by 
Ellsberg (1961). As a result, ambiguity does matter then this paper presents a model which capture ambiguity 
aversion through smoothing the preferences utility function based on Gilboa & Schmeidler (1989) ( Maxmin 
theory). In addition, we find by this new proposed model, enhancing that the Sharpe ratio of this model 
outperforms better than Markowitz strategy.  
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