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Abstract

Many studies in the area of portfolio selectiondaene based on trade-off among various momeneciadly
between mean and risk of sample returns. Merto@(Q(L@rgued that the instability of portfolio weighand
sampling errors are due more to estimate the amwmfuntean. Indeed, it is difficult to estimate thepected
return from time series of realized expected ret@w this paper, we first answer to this questimwhto
eliminate the wrong effect of mean sample retunsseiad of ignoring it from calculating portfolio ights and
how would be the relation of other moments aftés tonsideration. Second, the substantial eviddrama
experiments shows that hide information exposesi@uilp aversion to investor’s behavior, and heneeision
making under ambiguity for portfolio choice has ledimproving tractability of the main features afset
returns. By considering the volatility of utilityrgferences as ambiguity then individuals prefestabilize their
utility preferences to maximize their expecteditytil

Keywords: utility function, portfolio selection, risk aversipambiguity aversion

1. Introduction

So far, the idea of portfolio selection and divication has been exhausting in the explaining amderstanding
of risk and return for making a decision by maxiimigthe expected utility function. tfolio theory @) or

mean—variance optimization problem (MVO). He predd suggestion that inveMarkowitz (1952) provittes
theory of portfolio selection which it is populartglled as a modern por stors should consideryoiaturn and
risk on the basis of a trade-off between their ggcueturns and risk to determine how to alloctteir funds
among investment choices. He assumed that utifitteroninal wealth is well approximated by a two Tcay
expansion. Hence, applying the expected operatpf]Eone can approximate the expected utility whis

derived from an investment in risky assets by tret fwo moments of portfolio return distributioAs a result,
the portfolio selection is a trade-off between etpd return and risk.

Many researchers tried to extend the classical miagance framework to higher moments. Scott &
Horvath (1980), Jean (1971) and Harvey et al. (2@0hsidered the impact of a higher-order momerdssit
returns on portfolio selection. They reported it investors have preferences for higher odd angd even
moments. In particular, Harvey & Siddique (2000)rfd that the investors are willing to accept loerpected
return and higher volatility in exchange for higlskewness and lower kurtosis.

A considerable effort has been devoted to the sglpiortfolio problems and estimating the parameter
values of them. While these parameter values ammaed from time series sample of past returngeee
various portfolio weights will be obtained over &rnthen this provides unstable portfolios and penfopoorly
out of sample. Although a vast literature is playechandle estimation error of moments, minimumarge
portfolio surprisingly outperforms other portfoliesd it has a highest sharp ratio (Jorion 1986;tdef 980;
Jagannathan & Ma 2003). They explore the estimatiwor in sample mean is so larger than variangiehw
ignoring the mean improves the portfolio perforneanc

The classical portfolio optimization model hypotizes that the investors are perfectly aware ofrthei
preferences by a utility function, therefore, thegximize expected utility function. However, somadses
show that this is Incompatible with actual choic€@ne in particular surveys on decision-making under
ambiguity aversion because of poorly performancedtual choices and dissatisfaction of expectedrthe
framework introduced by Von Neumann & Morgenstet@44) and earlier made by Denial Bernoulli in 1738,
which individual welfare can be measured by compmutithe expected utility. The linearity (affine
transformation) of expected utility function witlespect to probability and risk preferences imptiest the
expected theory is neutral with any uncertainty ubprobability and risk preferences effect. By lomk
historical data, the investor may become confidebhbut forecasting returns but there is some hidden
information that would affect the quality of judgnietherefore, the investors will consider it asb&mous
which makes different ambiguous permia from ris&rpia. The more recent general model of expecteatyhe
under ambiguity introduced by (Epstein & Schnei®808), Epstein & Schneider (2010), Ju & Miao (2paad
Gilboa & Marinacci (2011)). Under the expectediutitheory all idiosyncratic shocks will wash awhy well
diversification and in this framework investorsdilexpected portfolio returns and dislike varianE@artfolio
returns which the effect of imposing this modekafperform poorly out of sample but in the genaral more
real preferences model, this no longer holds aniil disersified portfolio may collapse ( see, Klikzth et al.
(2005), Easley & O’Hara (2009) and Maccheroni et(2013) ). As a result, ambiguity does matter tk@a
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paper wants to capture ambiguity aversion througbathing the preferences utility function.

Our intention with this paper is not to explain aselelop the mean-variance or higher moments
framework and improve the estimation of momentsheei We think it is reasonable for assessing fttgact of
asset returns on portfolio selection, decreaseeffext of expected return restriction from modeisl ado
consider other information. We thus consider th& oan approximate the utility of terminal weakinotugh a
two Taylor expansion, by applying the variance apmr (Var[x]) to both sides of the equation, we can
approximate the expected variance of utility. We st risky assets may be approximated by theatéres of
the variance of the utility function. Hence, politiooptimization will be a minimization variance tfe utility
function.

This paper studies the question to what is thestiftibetween moments when we use the variance of
utility instead of expected utility. First, we arswtheoretically to this question. Then, we comphem to a
possible explanation for using sample moments. dtteb understand why the aversion coefficient atfptio
selection computed from expected utility is diffetramong moments, we will describe mean-variancdqio
through Taylor expansion. If the fluctuation in ffolio weight is due almost to estimation errortire first
sample moment, then one should employ the modethwthdes not corporate it. Then perhaps investaralgh
consider more confidently the values of no meaméaork such as the approach that we explain.

The paper is categorized as follows. Section 2rdessthe concept of portfolio selection in diffiere
models and derives the model from the variancetitifyu Section 3 discusses the differences amdmegé
approaches.

2. The M odels Description

In this section, we briefly discuss a set of pditf framework including Mean-Variance portfolio,JdBal
Minimum-Variance and then present our model whiehcall it “variance-skewness portfolio”. Thereforeg
answer the question raised in the introduction.

2.1. Mean-variance portfolio
Markowitz (1952) gives a model that the investotagis efficient frontier which is the efficient tle-off
between return and the risk of diversified portieli The investor can reduce only unsystematic thsugh
diversification, but systematic risk cannot be mratled in this approach because it is unpredictalne.
Markowitz's seminal paperwork, he minimizes the amtoof risk portfolio for a given portfolio expecteeturn,
which is called as the mean-variance framework. fohewing formulation can express this:
min w'Zw
] g (1)
s.twp=p,;wh=1,v=[1,1,...,1]
here, w=(w,,w,,...,w, J is the weight vector o risky assetsy is anN xN covariance matrix of returns
betweenN risky assetspu=(u,1t,,...ty)" is the vector of expected returnsg, is the target expected return. For
the single-period framework, a rational investothwi a utility function andW, initial wealth chooses his

portfolio to maximize his expected utility. At tieed of period, his wealth becomes:
W=W, (1+w'n)
(2).
Let A denote an investor risk-aversion coefficient. Unttex assumption that an investor’s utility functiisn
given by quadratic utility function (that is, asseturns are fully described by mean and variartbe) expected
utility of terminal wealth can be approximated thgh a second-order Taylor expansion such thatatmafing
equation holds:

u® g
E[U(W)] = U<E[W])+¥(E[(W-E(W)2)]) ®)

here, U (E[w]) denoteith-order derivative of the utility function, whew is the terminal wealth of investor.
Then, by considering CRRAnvestors, defing=(-W*U @E[W]))/U YE[W]); ==E[(w-Ew)?)]. Finally, it can
be shown that the Markowitz’'s model can be writisrfollowing:
A
max (Wp-—w'EW
1ax (Wy-2 WEW) @

s.t wi=1,1'=[1,1,...,1]
for a general utility function, the above problerti wo longer be expressed by the Markowitz framegwahich
is the trade-off between risk and return.

1 Constant Relative Risk Aversion
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2.2. Global Minimum-variance Portfolio
In this model, it only considers variance of higtal past return of assets to maximize the expeut#ity. As
we have noted this model ignores the mean of sameplen and chooses a set of assets which minithize
variance of returns.
min (W'ZW)
w

s.t: wi=1,/=[1,1,...,1]

(5)

2.3. Variance-Skewness Portfolio M odel
Suppose that the price changes in excess of tkdreis rate are independently and identically disted with
mean vectop and defineY as the matrix of covariance of asset returns. Wk oenstruct the expected
volatility utility of terminal wealth by:
Var(U(W))=E[uW)-E[UW)) *J=E[U ZW)I-E[U(w)] 2 (6)
We then minimize this variance of utility to bettiversify efficient portfolios from sample moments
This problem can become even more well-diversifiedfolios because the extreme behavior of the kisigs

more due to the estimation of the sample first mutnwehich obviously disappear from our analysis lie t
following calculations.

First, for calculatingjuw))? let u° denoteith central moment. The following equation holdswié
approximate the expectation of utility wealth byexrond-order Taylor expansionuate (W) :

@)
E[U(W)] = UEW])+ @ﬁ) (7)

multiply above equation by itself to get:
U@ (Ew])?
EUW)I® = (UEWD) *+U @ (EW]) n?U(Ew) +%(u®)2 (8).

Then, similarly we take the first terEu?(w)] by implying a second-order Taylor expansion folitut
function atu=E(W) gives:

uw) = (W'EO;\IN))O U(E(W))+w u® (E(W))+w U@ (E(wW)) (9)
multiply above by itself to get
0 1 2 2
uw? = {—‘W'ES,W” uE)+EEE g0 gy EERD ) (E(W))} (10)

applying both sides by expected operation to get
EUW)*] = E[U(R) *+2U ) (W-p)U D ()+(W-12) (U D) 2

1 (11).
+HU)+W-p)UD () (W-p)?U (2)(u)+z (W-pr) (U @) 3
Finally, we can use equation (8) and (11) to caestequation (6):
Var(U(W))=E[UW)-E[UW)) “I=E[UW) -E[UW)] >
(12)

“[UD W)U DG U P O U ) B 20 Q) T

if suppose the investors have CRRA preferences wik aversion parameter, for example, let define
1

U=W be utility function for CRRA investor. Then higherder moment tensors can easily parametrize

portfolio moments as:
pn@=w'Ew
n®=w'M,w O w)
u®=w'M,w 0w Ow) (13)
note that
M,;=E[R-E[R]] O E[R-E[R]] O E[R-E[R]] .
M,=E[R-E[R]] U E[R-E[R]] O E[R-E[R]] T E[R-E[R]] (14)

by taking the initial wealth as a numeraire, théofeing explanation can be suggested by our anslysi
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u®w)y=1

U@ w)=-1

U W)=1(4 +1)

UG W)=-A(1 +1)(A + 2) (15)
therefore, we can rewrite the investor optimizagroblem as a minimizing the following portfolinoments:

- @240 O 0 (16)

which clearly removes the first moment impact ahpée return in trade-off among moments.

Interestingly, it shows that if only the sample @&t moment is between zero a(mf/4, the investor

are willing to accept higher variance in exchangéwer skewness and higher kurtosis, otherwise viersa.
As compared to consequences portfolio construcgidgumean-variance framework, only when the sample

second moment is bounded between zero()@ﬁdﬁl, we find a consistent result. This behavior uriikean
explain why optimized portfolios are not optimum.

3. Methodology
Our methodology, which is motivated by the artitten Merton (1980), is on three important dimensiofirst,
we describe how to measure the outperformance opgsed model. This model has some significant
advantages. Specifically, it avoids estimation af first moment of past sample returns, it providesay to
evaluate the investor portfolio selection problefioli assumes the sample mean of returns estimtictnate
a lot when we rebalance the portfolio accordingstone investigates as the same as Merton (1980) and
Jagannathan & Ma (2003). Although there has beariderable effort to improve the estimation of éxpected
return such as using Bayesian estimation, robust@gation and option-implied information, the @sétion of
the expected retunes in empirical and simulatioseaanalysis is poorly behaved and needs very tiomg
series data.

Second, we conclude this section with a discussionthe relation between expected utility and
variance of expected utility objective function. Wéeus on minimizing the expected variance utifitpction as
it avoids the expected return than maximizing theamvariance models because the estimation errafdwo
result in extreme rebalancing portfolios even i model by robust estimation.

Finally, we are tremendously interested to discower behavior of portfolio asset when we bound
variance in the posited area of the variance-skesvpertfolio with empirical data and compare th&ulewith
mean-variance portfolio. We collect monthly retustscks listed on the Center for Research in SeesifPrices
(CRSP), from the period January 1971 to Decemb&® 20his gave us over 200-month return series wiain
this estimated sample mean, variance and higher ondments.

3.1. Performance evaluation
We consider an economy with tReeturns vector oN different risky assets. Le¥l; denoteith higher order

moment tensor for the assets which is introduceddndeau & Rockinger (2003) using Kronecker prodisct
equation (17). The investor’'s terminal wealth candefined such that equation (2) and considerednitial
wealth as a numeraire. Then, the central momemnsfolio returns can satisfy equation (18).
M, =E[R-E[R]]"" ; i>1 (17)
u®=wMw D i>1 (18)
we can rewrite the investor optimization’s probles a function portfolio of weight vector with twarst
moment tensors (only trade-off between variancesiegvness):

min w's (w)-% (WZ (W) Hw'M 5(w O w) (19)

which define the trade-off between variance andwsless. To analyze the out-performance of constiucte
portfolio, we compare certainty equivalents foriavestment in different competing portfolios. Diféatiating
the above objective function with respect # ) gives optimum weight values of portfolio:

23 W-(1)2ZW(W'EW)+3AM 5(w O w)=0 (20)
write the third order moment tensor for n assets:
Ma=[SyS, |- [$ 1 I8 (21)

then the above equation is equivalent to:
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n
[2z-(x)22(w'zw)+3x(z W, §)w=0
i=1
or (22)
[25-(0) 2 (W'sw)+3w'Sjw=0
so, the explicit solutions can be written as follogy
M (w Ow)
zw

w=w| (0 2var-2)= SKeW . o visw, skew=w M, WO w) } (23)
val

r
e (-3M3 £+/(3M;)? +85%)5 72
2)

the second optimum solution can help to answeqthestion of DeMiguel et al. (2009) “How Inefficieist the
1/N Portfolio Strategy?” because zero matrix gigdsnd of naive diversification, then maybe we saw naive
diversification is so close to an optimum solution.

(A2w'Ew-2)=

or w=0

3.2. Therole of avoiding the mean on diversification
Based on our strategy, we can now formally say Waaiance-skewness portfolio optimization (VSO)wisll
diversified at skewness, therefore, we can makéqgior diversification based on considering join8gcurities
skewness and their co-movements. While it is diffico make an accurate estimation of return dugagodirect
impact of idiosyncratic volatility on the first mant of individual security rather than other monserthe
estimation error of mean significantly moves pditfoweights from optimum one. We conclude from our
obtained objective function (equation 18) that & decrease the variance of the portfolio, in fa,increase
proportionally the variance of expected utilityrieans that we make worse our utility portfolio.

This portfolio is the Global Minimum Variance of ility portfolio (GMVU) which can be formulated
by the optimization portfolio

min VarE(U)ZV\/Z(W)—% (W'Z(W))2+awW'M 5(w O w)

S.T: (24)

wi=1;i=[1,---,1,1]
refer to GMVU we can obtain the efficient frontiefr skewness and variance which is totally differeith the
efficient portfolio of risk-return. Another effici¢ portfolio that we can introduce is an efficigrartfolio of
expected variance and return of utility which w# itd&aVU. We can formulate it as following

rr\lNin Varg(V)

S.T:
E(U)=M
w'i=1; i=[1,---,1,1] (25)

3.3. Estimation of moments

Our goal is to analysis the performance of our rhedepared to a benchmark portfolio on the asdetation
of the data set. In order to improve the resubbaf model, we need to mitigate the impact of edfiomaerror in
portfolio optimization which it increases exponaiiti with the number of risky assets. Following therature
on improved estimation method, the shrinkage estimaare the most effective approach suggestedebpit &
Wolf (2004) and Martellini & Ziemann (2010) for caniance, skewness and kurtosis respectively, dieger
performance than original sample estimator and éagayplement which gives us more motivation to sider
these estimators. They define the posterior misBpation function of convex linear combination iesator as:

L(3)=IpF+(1-0)SQIf (26)
here, § is the shrinkage intensity which is between 0 andr the shrinkage target which we estimate by the

sample constant correlation approa€lithe sample estimator afd is the true moment tensor matrix. Note that
Frobenius norm of a matrix is defined as

lisft = s (27)

by finding the optimum shrinkage intensity, the esied value of loss will be minimized and asymptity
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behave like a constant over time perfodThis optimal value can be written

where, = denotes an asymptotic tensor moment of the saestienator,p represents the asymptotic tensor
moment between the sample and structured estinatidry represents misspecification of the structured
estimator. Then, the shrinkage estimators are ledéniby:

8 F+(19)S (29)

We now compare the out-of-sample performance ofoutfolio with benchmark portfolio (Markowitz
portfolio model) using “rolling sample-horizon” predure by the historical market dataset. We chasdow
estimation (M) less than a total number of obséwswat (T) then compute the portfolio's return ovbe t
estimation window¢=1,2,...,M). To calculate the out-of-sample portfolio retm.,=w;R,;) of each model,
we should estimate the portfolio weighiv() by considering the approach of any strategy. &feeat it by

including next period and dropping the beginningqmkuntil the end of the observed dataset. Finaflyprder to
assess performance of each models following DeMigual. (2009) we measure the out-of-sample shaiip,
certainty-equivalent (CEQ) return, turnover and bedor each model which is defined by:

A: Sharp Ratio

sr=t (30)
(o)
which,
~ 1 T-1 ,
n= WZ'[:M WiR1) 1)
A2 1 T, ~
Y :T——I\HZt=M (WiRy1 1)
B: Certainty-Equivalent return
~ ~2
CEQ=u —%o (32)
C: Turnover
1 T-M N
TRO=—" 3D (Wyea W) (33)
V=1 =1
D: Wealth-L oss

WLR=R-(1+R)*CT

N
cost of trade(CT):cz |( Whe1 -v]yt|

j=1
Which, c denotes proportional cost of trade.
E: Utility ratio

—_ EluW)]
V(E[UW)])
UOEMWD ¢ _ e Ao

E[U(W)]=U(E[W])+ —, = wp-—wEW

V(ELW)) = u‘”—% (n®) 2@ +(X—312 ( (“))=W'Z(w)—(x—é)12 (WZW) “awMg(w Ow)

4, Dataand Empirical results

In this section, we examine the performance ofamnstructed portfolio using returns from Center Rasearch

in Security Prices (CRSP) monthly returns data.

A. Data

We consider the sample period January 2004 to @ct@b13. We select top 7 different firms from CRSP
database, as seen in table *, and then we collenthty returns for these stocks from January 2@0@¢tober
2013. As a result, we obtain valid monthly retuofis’ socks for 118 periods. We first set windowiraation
M=60 and then to measure the stability of eachfplistwe estimate moment and comoments parameté&hwh
obviously are not known by using (Martellini & Ziemn 2010; Ledoit & Wolf 2004) shrinkage estimation
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method. The relative risk aversion coefficientaken equal to different casesiefl,3,5,15.

B. Empirical result

Although this was presented naive the rule by snpeve measurements such as Sharpe ratio has supetiof-
sample performance than the Markowitz model, westigped the Markowitz model to consider ambiguitg an
hidden information as a novel model. Table 1 déssithe summarized results of empirical data feehmodel
and Markowitz mean-variance theory. We see the Inoeelel almost has better Sharpe ratio, CER andigtd

for Skewness Sharpe Ratio than mean-variance gyrateor example, the out-of-sample Sharpe ratio for
Markowitz is 0.088, while the novel model has 0.08dnthly out-of-sample ratio. Similarly, the Centyi
Equivalent Return (CER) for Markowitz is negatiwehile that for the novel approach is strongly pgsitin
different coefficients of risk aversion. Moreovdrpth strategies almost have same Adjusted for S&esvn
Sharpe Ratio around 0.09. The comparison of differaeasurements typically enhances the improvement
results of using the novel model at dealing wittineation error. Thus, considering portfolio undentaguity as

an optimal target is very successful and much measonable measuring with current gauges like heatio
and CER.

Table 6: how well is the novel model rather tharrkdavitz?

PANEL A: N=7 A=1 A=3

Measurements\ Models Novel Markowitz Novel Markawit
Sharp Ratio 0.091599491*| 0.088835632| 0.091599491*| 0.088835632
Certainty Equivalent Return 0.003185329*| -0.179559716| 0.001008434*| -0.662098514
Adjusted for Skewness Sharpe Rati6.092350955 | 0.090964798 (0.092036462 | 0.097386299

5. Conclusion:
We display that constructing a minimum varianceutfity function subject to the ambiguity aversidmat
portfolio manager should consider hidden informaii® better than to constructing a maximum expeatédity
function without any involving ambiguity and hiddenformation. This consideration has typically two
important effects. On the one hand, to the extdatge estimation error is due to estimating theamef sample
data rather than other moments, variance of utflityction leads to eliminating the effect of firsioment of
sample data and then finally more precise estimatiad portfolio weights by covariance of sampleadat

On the other hand, because of poorly performancactnal choices and dissatisfaction of expected
theory framework introduced by Von Neumann & Morgienn (1944) and earlier made by Denial Bernoulli i
1738, which individual welfare can be measured dipputing the expected utility, portfolio managensys on
decision-making under ambiguity aversion. The liitgdaffine transformation) of expected utilityrfation with
respect to probability and risk preferences implies the expected theory is neutral with any utadety about
probability and risk preferences effect. This raiske question of interaction between the prope#tjch is
referred to as the “independent axiom” and “Ellgpgaradox” the most famous challenge has been peapby
Ellsberg (1961). As a result, ambiguity does mattten this paper presents a model which capturdgaity
aversion through smoothing the preferences utilityction based on Gilboa & Schmeidler (19§9ylaxmin
theory). In addition, we find by this new proposed modehhancing that the Sharpe ratio of this model
outperforms better than Markowitz strategy.
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