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Abstract 

This study seeks to study the two phases of the financial market using the estimates of betas 

and nonlinearity in a smooth threshold parameter model. The model considered is an 

adaptation of the STAR, which is often applied in financial econometric modelling. The 

parameters, used as yardstick are able to detect and classify the behaviour of stocks into bull 

and bear. Stocks returns are found to stay longer in the up-market than in the down-market, 

therefore it is riskier for investors to keep portfolios when the market is at bull phase. The 

time of global financial crisis is correctly detected in the model and the results further shows 

that most stocks, except in Nigeria have undergone one or more market cycles over the years. 

The results further indicate that Nigeria, unlike other advanced nation cannot quickly recover 

from the effect of the shock. This research work therefore serves as guide for the concerned 

financial agency in the country. 
Keywords: Bull and bear, Financial market, Stock market, Smooth Transition model.  

 

1. Introduction 

The Capital Asset Pricing Model (CAPM) has long been tested using simple linear market 

model on return series of financial assets. Though there are other models like Autoregressive 

Conditionally Heteroscedastic (ARCH) models of Engle (1982) and Bollerslev (1986), for the 

generalized case, which have been proposed in the literature to study the stability (volatility) 

in returns, the CAPM model is still much more relevant in financial analysis. The model 

assumed stability of the beta coefficient in the market model over the two phases of the 

market-bull and bear. 

 

The relationship between beta risk and stock market conditions have been investigated in 

many empirical studies. Individual securities have been studied in Clinebell et al. (1993); 

mutual funds in Fabozzi and Francis (1979) and risk based portfolio is studied in Spiceland 

and Trapnell (1983). Most of these studies discovered the possibility of variation of beta with 

market conditions. 

 

In Nigeria context, Nigerian stocks have not been investigated along this line of thought. 

Previous works have applied the volatility models (ARCH) to study the behaviours (see 

Shittu, Yaya and Oguntade, 2009). The Nigerian Stock Exchange (NSE) with many registered 

companies, publishes the All Share Index (ASI), and is the only stock index for Nigerian 

under the NSE. The index is calculated by summing the entire share and dividing the total by 

the official market average. The stock market index is regarded as an important indicator by 

the investors; this can be used as a benchmark by which the investors or fund managers 

compare the returns of their own portfolio. In this work, we identify the bull and bear periods 

of the Nigerian ASI and examine the stability behaviour of its beta over the bull and bear 

periods.  We deploy the LSTM to assess the transition between the two regimes. Results are 

compared with those of the US, UK and the Asian indices. In US stock market, we have three 
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stock indices (Standard and Poor 500; Dow Jones and Nasdaq). There are three European 

markets (FTSE100; CAC40 and DAX) and three Asian (Nikkei225, Hang Seng and STI) 

indices. The Nigerian stock market is then compared with these markets based on the 

description of the indices and beta estimate in the LSTM model. 

 

The Logistic Smooth Threshold Market (LSTM), which is an adaptation of Logistic Smooth 

Transition Autoregressive (LSTAR) model of Teräsvirta (1994) is chosen as the best model to 

solve the problems at hand. This model is known to possess the possibility of allowing for 

smooth and continuous transition between regimes.  

 

The remaining part of the paper is structured as follows: Section 2 explains the bull and bear 

phases of financial market, and as well gives the overview of the LSTM model as well as 

nonlinearity and specification tests. Section 3 presents the results while Section 4 renders the 

conclusion. 

 

2. The Market Phases 

Financial markets have been classified to be in the period of ‘up’ and ‘down’ market phases 

which implies ‘bull’ and ‘bear’ periods (Maheu and McCurdy, 2000). Wiggins (1992) defines 

‘up’ months as months when the (excess) market return is greater than 0, while ‘down’ 

months as months when the market return is less than 0. Granger and Silvapulle (2001) define 

market into bullish and bearish periods by using quantiles of return distributions. With the 

current concern as to classify markets between these two phases (regimes), Cohen et al. 

(1987) has published some market dates which are being applied in the literatures. Dukes et 

al. (1987) used the S&P500 index to define bull markets as periods in which the index 

increased by at least 20% from a trough to a peak and bear markets as periods in which the 

index decreased by at least 20% from a peak to a trough. 

 

Recently, Pagan and Sossounov (2003) and Lunde and Timmermann (2004) proposed  

algorithms to classify market based on the definitions of the phases in terms of movements 

between peaks and troughs given in Duke et al. (1987) and both papers find that bull market 

last longer than the bear markets. Gonzalez, Powell and Shi (2002) define bull and bear 

markets in relation to a simplified regime-switching model. In the model, definition of two 

turning point detection methods is applied to examine whether two centuries of stock index 

returns can be separated into economically and statistically significant bull and bear phases. 

Cunado, Gil-Alana and Perez de Gracia (2008) and Gursakal (2010) classify stock markets in 

S&P500 index into bull and bear phases using the algorithm of Pagan and Sossounov (2003). 

They further detect long memory in each of the market phases. More recently, Gil-Alana, 

Shittu and Yaya (2013) consider the stocks in Europe, America and Asia and applied 20%’s 

rule to classify the stocks into phases and obtain similar results as obtained in Cunado, Gil-

Alana and Perez de Gracia (2008). 

 

Due to the difficulty of interpreting the Pagan and Sossounov (2003) algorithm, researchers 

are trying to look for a model-based classification which is simpler to interprete and apply. 

Apart from the Markov Switching (MS) model used in Maheu and McCurdy (2000), 

continuous regime switching model is proposed in Granger and Teräsvirta (1993) and 

Teräsvirta (1994). Woodward and Anderson (2009) apply an endogenous threshold parameter 

nonlinear market model top investigate bull and bear states in Australian markets using the 
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estimates of the betas from the model as proxies. Their model is an adaptation of the one 

earlier proposed in Granger and Teräsvirta (1993). 

 

2.1 The Logistic Smooth Threshold Market (LSTM) model 

An unconditional beta model for stocks as defined in Woodward and Anderson (2009) is 

given by, 

 1it it tr r                (1) 

where itr  is the return series on stock/portfolio i  for period t , itr  is the return on the market 

index for period t . The   and   are the parameters in the model; the   is the constant and 

  is the slope, which measures the correlation between itr  and 1itr  . The t  
is the disturbance 

term assumed to be a white noise process. Using the Smooth Threshold Market (STM) model 

given by, 

    1 1 ; ,D D U U

it it it t tr r r F s c                  (2) 

with 

    
1

; , 1 expt tF s c s c 


              (3) 

for Logistic STM (LSTM) and  

    2
; , 1 expt tF s c s c              (4) 

for Exponential STM (ESTM) with 0   in both models. The superscript D and U signify 

the ‘up’ and ‘down’ market values for the parameter   and    respectively. The  .F  are 

the transition functions, with transition variable ts  and threshold value c  and  20,t N  . 

The LSTM classifies the market into a ‘bear’ phase when ts c  and in a bull phase when 

ts c
 
while the ESTM classifies the market into a ‘bull’ phase at ,tc s c  

 
excluding 

point 0ts   when the model suddenly assumes ‘bear’ state. It is very rare for the ESTM to be 

in the ‘bear’ state, even if it does not stay longer in the state if it suddenly gets there. The 

ESTM cannot quite classify the market into the two phases, therefore LSTM is often applied 

to classify market into phases. In the LSTM model, the value 
U  measures the difference 

between the ‘up’ and ‘down’ market values of the slope coefficient and therefore presents the 

up-market value of beta as 
D U  , whereas the down market value is 

D . The equation (3) 

as used in (2) show that beta changes monotonically with the transition variable ts  due to the 

fact that  .F  in (3) is a smooth and continuous increasing function of ts . Note, the value of 

ts  is determined during the estimation and this is a function of the endogenous variable tr

(van Dijk, et al., 2002). As the transition function  .F  changes monotonically between 0 and 

1, it assumes the extreme values 0 and 1 occasionally depending on the value of  ts c . 

When  ts c  ,  . 0F   and the model in (2) becomes the linear model 

1

D D

it it tr r      and therefore the stock market is in the ‘bearish’ state. On the other 

hand, when  ts c  , the model is nonlinear and tr  is generated as 
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    *

1

D U D U

it it tr r          which is a ‘bullish’ state for the stock. In most 

situations,  ts c  gives values that set the market between the two extreme regimes. The 

parameter   determines the speed of transitioning between the two regimes and this also 

measures the degree of nonlinearity. A high value of the nonlinear parameter implies an 

instantaneous switch between the market states-‘bull’ and ‘bear’ while a low value of the 

parameter implies a slow transitioning between the market phases. 

 

2.2 Linearity testing against LSTM model 

Teräsvirta (1994) provides a step-by-step procedure for specifying the STR model. The 

LSTM model as an adaptation of Logistic STAR (LSTAR) model follows the same model 

specification procedure as Smooth Transition Autoregressive (STAR) model. The important 

components of both LSTM and LSTAR models are the nonlinear component which controls 

nonlinearity. This also makes the clear difference between the classical Autoregressive (AR) 

model. 

 

As given in the literature, start by fitting the initial AR model to the return series, tr . We then 

test for independency of the residuals t  in the model and this test implies linearity in the 

returns. Linearity is achieved by setting the null 0 : 0H    against 1 : 0H   . If the null 

0 : 0H    is accepted, then we conclude that the constant risk market model in (1) adequately 

represent the model. If 0H  is rejected, we accept 1 : 0H    and proceed to estimating the 

nonlinear LSTM model using the Nonlinear Least Squares (NLS). Tests based on 0 : 0H    

is not standard and parameters of model in (2 with 3) are only identified when 0  , then 

Luukkonen, Saikkonnen and Teräsvirta (1988) suggest a way out. They apply a first and third 

orders Taylor series linear approximation to the logistic transition function in the STR model. 

The resulting approximation expanded in the full STR model leads to the auxiliary regression 

model 

 
* 2 3 * * 2 * 3

0 1 2 3 4 5 6 7t t t t t t t t t t t tr r s s s r s r s r s                      (5) 

with the last six variables in the equation acting as proxies for the nonlinearity. The null 

hypothesis then becomes  

  0 : 0 2,...,7jH j   .  

This hypothesis follows a standard Wald test and the test statistic is denoted as S3 with the F-

distribution, with (v1=6, v2=N-7) degree of freedom, given as, 

   
 

 
0 1

1

/ 6

/ 7

SSE SSE
F

SSE N





             (6) 

where N is the sample size and SSE0 and SSE1 are the errors sum of squares in the linear 

model (2) and auxiliary regression model (5) respectively. The S3 is derived as Lagrange 

Multiplier (LM) statistic with an asymptotic 
2  distribution in Luukkonen et al. (1988). It is 

imperative to find evidence of nonlinearity because such evidence justifies nonlinear form, 

particularly the two market phases under investigation. The acceptance of linearity 0 : 0H    

provides a warning that identification of two regime parameter is not possible. 
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The estimation of the LSTM model follows the Nonlinear Least Squares (NLS). Consistent 

estimates will then be obtained when errors, t  are independently and identically distributed 

with mean zero and variance 
2 . Using normality assumption, NLS is seen to be equivalent 

to MLE. The estimation of LSTM poses much difficulty because of the nonlinear component, 

which often gives flat sum of squares error (or likelihood) with respect to   and c (Teräsvirta, 

1994; Maringer and Mayer, 2008; Chan and Theoharakis, 2009). Another problem is that of 

convergence which fails often. These problems can be overcome by sequentially condition 

estimates of , ,D U D    and 
U on each value of   and c  as given by the Ordinary Least 

Squares (OLS) estimator, 

 
 

Maringer and Mayer (2008) give a procedure for setting out a grid search over likely values 

for  ,c  to determine the set value of  ˆ ˆ,c  that minimizes the residual sum of squares. 

 

3. The Data, Empirical Results and Discussion 

The data used in this study are the monthly Nigerian stocks (All Share Index), American 

stocks (S&P500; Dow Jones and Nasdaq), European stocks (FTSE100; CAC40 and DAX) 

and Asian stocks (Nikkei 225, Hang Seng and STI) indices. The data span from January 2000 

to December 2011 giving a total of 144 data points. 

 

We start by giving the plots of the stock indices with ASI of Nigeria plotted on each of one 

the other stock indices. The logarithm of each of the stock index has been taken in order to 

ease series comparism in the plots and the raw values are used in subsequent analyses. 
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Figure 1: Time plot of ASI on each of the Foreign Stocks in UK, US and Asia 

 

Since the concern is on the market phases of the stocks using return series as proxy, there is 

need to examine the possible nonlinearity and transition in the stock indices before these are 

transformed into returns. Table 1 presents the summary of the LSTM models estimated for the 

stock indices under investigation. Most of the indices showed autoregression of up to order 3 

initially. The transition between regimes in ASI, S&P500, Dow Jones, Nasdaq, FTSE100, 

DAX and STI are quicker than that of the remaining indices (CAC40, Nikkei225 and Hang 

Seng) as indicated by the estimates ̂ . The estimates for intercept ( ĉ ) of the give the ‘jump’ 

expected when the index moves between ‘bull’ (‘bear’) and ‘bear’ (‘bear’) phases. The 

coefficient of multiple determination, R
2
 is quite high for all the indices indicating the 

possibility of the regime switching models. 
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Table 1: Estimates of Nonlinear Parameters for Stcok Indices 

Index ̂  ĉ  R
2 

ASI 23.71820 58364.65 0.9748 

S&P 500 18.91150 978.3954 0.9229 

DOW JONES 1064.2749 8825.795 0.9110 

NASDAQ 37.36927 3976.956 0.9210 

FTSE 100 24.09792 6470.554 0.9350 

DAX 108.8046 7681.320 0.9441 

CAC 40 7.263620 7974.919 0.9542 

NIKKEI 225 7.810150 19598.532 0.9496 

HANG SENG 6.714710 41876.187 0.9554 

STI 304.39243 3467.507 0.9637 

 

Gil-Alana, Shittu and Yaya (2013) are able to identify four market phases in UK, US and Asia 

using Pagan and Sossouvnov’s (2003) algorithm. The results in Table 1 further confirms the 

possibility of two market phases (‘bull’ and ‘bear’), as detected in Gil-Alana, Shittu and Yaya 

(2013). In Nigeria ASI (Table 1), we can identify one significant peak in February 2008 with 

market index 65652.38. We can therefore classify the Nigerian market to have undergone two market 

phases, with the bull phase from January 2000 to February 2008. The bear phase started from peak 

point till December 2011 time as covered in this work. 

   

We can also notice that most Foreign markets (US, UK and Asia) reached their peak point as 

well around February 2008 and the markets crashed and this is confirmed from the time plots. 

Figures 2a-2j below show the behaviour of the transition functions for the stock indices across 

the sampled data. The transition function confirms movement to the peak (when  . 1F  ) for 

the ASI and this quickly revert back to its stable value at  . 0F  . Most of these markets 

display one or more movement between the ‘down’ state   . 0F 
 
and ‘up’ state  . 1F  . 

Stocks indices stay longer at down-market state than up-market state as indicated in the plots 

of the transition functions in Figures 2a-2j below.
  

 

 
Figure 2a: ASI 
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Figure 2b: S & P 500 

 

 
Figure 2c: DOW JONES 

 

 
Figure 2d: NASDAQ 

 

 
Figure 2e: FTSE 100 
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Figure 2f: DAX 

 

 
Figure 2g: CAC 40 

 

 
Figure 2h: NIKKEI 225 

 

 
Figure 2i: HANG SENG 
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Figure 2j: STI 

Figure 2: Plots of the Transition functions for the Indices of ASI and Foreign Stocks 

 

 

Statistical inference on stocks is usually carried out using the log return series. This is the 

logarithmic transformation of the difference of the stock index.  This is carried out for all the 

10 series under investigation and Table 2 presents the descriptive measures.  
 

Table 2: Descriptive measures on the Returns Series of Stocks 

  Mean Median Maximum Minimum Standard dev. Skewness Kurtosis JB Prob 

ASI 0.0037 0.001428 0.140501 -0.1589 0.032911 -0.51684 8.54724 188.3889 0.0000 

S&P 500 -0.00034 0.002728 0.043714 -0.07984 0.02099 -0.6206 3.903953 13.94988 0.0009 

DOW JONES 0.000295 0.001416 0.043638 -0.06563 0.019785 -0.59328 3.844454 12.54931 0.0019 

NASDAQ -0.00127 0.001966 0.077307 -0.1151 0.033443 -0.55625 3.598713 9.443594 0.0089 

FTSE 100 -0.0004 0.001421 0.036046 -0.0606 0.01884 -0.65057 3.51942 11.61305 0.0030 

DAX -0.00036 0.004399 0.083715 -0.1251 0.030439 -0.87717 5.191186 46.61759 0.0000 

CAC 40 -0.00181 0.003291 0.056455 -0.07892 0.025183 -0.51809 3.137302 6.46415 0.0395 

NIKKEI 225 -0.00252 -0.00076 0.058055 -0.11712 0.0265 -0.58015 4.227265 16.87721 0.0002 

HANG SENG 0.000608 0.004678 0.07625 -0.09269 0.028983 -0.39702 3.60471 5.894056 0.0525 

STI 0.000572 0.004754 0.08382 -0.11884 0.027073 -0.96386 6.252874 84.5923 0.0000 

***significant at 1, 5 and 10% level 

From the summary statistics, Nigerian All Share Index (ASI) gave the highest returns 

followed by Asian Hang Seng. The lowest returns were given by European FTSE100. The 

values of the standard deviation were observed to be very close to one another. All the returns 

series also showed signs of leptokurticity and as well negatively skewed, which is in line with 

findings from other financial time series. Hence, Jarque-Bera (JB) tests indicated significance 

at 5% for 9 of the stocks except Asian Hang Seng which was found to be significant at 6% 

level. 

 

As part of LSTM model specification, there is need to first estimate the linear model from 

which the auxiliary model to test nonlinearity will be constructed. The linear AR(1) models 

for the returns are presented in Table 3 with the diagnostic checks, Akaike Information (AIC) 

and Schwarz Bayesian Information (SBIC) as well as Sum of Squares Error (SSE0). All 

except the betas for FTSE100 is significant at 5% level in the initial linear market model. 
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Table 3: Initial Linear Market model 

Return ̂  ̂  AIC SBIC SSE0 

ASI 0.003691 
(0.003338) 

0.176803 
(0.083621) 

-3.993359 -3.951533 0.147955 

S & P 500 -0.000273 

(0.002053) 

0.142060 

(0.083910) 

 

-4.882796 -4.840970 0.060793 

DOW JONES 0.000555 

(0.001788) 

0.073872 

(0.082565) 

 

-5.005945 -4.964118 0.053749 

NASDAQ -0.001896 

(0.003118) 

0.114262 

(0.082565) 

-3.983467 -3.941641 0.149426 

FTSE 100 -0.000382 
(0.001688) 

0.054497 
(0.084695) 

 

-5.080350 -5.038524 0.049895 

DAX -0.000731 
(0.002793) 

0.087648 
(0.083752) 

-4.144061 -4.102235 0.127257 

CAC 40 -0.002165 

(0.002408) 

 

0.129768 

(0.083194) 

-4.535614 -4.493788 0.086026 

NIKKEI 225 -0.002635 

(0.002522) 

0.115362 

(0.084242) 
 

-4.410178 -4.368352 0.097523 

HANG SENG 0.000201 

(0.003005) 

0.206257 

(0.082334) 
 

-4.276235 -4.234408 0.111501 

STI 0.000733 

(0.002619) 

0.133226 

(0.084094) 

-4.375219 -4.333393 0.100993 

 

The auxiliary regression model in (5) is then constructed and the error sum of squares SSE1 

obtained. This together with SSE0 obtained from the linear model are used based on the F-

statistic (6) to get the F-value with critical value obtained as F6,N-7 at 5% level of significance. 

In Table 4, the estimate of the slope (nonlinearity) for ASI of Nigeria is very low for the 

return series indicating that Nigeria cannot quickly recover from the effect of the financial 

shock. For other countries, the values are very high, indicating quick and sharp transition 

between the two regimes. Out of the 10 LSTM models, 4 of ˆU are negative and the 

remaining 6 are positive, and this supports the claim in the literature which says risk in the up-

market is usually lower than risk in the down-market (Woodward and Anderson, 2009). For 

the ASI, risk in the up-market is higher than that of the down-market and the up-market beta 

is positive and higher than the down-market beta for the same stock returns series. In other 9 

markets, 5 of the stocks have up-betas higher than the down-betas and these are the stocks in 

Europe and Asia. Closer look at the estimates of the threshold values ( ĉ ) as compared with 

the mean returns values in Table 2 indicate that though the values are negatives, these are very 

low compared to the mean of each of the returns series. This is contrary to the results of 

Woodward and Anderson (2009).  Only FTSE100 gave positive threshold value, while others 

are negative. This negativity may be the reason for evidence of bull and bear markets 

differentials.
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Table 4: Estimates of the Parameters of LSTM models for Returns Series 

Index ˆ
D

  ˆ D
  ˆ

U
  ˆU

  ̂  ĉ  AIC SBIC SSE1 F 

ASI -1.12142 
(9.3843) 

-5.04958 
(32.2679) 

1.69977 
(13.1530) 

1.93745 
(20.1203) 

0.36824 
(1.0419) 

-0.06026 
(0.0012) 

-6.8729 -6.7475 0.1341 2.341884** 

S & P 500 0.25993 

(0.2400) 

3.71505 

(3.0556) 

-0.26050 

(0.2400) 

-3.53945 

(3.0622) 

7.80178 

(9.2769) 

 

-0.05348 

(0.0025) 

-7.7185 -7.5931 0.0497 5.059182** 

DOW 

JONES 

0.45312 

(0.2704) 

7.25496 

(4.2674) 

-0.45346 

(0.2704) 

-7.06753 

(4.2662) 

10.06531 

(8.1451) 

-0.05342 

(0.0033) 

 

-7.8757 -7.7502 0.0592 2.08709** 

NASDAQ -0.02214 

(0.0288) 

0.06000 

(0.4224) 

0.02383 

(0.0290) 

-0.16096 

(0.4370) 

3166.59 

(5.8E08) 

-0.04398 

(57.2049) 

-6.8243 -6.6988 0.1431 1.002022** 

FTSE 100 0.00141 
(0.0020) 

0.13442 
(0.1109) 

-0.06251 
(0.0191) 

2.05929 
(0.7017) 

25.28656 
(20.4598) 

0.01549 
(0.0012) 

 

-7.9589 -7.8334 0.0459 1.97284** 

DAX -0.06992 
(0.0257) 

-0.83714 
(0.3651) 

0.07017 
(0.0259) 

0.89700 
(0.3853) 

25.31383 
(43.5100) 

-0.03931 
(0.0034) 

 

-6.9843 -6.8588 0.1208 1.211578** 

CAC 40 -0.10521 

(0.0384) 

-1.77554 

(0.6957) 

0.10354 

(0.0384) 

1.91954 

(0.7034) 

21.89199 

(31.4445) 

-0.03753 

(0.0018) 

-7.3816 -7.2561 0.0811 1.376769** 

NIKKEI 

225 

-0.15134 

(0.1474) 

-1.19002 

(1.3115) 

0.15044 

(0.1476) 

1.16983 

(1.3015) 

10.23372 

(10.1035) 

-0.05240 

(0.0062) 

 

-7.2970 -7.1716 0.0879 2.481471** 

HANG 

SENG 

-0.04695 

(0.0259) 

-0.54287 

(0.4550) 

0.04850 

(0.0261) 

0.68606 

(0.4683) 

33.04781 

(60.6030) 

-0.03746 

(0.0022) 
 

-7.0896 -6.9641 0.1089 0.541377** 

STI -0.00323 

(0.0030) 

0.37599 

(0.1534) 

0.00834 

(0.0101) 

-0.26086 

(0.2604) 

-9448.26 

(4.1E12) 

-0.1561 

(57837.48) 

-7.1841 -7.0587 0.0977 0.763985** 

 

From the LSTM models estimated in Table 4, the plots of the transition functions as they 

assume values from 0 to 1 are presented in Figures 2a-2j for stock indices, as it was observed 

that stocks stayed more in the down (lower) regime than the up-market regime. Figures 3a-3j 

present the market transition behaviour of stocks returns for the indices under investigation. 

The results obtained here are contrary to the ones obtained for the stock indices in Figure 2a-

2j above. Here, the returns of ASI neither for once falls in the ‘bull’ (up) or ‘bear’ (down) 

phase, but it migrates between the regimes assumes strictly the continuous nonlinearity. In the 

remaining 9 markets, larger proportion of the returns are found in the up-market phase and 

with relatively few found in the lower market and this further confirms that risk in the up-

market is lower than risk in the down-market. For example, returns of S&P500, Dow Jones, 

Nikkei225 and STI only had fewer time to stay at lower phase while CAC40 and Hang Seng 

moves as many times to lower regime (down) but as well stayed most of the time in the up-

market. Only FTSE100 seemed to stay at about 50% of the time at lower level. 

 
Plots of the Transition functions for the Return Series of ASI and Foreign Stocks 

 
Figure 3a: ASI 
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Figure 3b: S&P500 

 

 
Figure 3c: DOW JONES 

 

 
Figure 3d: NASDAQ 

 

 
Figure 3e: FTSE 100 

  



European Journal of Business and Management                                                                        www.iiste.org 

ISSN 2222-1905 (Paper) ISSN 2222-2839 (Online) 

Vol.5, No.7, 2013 

 

 

120 

 

 

 

 
Figure 3f: DAX 

 

 
Figure 3g: CAC 40 

 

 
Figure 3h: NIKKEI 225 

 

 
Figure 3i: HANG SENG 
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Figure 3j: STI 

 

4. Concluding remarks 

This study considers the Nigerian stock market with other foreign markets in Europe, 

America and Asian. We try to explore the possibility of the two market phases, ‘bull’ and 

‘bear’ in the stocks data. The LSTM, which is an adaptation of LSTAR model of Teräsvirta 

(1994) is used. We obtain results which strongly confirms the existence of the two phases of 

markets: ’bull’ and ‘bear’ in our data. The Peak period detected in the model coincides with 

the period of global financial crisis and this is uniform in all the stocks including Nigeria All 

Share Index. In the LSTM models, the estimates of betas vary from stock to stock, even 

stocks in the same country. Though, we have only ASI for Nigeria but the value obtained is 

still very different from others. Stocks returns are found to stay longer in the up-market than 

in the down-market, therefore it is riskier for investors to keep portfolios when the market is 

at bull phase. 
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