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Abstract 

This paper focuses on the performance of various Garch models, were Arch model s not dismissed in term of 
their ability of delivering volatility forecasts for Amman stock market return data , in this paper a stationary 
Garch models were estimated , I have assess the performance of the maximum likelihood estimator , finally I 
have attempt to fit the dynamic of daily Amman stock return , by different models and BL approach , also has 
been used quantified the day –of – the week effect and the ( γ ) leverage effect in order to test for asymmetric 
volatility.   This paper attempt to investigate and modules the volatility of Amman stock market using daily 
observations as the day – of – a week return index  for the period from January , 1996  through the period to  
June , 30 ,  2010 , to achieve this purpose I have divided the period of study into two periods , then I have 
estimated the data by using Arch (1), Garch , E Garch , and the Go –Garch models are employed .   Arch and 
Garch models are used to capture the symmetry effects, whereas the E-Garch are used to capturing the 
asymmetric effect. Results can be stated as : the E-Garch model is  most fitted model to forecasting data of 
returns volatility between Garch (1,1) and Garch (1,2 ) as model performance is very small   , according to BL 
approach Alpha of AMS portfolio and frontiers returns is ( - 0.6342 ) , and the risk ratio is ( 0.5331 ) .   
Key words: Garch, Volatility, leverage effects, Amman stock market   ( AMS ), BL approach, 
Jell classifications: C55 , C8 , 016 , P27 , R15 .  
 
1 -  brief notes: 

ASM (Amman stock market) or some named it Amman stock exchange like any emerging market is 
characterized by low turnover ratio, low liquidity, low transparency, and the non existence of market decision 
makers, the turnover ratio for the period of our data under investigation was 17.53%, and the average daily 
turnover was 0.9593 %, this ratio is too few, and these ratios are considered to be very small, the one of major 
action that might be effect trading activity.  And the average daily turnover is ownership of individual investors 
and institutional, and government. 
Table ( 1  ) shows the ownership structure  
The ASM has witnessed an increased in the number of listed companies through out the years, which gives an 
indication of economic growth in Jordan, and stability during the period of 2003 -2010 in ASM. The trading 
volume increased year to year during the period of study , the results of visibility of AFM is superior than other 
stock markets in middle east region , it has undergone accelerated growth especially during the last 6 years  due 
to stability and the Arab shares such Iraqi an investors , also Jordan government represented the board of 
international accounting standard . 
Some indicators of ASM , It established 1976 and it is emerging stock market , the capitalization is 9.765m us , 
and the change 1n 1999-2001 is 8.4% , while it in 1996-2010 is 27.3%, where the capitalization ratio to GNI IS 
58.9% , where the turnover is 13.54 m us and the turnover ( liquidity  )is 18.7%.  
 
2 -  introduction : 

An efficient capital markets optimize the process of investment through which capital may be transferred 
from net savers to net borrowers, when this happens we can say that market is efficient, and the share prices 
must reflects all variables or available information which is relevant for the evaluation of company's future 
performance and therefore share prices must be the rational explanation for future discounted profits. 
  Emerging markets have received great attention in recent years due to some factors, such as the fast and quick 
grew of returns of trading volume, then increasing of number of listed companies in the emerging markets, also 
market capitalization.    
   Many previous studies and researches fund a low correlation between developed and emerging markets, 
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which made emerging markets interesting for portfolio diversification, thus the high returns is exceeded which 
obtain in emerging markets is associated how ever with high risk and high volatility and high autocorrelation, 
many financial time series such as the returns on stock prices indexes have a certain characteristics which are 
well cited in the following literature. 

A recent development in estimation of standard errors known as "robust standard errors," has also reduced 
the concern over heteroskedasticity. if sample size is large , then robust standard errors gives quite a good 
estimate of standard errors , even with heteroskedasticity , but if the sample is small ,the need for a 
heteroskedasticity correction that does not effect the coefficients .   

In this paper the goal of such models is to provide a volatility measure like a standard deviation that can be 
used in financial decisions concerning risk analysis, portfolio selection and derivative pricing.  Engle (1982) 
proposed to model time- varying conditional variance with auto –regressive conditional heteroskedasticity (Arch) 
processes using lagged disturbances.  Laurent, and lecourt (2000), have used the student's distribution. 
Similarity to capture skewness and that was later extended to Garch frame work by lambert and Laurent (2000, 
2001). Van der wide (2002) was proposed the GO-Garch model as a generalization of the orthogonal Garch 
model of Alexander (2001).   Fan et al (2008) studied a general version of the model by relaxing the 
assumption of independent factors to conditionally uncorrelated factors. For surveys on multivariate volatility 
models was refer to Bauwens et al (2006) and for a glossary to volatility models. 
    Generally the model is designed and (asymmetric) volatility spillovers are accommodated which denoted 
the key stylized facts of multivariate financial data. Moreover, the model is closed under linear transformation; 
also it is closed under temporal aggregation, which makes the model analytically convenient as Hafner (2008). 
Vander wide (2002 ) proposed two step estimation methods that requires joint maximum likelihood (ML ) 
estimation for parameters that feature both in linear transformation and in the univariate Garch specifications for 
the individual factors . 

The overall results are that Garch models are unable to capture entirely the deviations in volatility. A 
regression of volatility estimates from Garch models on actual volatility produces R2 usually below 8 percent, 
however, a positive note, the Garch prediction of volatility. The Garch models are not wholly inadequate 
measures of actual volatility.  

My framework in this paper is relatively and closely related to the recent papers by Alexander (2001), 
lambert and Laurent also Andersen and Bollerslev (1998), Hafner (2008), Diebod and Ebens (1999) and Fan et al 
(2008).  Those papers shows that traditional tests of various volatility models which rely on ex- post squared 
returns as realized volatility are very noisy although an unbiased .  Mackawa et al (2005) demonstrate that most 
of the Tokyo stock market returns data sets posses' volatility persistence and in many cases it is a consequence of 
structural breaks in the Garch process. Bauwens and Storti (2007 ) reported that often volatility goes up 
proportionally less after out laying shocks that it does after small and moderate shocks , to reduce the effect of 
outliers on the predicted volatility , my advocate in this paper of  M-Garch , is where the effect of out laying 
returns on volatility predictions is bounded and also the Arch (1,1 ) has been used and other alternative models of 
stochastic volatility are implied volatility models from option pricing are not at  debate  here , in addition , 
various and other measures of volatility based on volume , price range which effected volatility of return of 
Amman Stock market .   Finally this paper has organized as follows: section one contain introduction, where 
the second section briefly discussed of Arch model, and Garch models as a literature review of these important 
models in financial date estimation  and the models of the study paper    , section three discussed the data 
sources and methodology, sample tests are conducted on forth section, while section five presents out –of 
–sample performance is analyzed and the empirical results. Where section six conducted concluded remarks and 
references.   
 
3 - Literature review of Arch and Garch model:     

The purpose of forecasting volatility are for risk management and asset allocation, and for taking bets on 
future volatility, the risk management is this field is measuring the potential future losses of a portfolio of assets, 
this can be achieved by estimates of future volatility and correlations, a standard approach Markowitz of 
minimizing risk for a given level of expected returns is used, in other hand estimate of the variance – covariance 
matrix is required to measure risk.  The simplest approach to estimating volatility to use historical standard 
deviation. one empirical observation of asset return is that squired returns are positively autocorrelation , if an 
asset in Amman stock market like a currency , commodity , stock price , or bond price made a big move in a 
days ago , it is more likely to make a big move to day . The Amman stock market crashed on November 2007, 
thus we can see anecdotally that large moves in prices lead to more large moves.  

Volatility not only spikes up during the financial crisis , but it eventually drops to approximately as the same 
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level of volatility as before crisis , it means that there is periodic spikes in equity volatility due to crisis that 
caused large market drops  . in this option the models we look at will attempt to capture the autocorrelation of 
squared returns ,the reversion of volatility to the mean , as well as the excess kurtosis . 

In this paper the first model I have used it is as a Arch model, which stands for autoregressive conditional 
heteroskedasticity. The conditional here comes from the fact that in these models, next periods volatility is 
conditional  on information this period heteroskedasticity means non constant volatility ( if the variance of 
residuals is not constant ) , when we estimate the variables coefficients in the model by least square method , let 
us use Arch (1 ,1) model which  developed by Engle (1982 ). We assumes that returns on asset is : 

σ2t = C0 + a1 a2 t – 1 ………. … (1) 
Where C0 >0 and a1 ≥ 0 to ensure positive variance and a1≥1   for stationary under an Arch (1) model, under 
the model estimate, if residuals returns, a2t is large in magnitude, forecast for next periods conditional volatility, 
at+1 will be large, we can say in this state that the returns are conditionally normal, and the one period returns 
are normally distributed , and returns ( rt ) are uncorrelated but are not i.i.d  also we can notice that a time 
varying σ2t which lead to fatter tails , this relatively to a normal distribution ( Campbell, Lo . and Mackinaly 
(1997 ) . the second model is Garch model , we notice in Arch (1, 1) next periods variance only depends on last 
periods squared residuals , an Arch (1,1) model is an Arama (1,1 ) model, so the crisis that caused a large 
residual would not have the sort of persistence this led to an extension of the Arch model to a Garch generalized 
Arch model which dev eloped by Bollerslev (1986) : 

σ2= C0 + a1 a2t-1 + B σ2t -1 ………… (2) 
Where: C0 > 0, a1>0, B1 >0 and a1+B1 >1, so that our next period forecast of variance is a blend for our last 
period forecast. 
  Since at is a stationary process: 
     Var (at) = C0 / 1-a1 –B1   ………… (3)  
A Garch (1, 1) model can be written as an Arch (∞) 
σ2t = C0 + a1 a2t-1 + C0 B1 + a1 B1a2 t-2 + B1 2 ( C0 + a1a2 t-3 + b1 σ2t -3 ………… (4 )    
 ;  
;  

= C0 / 1-B1 + a1 ∑ a2t -1 –Ib1i  …………….(5)  
 We can write the Garch (1,1 ) equation yet in  another way :  
 
σ2t = ( 1- a1 – B1 ) E[σ2t ] + a1a2t -1 + B1 σ2t -1  ………..(6) 
      As this model Garch (1, 1) we can see that next period conditional variance is a weighted combinanation 
of the unconditional variance of returns.  From the 1st – step a head variance forecast we can notice that  ( a1 
+ B1 ) determines how quickly the variance forecast converges to the conditional variance. If the variance spikes 
up during a crisis , we can measure the half life which given by : 
    K = ln ( a1 +B1 ) K  / LN ( a1+ B1 )     …..(7 )  
This indicates for the half way between the first forecast and the conditional variance, where k indicates for 
number of periods. 
 The question which rises up how implied volatility react asymmetrically to up and down stock market moves; 
in this case we should use other index which measure the weighted average of the implied volatility of short term 
of the stock market.  
We can not give a clear interpret for why volatility should increase more than the level of stock market prices 
drop compared to a stock price rise , in other hand as stocks drop , the debt / equity ratio increased and stock 
become more volatile with higher  leverage ratio , the leverage could be explain the changes in volatility 
associated with stock market are much larger than that which could be explain by leverage  Glosten , 
Jagannathan and Runkle ( 1993 )  has an account the asymmetric model of Garch  model called GJR – Garch 
model , also known as T-Garch 
 (Threshold) which can be written as:  
     σ2t = C0 + a1 a2t-1 + γ1 St-1 a2t -1 + B1 σ2t -1   ……….. (8) 
 We can estimate γ1 by using maximum likelihood techniques, another variant Garch model to account for a 
symmetry known as E – Garch (1, 1) model by Nelson (1991), and can be written as:  
 ln (σ2t) = C0 + a1 a2t-1 + γ1(a1t -1) + B1 ln (σ2t -1 )   / a1t- 1  ……….(9)  
     Another variation of a Garch model known as Garch (1,1 ) – M , which tests whether variance can impact 
the mean of future returns .   
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4 - The model: 

    There are several reasons that we may want to model and forecast volatility, first to analyze the risk of 
holding an asset or the value of an option , second forecast confidence intervals may be time varying , so more 
accurate intervals can be obtained by molding the variance of the errors , third , more efficient estimators can be 
obtained if heteroskedastisicty in the errors is handled properly .    Thus the variance of the dependent variable 
is modeled  as a function of the past values of the dependent variable and independent or exogenous variables, 
therefore the Arch model have to consider two distinct specifications one for the conditional mean and one for 
the conditional variance .     We can define the Garch – M model which introduce the conditional variance in 
mean /( Engle, Lillian , Robins ,1987 ) as : 
                Yt = Xt γ + σ2t γ          ………………..( 10 ) 
    This is a variant of the Arch – M specification, in this model we can use the conditional standard deviation 
instead of conditional variance, and we often used in financial applications where the expected return on a assets  
is related to the expected coefficients on the expected risk is a measure of the risk – return trade off .. 
The simplest model is an Arch model , let us assume that the return of stock market on asset is : 

  Rt = µ + σ2tέt   ………………………………(11) 
Where: έt is a sequences of N( 0,1 ) i.i.d random variables , we can define the residual returns as :  

ά t= σ2tέt         ……………………….(12)  
 Engle (1982 ) has developed Arch (1 ) model , which can be written as : 
  

σ2t= ά0 + ά1ά2t -1                 ………………… (13) 
  The kurtosis of άt is defined in normal distribution, the kurtosis of 3:   
        Kurtosis (at ) = 3 E { σt4 } /  E{ σ2t}2  ……………(14 )  
And since is a stationary, the var (at) = var (at -1) = e (a2t-1) .so  
                  Var (at) = at / 1-a1   …………………….. (15)  
   If we consider that just as an Arch (1) model, is an AR (1) MODEL on sequenced residuals, an Arch (1) 
model is an ARMA (1,1) model on squared residuals which can be written as : 
 

a2t = C0 + (a1 + B1) t -1 + vt – Btvt -1    ………………… (16) 
And since at is a stationary process  
        Var (at) = C0 / 1 –a1- B1           …………………..(17 )  
The ARMA (1,1) can be considered as AR (   ∞  ), a Garch (1,1) , and it can be written as Arch (   ∞   ) as :  

σ2t= C0 + a1 a2t -1 + B1 σ2t -1            …………………… (18) 
And as the substitution:   
        C0 / 1-B1 + a1 ∑a2 t-1 – iBi          …………………. (19) 
From this model it is easy to see the next periods conditional variance is weighted combination on the 
conditional variance of returns. Where last periods squared residuals (  a2t -1 ) , and last periods conditional 
variance  (σ2t -1 ) , it is clear that not only does  the magnitude of ( a2t ) effect future volatility , but the sign of 
( at ) , also effect of future volatility at least for equities also it is not clear why volatility should increase more 
when the level of stock prices rise, and when stock prices drop, the debt / equity ratios increases and stocks 
becomes more volatile with higher leverage ratios . 
The threshold Garch (T- Garch) model can be written as (Golsten et al, 1993) as follows:  

a2t = C0 +a1 a2t -1 + γ1 St – 1 a2t -1 + B1 σ2t -1     …………… (20)   
Where:  {1, if at -1 < 0} or {0, if at -1 >0}  
Another variation of Garch model tests whether variance can impact the mean of future returns, these models are 
referred as Garch – M, which represented as: 

σ2t = C0 + a1 a2t -1 + B1 σ2t -1 …………………………….. (21) 
in some specifications , the volatility rather than the variance . 
   

5 - Data and methodology:    

    The data related to Amman stock market daily observation of Amman stock index from 21/ 12/1992 ton31/6 
/2010 which represents daily observation to estimate and forecast these results  of observation indices  , 
E-views5 is used as a package who proposed to estimate Arch and Garch models and many of it is extensions 
Parameters were estimated using the QML technique which proposed by Bellerslev and Wooldridge (1992), the 
conditional heteroscedasticity may be caused by a time dependence in the rate of information arrival to the 
market, therefore we can use the daily trading volume of stock market of Amman stock market as a proxy for 
such information arrival, and confirm it is significant as Johnston and Dinardo (1997 ) , who suggest a simple 
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test for the presence of Arch problem , we can named step –by –step as : 
1- Regress Y on X BY OLS obtains the residuals {et}. 
2- Compute the OLS regression: 
       Et 2 = a0 +a1e

t -1 + a1e2t-1 + ……+ape2t-p +error. 
3- List the joint significant of a1, …., ap . 
Green (1997) provided a straight forward method of estimation as: 
1- Regress Yon X using LS (Least square method) to obtain B and e t vectors. 
2- Regress e2t on a constant and e2t-1 to obtain the estimates of C0, and a1, note that the whole sample should 
by used in regression  
3- compute: Et = a0 +a1e2t-1  
4- re compute Et using a, compute and estimate B = B +db , where db is least squares coefficients vector in the 
regression .  
The method of estimation of Garch as : 
1- generate a series  of N  values     from the standard normal distribution that is zt ~~N ( 1, ) ) . 
2-Generate an equal number of values {et }t =1 by et  = 2t √h2t .     
3- repeat step one (1 )and (2) 100 times to obtain data series . 
4- Generate N bootstrap of ( et1, j , ….,e100j )  , j=1, …..,N  
For each sample data are order from smallest to largest.  
5- the 5th step  and 95th values represents the lower and upper  limits of 95 percent confidence interval .  
Other method can be used, such as the BL approach is selected to measure Alpha , risk , and tracking error , 
implementing the BL approach requires the specification of on other hand a suitable weight –on view to calibrate 
the confidence level of the perior belief ( γΩ ) . Also the matrix contains the uncertainty of the views. Black and 
Litterman (1992) and Leo (2000 ) suggests a solution to this practical problem by imposing  (γ ) to close to zero 
due to the uncertainty of the means is less than one of expected returns . therefore the calibration used the 
covariance matrix is assumed to be proportional to variance of the viewed portfolio according the equation is : 
Si  / γ = piΩ pi-  
Where Si as ith diagonal eliminate in matrix S , piΩ pi- is the variance of the viewed portfolio and pi is ith raw in 
matrix  . a unit root test has been justified the data to insure of stationarity of data  also autocorrelation of 
squared residuals of portfolio returns  to have the state of normal distribution and autoregressive state , then I 
have plot values at risk of Amman stock market (ASM )  portfolio , lastly I have estimated the volatility of 
ASM returns , in both cases reduce or increase  , then I have estimated the volatility regime . To obtain 
stationary series , I have used returns  rt =100( ln (pt ) – ln (pt -1 ) ,where pt is the closing value of index at date 
(t ) . the sample kurtosis is greater than 3 , it means that return distribution have excess kurtosis for both indices . 
also excess skewness is observed , due to high Jarque – Bera statistics which indicating non – normality . In table 
(2   ) ,   shows  descriptive statistics for logarithm differences  of data . We simulate stock prices  pt from 
the relation pt = e rt pt -1 is return series generated from the fitted models by taking boot strap steps 1 ,2 also we 
present the parameter estimates of Garch (1,1 ) and Garch ( 1, 2 ) .  Table ( 3  ) shows the results as stationary 
condition holds for the models.  
 
6 – empirical results : 

.    Respectively to table results , it can be observed that both Garch (1,1 ) and Garch (1,2) models fit the data , 
while Garch (1,1 ) does not exhibit clearly detectable superior performance to Garch (1,2 ) , thus we fund Garch 
(1,1 ) was adequate to capture most of the conditional heteroskaedsiticity .As daily stock returns may be 
correlated with the day – of – the week effect , therefore I have filtering the daily means and variances using the 
OLS method to fitted value of rt from regression results , hence we can write the the model as : 
         Rt = a1 Sunt +a2 Mont + a3 Tuet + a4 Went + a5Thurt + et ……………( 22  )  
Returns of Sunday, Monday, Tuesday, Wednesday, Thursday. per t are the dummy variables for Sunday . the 
result of regression are stated in table (  4  )  . 
Unit root test to data has done to analyzed the data to insure of normal distribution, thus table (5) shows the 
results .In the table results two test for a unit root were carried out , the ADF and PP test , the lag length in the 
ADF case and the truncation lag in the PP case are chosen on the basis of the sample of autocorrelation function 
of returns , the lag is chosen as the highest one , for which this autocorrelation is significant  provided this is 
less than √N . from the table results  clearly rejected the null hypothesis of a unit root in favor of the trend – 
stationary alternative . table (    6    ) shows the autocorrelation of squared standardized residuals of Amman 
stock market returns , the standardized residuals are examined for autocorrelation in table ( 6   ) , the 
autocorrelation are dramatically reduced from that observed in ASM portfolio returns , therefore applying the 
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test to find p-values at level 5 % of significant to insure of hypothesis as to accept the l hypothesis or no residual 
of Arch , forecast standardized deviation for the next day is 0. 0246 which almost double the average standard 
deviation , which are not very closed to normal distribution , and reflects the fat tails of the return distribution. 
Table (    6   ) shows the autocorrelation of squared portfolio returns, that it dies quickly to zero from the 5th 
lags and all observations are significant due to prob level, the value of risk has shown in figure ( 1 ) , as the 
figure the lower level in this year and a quarter , the value of risk exceeded only once ; this mean a slightly 
conservative estimation of the risk . According to table ( 7  ) the sample kurtosis rt's are 3.2578 and 5.01342, 
the skewness are – 0.3272 and -0.5663. 
Suppose that we have two models, how do we know which models is better fit to data? Simply to answer this 
question, if the two models have the estimation of parameters, we could compare the maximum values of their 
likelihood functions, but if the models differ in their parameters we can use the Akaike information criterion 
 (A IC ) , which makes adjustment to the likelihood function . 
Aic (p) = 2 ln (maximum likelihood) – 2p …………………… ( 23) 
Where: p is the number of parameters in the model. The OLS estimate of two regression models shows that the 
indices have significantly positive daily mean on Sunday and significant daily variations for Sunday through 
week, I have estimate the effect by standardized the daily returns using  the below function : 
             Rt = ( rt rt ) √π1            ………………(24) . 
 Where: π1 is the fitted value of ( rt –rt )2 rom the regression 2 at date . 
Table (    7   ) shows the descriptive statistics for standardized yearly returns of ASM. 
Returns rt are thus the normalized to zero mean and unit variance.  According to table results of Jarque – Berra 
it indicates to normal distribution. 
The second criterion attributed to Schwartz criterion (SBC), it demonstrated in our research here as:   
        SBC (P) = 2 ln (maximum likelihood) – p ln (T) ……………. (25) . 
Where: P: is the number of parameters in the model, and T: is the number of observations of data in analysis. A 
common test has performed on et is the portmanteau test, which jointly test whether several squared 
autocorrelations of et are zero. The test statistics are proposed by Box and Pierce (1970) which preformed as:  
 Q  (M ) = T ∑ P I  2               …………………………(26) 
 And a modified version for smaller sample size proposed by Ljung and Box (1978) as : 
     Q  ( M )  = T ( T+2 ) ∑ P I  2 / ( T-1 )           …………..( 27)  . 
Where : m : is the number of autocorrelations , and T is the number of observation in data .when we are looking 
at Garch models , it is more relevant to test the autocorrelations of squared residuals of the model so р is the 
autocorrelations of et 2with et2 -1 rather than the autocorrelation of et with et -1  , therefore I have analyzed the 
densities setting these quantities of data to their unconditional expected values to avoid the recursive evaluation 
of maximum likelihood on the un observed values . results are available in table  (8) , and table (9) as 
comparable between models . 
The models above in table are described the dynamic of the two moments of the series which proposed by Box – 
Pierce statistics for residuals and squared residuals , the stationirty  constraints are observed for each model . 
According the results of table we can demonstrated that CO –Garch is the best choice due to small amount 
results in AIC and SBC also as the skewed. Forecasting analysis for return index is made in table (9) to compare 
densities. And for every density all models are non significant at 5 percent level , these values suggests long 
persistence of the volatility for the indices , the skewed student – distribution shows results that are superior to 
the symmetric t – student and log likelihood ratio is too large scale , thus it is necessary to add a symmetric 
Garch models . compare between densities Most measures in the variance equation , the E-Garch model out 
performs the CO-Garch model and provides poorest forecasts , while Garch model provides much less 
satisfactory results , where E-Garch gives better forecasts than other models , and in models skewed distribution , 
it most successful in forecasting ASM conditional variance , thus we can concluded that the skewed student 
densities is more appropriate for molding the ASM , and it seems to be the best for forecasting series . 
Table (10) shows respectively the resulting portfolio and frontiers updated according to mean – variance 
paradigm and the manager's view with fixed TE = 5%. 
Table (10) : forecast ASM  portfolio by using BL Approach  .  
. Finally I have presents the parameters estimate of Garch (1,1 ) and Garch (1,2 ) in table  
p ( 11 ) . as for the stationarity discussed  ∑ά1 + B1  in both model are all less than one , though rather close 
to , the stationarity  condition holds for the fitted model  
The comparative plots of two simulated models almost coincide , conforming again , thus the difference between 
models performance is too small , thus mainly I decided to choose Garch (1, 1 ) in analysis the volatility . Finally 
I should estimate the volatility, this is presented in table (  12  ). 
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According to results of table the single regime model of volatility has a negative sign thus the relationships is 
inverse relation, when the volatility increases and also when there is reduction, also in single regime model 
threshold is 29.3, the average of return has inverse relation with the effected variables when the volatility 
increases, but proportional relationship when the volatility reductions. Lastly  I have estimated the Sunday 
effect in ASM   using the mean equation and the variance equation through comparison of analysis the week of 
ASM which start on Sunday and end on Thursday , the result is stated in table (  13  ) . The model which used 
to determined the results is Garch model (1, 2)-M, as results the effect of Sunday as opening day of sell and buy 
clearly has negative sign but not largely than other days due to aware of dealer in ASM, and they are not deal to 
much in first day of their week, they are wait to other days as individual expectations and waiting for more 
information of good news or bad news. 
 
7 -  Concluded remarks:  

This paper enriched the empirical work by accommodating the following issues , first it adjusts for sample size 
and long period of study which extended from January 1996 up to June of 2010 , also changing of volatility of 
time-series shocks , autocorrelation and /or fat tails in the distribution of average ASM returns , second I have 
analyze the daily return pattern and Sunday effect , thirdly , it utilized from some measurement errors hypothesis 
in different models as compression to choose the best model for analysis the data . Therefore this paper is an 
attempts to investigates and model the volatility of ASM emerging stock market using the daily returns for the 
period under investigation, for achieving this purpose, the Arch, Garch, CO-Garch are employed to data analysis   
in hence of the procedure I have used Arch and Garch models to capture symmetric effects ,   whereas the other 
models are employed to capture the asymmetric effects  , the data of returns as daily returns or yearly returns 
showed both of them a significant departure from normality and the existence of conditional heteroskadesticity 
(volatility clustering), this paper was built on four hypothesis, the first hypothesis was to examine the volatility 
through using different models, second hypothesis was to capture a symmetric effect through these models, 
thirdly was to check whether the BL approach can determined the volatility and asymmetric volatility, the forth 
hypothesis is to determined which model is the best model to fit the data. I have fund that returns are volatile and 
that has a positive shocks on daily data and yearly returns , also I have fund that volatility response to shocks 
tends to positive in ASM . Although the Garch model (1,1 ) and Garch (1,2 ) are fund that it can display 
asymmetric effects , and it was better than other models , due to the log likelihood ratio and to other diagnostic 
test such as kurtosis , skewed ,and lower statistics of Jerque and Berra statistics . 
The ASM not follow a random walk over the period Jan , 1996 to- June , 2010 , this can be explain the market 
capitalization and liquidity , capitalization average gives an evidence as 128% than the last periods 
( 1990-1996 ) , also we can add that due to non – restricted movement of capitalization as ASM an opening –up 
of the market . In addition to these results the daily returns and yearly exhibit significant non – linear decency, 
while the daily returns from the ASM do not confirm to a random walk. 
 These results is consistent with previous studies results documented in the literature , such as the positive 
significant of Sunday effect of daily return , and the ASM do not confirm to a random walk . 
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Index :    
 
Table ( 1  ) shows the ownership structure  

                                           %  Owners 
 3.7  Foreigner 

43.8 Arab citizens 
52.5 Jordanian 

%100  Total  
57.3 Individuals 
38.8 Companies 
3.9 Government agencies 

%100  Total  
  
Table (2 ) : descriptive statistic for logarithm differences . 100 (ln pt  - ln pt-1 ) .  
 

Jerque – Bera statistics skewness kurtosis Std .dev max Min Average Index 
412.36 - 0.3144 3.3051 1.2361 8.435 - 9.2535 0.0653 ASM 
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Table ( 3   ) : two periods of data Garch tests results 
Ά1    +B1∑ B1 Ά2 Ά1 γ Period  one  

0.9301 6.223e-01  -------- 1.673e-01 3.612e-04 Garch (1,1 ) 
0.9135 6.0183e-01 9,807e-02 1.026e-01 5.843e-04 Garch (1, 2)  

     Period two  
0.8765 7.498e-01  ------------- 8.432e-02 6.453e-05 Garch (1,1 )  
0.8923 7.8113e-01 2.123e-01 5.631e-02 6.0132e-05 Garch (1,2 ) 

 
Table (      4  ) : OLS result of daily return for the sample period of ASM . 

S,Error Variance S,Error mean Days 
0.267 3.5371* 0.014 0.173* Sunday 
0.265 0.986** 0.127 0.086 Monday  
0.273 1.7742** 0.126 0.043 Tuesday  
0.273 1.9324** 0.126 0.0167 Wednesday  
0.273 1.3489* 0.127 - 0.0387 Thursday  

Significant * at 5 percent level , ** significant at 10 percent level . 
 
Table (5) : results of unit root tests by ADF and PP. 

5% 10% Lags PP ADF 
-3.0796 -2.860 30 -15.634 ** -3.987** 

** Significant at 5 percent and 10 percent level. 
 
Table (6  ) : Autocorrelation of squared standard residuals of AMS returns .                                            

Prob Q- Stat AC lags 
0.798 0.05177 0.0138 1 
0.265 3.0192 0.029 2 
0.227 4.3275 - 0.012 3 
0.298 4.9382 -0.018 4 
0.310 5.2763 0.0127 5 
0.408 5.10463 - 0.0254 6 
0.574 5.8876 - 0.0134 7 
0.552 6.1224 - 0.0327 8 
0.623 6.9382 - 0.0072 9 
0.687 7.3874 - 0.0325 10 
0.521 7.8959 - 0.0154 11 
0.635 9.5443 -0.013 12 
0.715 10.038 -0.005 13 
0.758 11.4346 - 0.008 14 
0.761 13.0523 -0.021 15 

Data Autocorrelation used 15 lags.                                                              
 
Table (   7  ): descriptive statistics for standardized yearly returns of ASM.  

Jarque-Berra stat Sekwness  Kurtosis  St / dev  
29.21 - 0.3272 3.2578 0.7866 ASM  
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Table (8 ) ASM portfolio data analysis  
skewed Students  Normal    
Co-Garch  Garch                    Arch  
28.214  28.625 28.639 Q ( 20 )* 
29.877 30.741 29.052 Q 2 ( 20 )* 
44.318 51.297 68.332 P (  100 )** 
0.537 0.427 0.064 Prob (1 )  
0.218 0.239 0.032 Prob (2 )  
2.584 2.584 2.693 AIC *** 
3.107 3.108 3.215 SBC *** 
- 2845.693 - 2863.050 - 2950.936 Log likelihood 

* Q (20) and Q2 (20):  respectively the Box- pierce statistics at lag 20 of the standardized and squared 
standardized residuals.  
P (100) **: Pearson's goodness of fit with 100 cells. 
*** AIC: Akiake information criterion.  
*** SBC: Schwartz Bayesian Criterion.  
 
Table (   9   ): Forecasting analysis for returns of ASM 
 

CO-Garch 
skewed 

CO-Garch  
t-student 

E – Grach 
Skewed 

E – Grach 
t-student 

Garch  
skewed 

Garch 
student –t 

 

0.260 0.263 0.260 0.267 0.215 0.214 MSE (1 ) 
0.420 0.428 0.309 0.317 0.438 0.438 MSE (2 ) 
0.0394 0.0398 0.4035 0.0435 0.0452 0.0452 Med SE (1)  
0.249 0.248 0.279 0.282 0.251 0.296 Med SE (2 ) 
0.290 0.291 0.287 0.288 0.287 0.289 MAE (1 ) 
0.547 0.548 0.543 0.556 0.541 0.543 MAE (2)  
0.518 0.517 0.522 0.522 0.517 0.517 RMS (1 )  
0.693 0.698 0.668 0.672 0.690 0.693 RMS (2 ) 
0.829 0.824 0.867 0.869 0.872 0.873 AMA PA (2) 
0.870 0.873 0.868 0.869 0.861 0.872 TH.I (1) 
0.528 0.529 0.541 0.532 0.529 0.538 TH.I (2) 

 (1): indicates to mean equation.     
 (2): indicates to variance equation.   
 
Table (   10  ) : forecast ASM portfolio  by using BL approach 

Ratios  % Portfolio indicators  
0.8971 Returns  
- 0>6342 Alpha  
0.5331  Risk  
1.0927 Sharp ratio  
2.4236 Tracking  error  

 
 
Table (  11   ) : parameters estimate of Garch (1,1 ) and Garch (1,2 ). 

+B1  1 ά∑  1в  2ά  1ά  ω Models  
0.8703 6.5432E-01 ........ 1.502E-01 3.825E-04 Garch (1,1 )  
0.8124 6.123E-01 0.8972E-02 1.023E-01 5.473E-04 Garch (1,2 ) 
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Table (  12 ): volatility as single regime model and restricted regime model. 
Average return Low volatility regime Single regime model  

.......... ............. - 0.876 Volatility increases  
......... ........ -0.896 Volatility reductions  
...... ...... 29.3 Threshold  

   Low volatility regime  
- 1.216 - 0.763  Volatility increases 
0.923 0.481  Volatility reductions 
659.4  142.2 Restricted regime ( one 

regime )  
 
Table ( 13  ) : test for the Sunday effect in ASM daily returns .  

1в  γ ω Thursday 
ά5 

Wednesday 
ά 4 

Tuesday 
ά 3 

Monday 
ά2 

Sunday 
ά1 

Day of week  

on Equati Variance      Mean equation  
0.53 0.18 0.02 - 0.068 -0.094 - o.083 - 0.07 - 0.063 Coefficient  
0.27 0.00 0.00 0.29 0.00 0.07 (0.09). 0.31 Standard Error  

Are the coefficients of variance equation.                                   ω  , B1 , and γ 
  


