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Abstract 

In this study we have discussed a fuzzy fault tree using level (�, �) interval-valued fuzzy numbers. Level (�, �) 

interval-valued fuzzy numbers are one of the extensions of fuzzy numbers and they have been applied to fault-

tree analysis in many studies. The arithmetic operations of (�, �) interval-valued fuzzy numbers have also been 

addressed in the study. In fuzzy fault tree, we have computed failure rate of fire protection system taking failure 

rate of each component of the system as (�, �) interval-valued fuzzy numbers. 
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1. Introduction 

Ever since the fuzzy set was proposed by Zadeh in 1965, fuzzy numbers (triangular fuzzy numbers and 

trapezoidal fuzzy numbers) have been widely studied, developed, and applied to various fields, such as multi-

criteria decision-making, logic programming, pattern recognition and many more. In fuzzy set, the degree of 

membership functions of the element in the universe is having a single value: either zero or one. Many times 

specialists are uncertain about the values of the membership of an element in a set. Hence, it is better to represent 

the values of the membership of an element in a set by intervals of possible real numbers instead of real numbers.  

An interval-valued fuzzy set on a universe X is a mapping from X to fall closed sub-intervals of the real interval 

[0, 1]. This type of fuzzy sets has been intensively investigated, not only its theoretical aspects, but also its 

numerous applications. Level (�, �) interval-valued fuzzy numbers are one of the extensions of fuzzy numbers 

(triangular fuzzy numbers and trapezoidal fuzzy numbers). 

The concept of fault tree analysis (FTA) was developed in 1962 at Bell Telephone Laboratories. FTA 

is now widely used in many fields, such as in nuclear reactor, chemical industry, aviation industry, etc. FTA is a 

logical and diagrammatic method for evaluating system reliability. It is a logical approach for systematically 

quantifying the possibility of abnormal system event. For such systems, it is, therefore, unrealistic to assume a 

crisp number (classical) for different basic events. Zadeh (1965) suggested a paradigm shift from a theory of 

total denial and affirmation to a theory of grading to give new concept of fuzzy set. Tanaka and Singer (1983, 

1990) used fuzzy set theory to replace crisp numbers by fuzzy numbers for better estimation of possibility of top 

event in FTA. Suresh et al. (1996) used a method based on α-cuts to deal with FTA, treating the failure 

possibility as triangular and trapezoidal fuzzy numbers. Huey-Ming Lee (2012) provided fuzzy parallel system 

reliability analysis based on level (�, �) interval-valued fuzzy numbers. Ching-Fen Fuh (2014) used level (�, 1) 

interval-valued fuzzy numbers to evaluate fuzzy reliability of systems. G. S. Mahapatra et al. (2010) proposed 

fuzzy fault tree analysis using intuitionistic fuzzy numbers. Sanjay Kumar Tyagi et al. (2010) used fuzzy set to 

analysis fuzzy fault tree. Mahapatra and Roy (2009) presented triangular intuitionistic fuzzy number and used it 

for reliability evaluation. M. Chen (2003) evaluated fuzzy system reliability using vague set theory. Singer (1990) 

proposed a method using fuzzy numbers to represent the relative frequencies of the basic events. He used 

possibilistic ‘AND’ and ‘OR’ operators to construct possible fault tree. Wang Y.C. et al. (2000) developed fuzzy 

fault tree based on improved fuzzy arithmetic operator. Wang J. Q. et al. (2013) provided new operators on 

triangular intuitionistic fuzzy numbers and their applications in system fault analysis. Neeraj Lata (2013) 

presented the fuzzy fault tree analysis using intuitionistic fuzzy numbers. In above research articles, the authors 

used fuzzy and intuitionistic fuzzy number to analyze the fault tree. Level (�, �) interval-valued fuzzy numbers 

are yet not used for fault tree analysis.  

Keeping above fact in view, this study used level (�, �) interval-valued fuzzy numbers to analyze the 

fuzzy fault tree. The failure rate of each component of fault tree represented by level (�, �) interval-valued fuzzy 

numbers. Furthermore, to ensure easy defuzzification of failure of fault tree in the fuzzy sense we have used 

signed distance method. In this paper, section-2 defines level (�, �) Interval-valued fuzzy sets. In section-3, we 

defined signed distance method. In section-4, the failures of components of fire protection system have been 

fuzzified. The last section concludes the work.  

 

2. Preliminaries. In order to consider the fuzzy fault tree analysis based on level (�, �) interval-valued fuzzy 

numbers, we provide following definitions: 
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Definition 2.1. A fuzzy set Ã defined on R is called the level �-triangular fuzzy number if its membership 

function is 
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Definition 2.2. An interval-valued fuzzy set Ã on R is given by 
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Consider the case in which 
10 ≤≤< ρλ

 and
rcbap <<<<

. From (1) and (2), we obtain
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, which is called the Level (�, �) interval-valued fuzzy number. Fig. 1 

shows that, when a = p, c = r, � = 0, the level (�, �) interval-valued fuzzy number reduces to the level � 

triangular fuzzy number. The α-cut of interval-valued fuzzy set Ã is shown in Fig. 2: 
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Figure.1 Level (�, �) interval-valued fuzzy numbers        Figure.2 α-cut of (�, �) interval-valued fuzzy numbers 

If λα <≤0 , then from equations (1) & (2), we can obtain  
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3. Signed distance 
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We have following one-one onto mapping for each α.  
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The function given in equation (4) is continuous on λα <≤0 with respect to α. It follows that, by integration, 

we can find the average value 
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This function is also continuous on 
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with respect to α. Now through integration, find the average value,  
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Definition 3.2. Let 
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4. Fuzzy Fault Tree 
Fault tree analysis is one of the most widely used methods in the industrial sector to evaluate reliability of 

engineering systems. In conventional fault tree analysis, the failure probabilities of system components are 

treated as exact values. It is often very difficult to estimate precise value of failure rates or probabilities of 

system components in dynamically changing environments or in systems where data is insufficient for statistical 

inferences. Fuzzy set has the capacity of dealing with such situations. Many times specialists are uncertain about 

the value of membership of an element in a set. Hence, it is better to represent the values of the membership of 

the element in a set by intervals of possible real numbers instead of real numbers.  

 

4.1 Fuzzy fault tree analysis of fire protection system 

The fault tree structure of fire protection system as shown in Fig.3 is taken for analysis. Failure of fire protection 

system depends on different facts like heat detection failure, pump failure, nozzle blocked and smoke detection 

failure. There are two major factors viz. fire detection system failure and water deluge system failure, each of 

which has two sub-factors. Following notations have been used to illustrate the system failure rate. 

Sff
~~

1 =
  failure of smoke detection, 

Hff
~~

2 =
  failure of heat detection, 

Pff
~~

3 =
  failure of pump, 

Nff
~~

4 =
  failure of nozzles blocked. 

Fff
~~

5 =
  failure of fire detection system, 

Wff
~~

6 =
  failure of water deluge system, 

FPff
~~

7 =
  failure of fire protection system, 
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Failure of fire protection system can be evaluated by using the following steps: 
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4.2 Numerical solution of failure of fire protection system using (�, �) interval-valued fuzzy number 

 Consider an example of fire protection system in which failure rates of events are taken as 
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)]98.0;8.0,5.0,1.0();8.0;7.0,5.0,2.0[(blocked nozzles of failure

~
4 ==f

 
Using equations (7), (8) & (9), we get the failure rate of fire detection system, water deluge system, fire 

protection system respectively as 
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By definition 3.2, we can defuzzify, 7

~
f

and get the failure rate of the system in the fuzzy sense as follows: 
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From equation (10) we have, 3984.0=a , 72.0=b , 558.0=c ,
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5. Conclusion 

In this study we have proposed a new method to analyze the fuzzy fault tree. A fault tree of fire protection 

system is used to analyze the fuzzy failure rate. The failure rate of the components of the system is considered as 

level (�, �) interval-valued fuzzy numbers. The definition of level (�, �) interval-valued fuzzy numbers and the 

arithmetic operators of level (�, �) interval-valued fuzzy numbers are also discussed. We have defined the 
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definition of signed distance. We have also discussed defuzzification of fuzzy failure rate of components of the 

system using signed distance method.  
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