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ABSTRACT  
In this paper we deal the building blocks of the computer simulation of the multiphase flows. Whole simulation 

procedure can be viewed as two super procedures, the implementation of VOF method and the solution of 

Navier Stoke’s Equation, Moreover, a sequential code for a Navier Stoke’s solver has been studied.  
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1 Introduction     

The solutions of multifluid model have been developed in this studies. Implementation of both steps of VOF 

(PLIC) method has been derived. The SIMPLE algorithm is used for solving the momentum equation generates 

large sparse linear systems of equations. These methods are solved by iterative method such as K-S methods. On 

the other hand convergence rate of this method can be accelerated by preconditioning techniques. Development 

and improvement of numerical schemes have encouraged researchers to investigate almost every branch of fluid 

dynamics and its application to real life problem.  

Multiphase flows occur in mant industrial and natural phenomena, petroleum refining (Mayer and 

Lenhard, 1998), biological flows (Christopher, 2005) and interaction of air with the sea surface (Melville, 1996). 

The simulation of multiphase fluid flows in one of the most challenging problem in CFD as it involves in 

modeling of sharp interfaces separating multiple fluids. The numerical simulation—into fluid flow modeling and 

multiphase modeling in Fig. (1)  

 
Figure 1. PDE to Linear System 

The fluid flow properties (velocity, pressure, etc.,) can be represented by partial differential equations such as N-

S equation. Furthermore, numerical solutions of these equations constitute fluid flow modeling. Multiphase 

modeling involves defining the interface between various phases and then calculating the flux in all directions by 

using the solution from fluid flow model.  

 

2 Multiphase Modeling  

Maintaining sharp interface during fluid transportation is a difficult task in the modeling of interfacial flows 

(Rider & Kothe, 1998). The interface between two phases can be modeled by scalar transport equation (Greaves, 

2004). The modeling involves the construction and movement of the interface. An effective approach for 
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interface modeling is interface capturing, we study a VOF method based on interface capturing approach has 

been applied. This method has two steps reconstruction and advection of the interface between two fluids 

(Rudman, 1997; Denis et al. 1999). Moreover, the interface is established by calculating the volume fractions of 

each fluid. There is a transportation algorithm is employed for the movement of the interface. The main 

challenging of the modeling of the interfacial fluid flow is the implementation of a method which can efficiently 

move the sharp interface without stretching and wrinkling (Alibadi & Shujaee, 2001; Rudman, 1997).   In the 

latter step the interface is approximated by a straight line (a plan 3 dimension) (Scardovelli & Zaleski, 2000). On 

the other hand, the area of the geometrical shape represented by triangles or rectangle below the lines is 

calculated to evaluate the volume of the fluid based on the position of the interface. The interface is 

approximated in the subsequent time steps by using the volume of fluid of the previous time step and this is 

where time difficulty maintaining the sharpness of the 8interface in the interface approximation arises (Ruben & 

Zaleski, 2003).  

 

3  Interface Reconstruction    
In the volume of fluid (PLIC) method, the interface between two fluids in a grid cell is approximated by a line 

segment which intersects the cell’s faces.  But the line segment divides the cell into two parts- each of them 

containing one of the two fluids as shown in polygon ABFCGD in Figure 2, the notations are as follows  

 
\Figure 2. Cell ABCD is cut by the straight line EH and contains fluid 2 in region ABFGD and fluid 1 in region 

FCG 

rectangle ABCD, represents a grid cell 

 dx the length of the cell in X direction  

 dy  the length of the cell in Y direction  

line EH approximation of the interface  

polygon ABFGD: volume of  one fluid in the cell and   ��� , projection of the segment EH on the X axis.  

The general equation of straight line L1 with normal ��  may be represented as m1x+m2y = 0 (1)  

Where m1 and m2 are the components of the normal vector in the x and y directions respectively and α being the 

constant which is related to the distance of the line from the origin.    The coordinate at the points at which the 

line intersects the axes X and Y are respectively (
��� ,0��0, ��
�  to the points E and H in  Figure 2.  

However, in the simulation the values of volume fractions are provided initially for all the cells. But at the next 

time step the fluid mixture moves and the interface changes its position and hence new values of the volume 

fractions have to be calculated. In order to evaluate the volume fraction of one fluid in a cell, one has to calculate 

the area below the line L1, polygon ABFGD in Figure 2.  

 

3.1 The Estimation of the normal vector   In the first part of reconstruction, a normal vector is estimated by 

a nine-point finite difference formula ( Rudman, 1997), � � 	��																																																																																																											��� 
Eq.(2) represents the gradient of the colour function C in the direction of coordinates axes. The discrete 

approximation to Eq.(2) is given by  
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∇� � ���						���							�� 	≡ 	 ������                                                                            (3)  

Where �� and ��  denotes the gradient in the x and y direction respectively. For approximating the values of 

these gradient terms, we choose eight nearest neighbours in 2 dimension all the neighbours sharing the vertex,  

(Scardovelli and Zaleski, 2003). For a uniform mesh, in a grid cell at location (i, j), the gradient terms of Eq.(3) 

in the coordinate form can be expressed (Rudman, 1997) �	��	��,� �	 ��� �����,��� � �	����,�	 � ����,� � ! �� �,��� ! ��� �,� ! �� �,� �	"       (4)  

�	����,� �	 ��� �����,��� � �	��	,���	 � �� �,��� ! ����,� � ! ���,� � ! �� �,� �"								�#� 
Eq.(3)-(4) represents the normal vector estimation formula for x, y directions (Denis et al., 1999), this scheme 

produces a good estimation of the normal vector. An investigation of accuracy test of different normal 

estimations schemes have been demonstrated (Scardovelli and Zaleski, 2003) that the linear fit (using the nine-

point) stencil produce the same order error as other methods such as quadratic fit which require more 

computations.  

 

3.2 The calculation of VOF from the normal vector and the line constant.   

The area	⌂	 polygon ABFGD can be calculated geometrically (Greaves, 2004)  %? ? ABFGD =	∆()*+,-∆./0 	! ∆1)*+,-∆� ! ∆1)*+,-∆
                                                              (6) 

Area=
�
2���
		+33,33-∆456 		71 ! *�9 ! �:	;<� �� ��=>� �2 !							*�9 ! �2	;?� �� �
	=�� �2+3333333,3333333-@
 			A					                (7)  

where H(x) be the Heaviside step function  

H(x) = {0     x < 0  ;  1      x > 0          (8)   

Eq.(6)-(7) calculates the area below the line in Fig.(2) , the procedure for calculating area below the line in two 

cases for the x direction using Eq.(7) the case of a line with positive slope intersecting the grid cell at the axes as 

shown in Fig.(3) represents the three triangles  

 
 Figure 3. Line of positive slope intersects the cell faces 

 Δ./0  triangle BEH 

 Δ:	    triangle AEF  

 Δ2  triangle CGH  

Now the area of the polygon ⌂ is required to calculate the actual volume of the fluid contained in the cell.    Δ./0C	DE.G	H�I��	 ����	J
D Δ:C	DE.G	H KL�	 KL
		D       	Δ2		 �	Δ./0	 �MN�
			�ON�
 		 Δ2		 �	Δ./0P	�Q
R	=S�
TQ

 C		@456				�	: =SQ
�
		  U 9�: V 0W ⇒ Y1 � 1	%Z;		�[2 ! ;?� \ 0	 ⇒ Y2 � 1		 
Area = ∆./0 ^1 ! Y1. ∆: Y2.		∆2_	                                                                                                   (9)   

In Eq. (9) h1 and h2 represents the Heaviside step-function H(α —m1dx),  H(α —m2dx) respectively. A clearer 

picture of this case is depicted in Fig.(4).  
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Figure 4. Line of negative slope intersects the cell faces. 

 

The different steps involved in the procedure of area calculations are performed below  

∆`�a� b. #	 H	 c	Hc��	��    	
				d�C	∆`�a		�efgf��C		∆`�a	H	h	

c��Ri�c��� j
�    

  d� �	∆`�a 		�klgl�� �		∆`�a 	H 	m	 c�� i�c��� n�                                                                     (10)  

    d� �	∆`�a 	H 	�	c ��i�c �� 

  �c !��i�� \ b	 ⇒ o� � �	pqi	�c !��i�� \ b	 ⇒ o� � �	 
Area = ∆`�a	^� ! o�.		d� ! o�.		d�_ 
From the Eqs (9)- (10) it has been demonstrated that when the line intersects the cell such that it generates two 

small triangles. But other cases may arise when there is only one triangle h1= 0 or h2= 0 or there is no triangle 

present at all as such h1=h2=0.   

 

3.3 Performance of preconditioners   The preconditioners accelerates the convergence rate of the Krylov-

Subspace method. During simulation the matrix is being generated at each time step. Thus the matrix entries 

changes at each time step which changes the matrix properties. In this study, the Bi-CGSTAB method has been 

employed because it has been found in literature to provide small convergence for non-symmetric matrices. Now 

the effects of preconditioners applied to the Bi-CGSTAB method implemented on different problem are 

demonstrated.  

To simulate multifluid flow, the VOF method has been implemented. This method treats the mixture of 

two fluids as one fluid which is determined by the interface.  During the advection the mesh is kept fixed and the 

interface is reconstructed from the values of the colour function and its gradient in a grid cell. These values 

contribute to the calculation of the coefficients matrix entries.   

Since the fluid moves at each time step, it has been observed that the magnitude of the matrix entries 

change because of the changes in the interface position. Due to this change the condition number- the ratio of the 

highest to the lowest eigenvalues of the matrix may vary.  

A matrix with high condition number makes Krylov-Subspace solvers converge slowly and so, in order 

to increase the convergence rate preconditioning techniques are applied (Saad, 1992; Sun et al., 2009). 

Incomplete to L-U Symmetric Successive Over  

Relaxation (SSOR), Diagonal Scaling (DS) are the are the most appropriate preconditioners for the 

solvers.  
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4. Computational Complexity In ILU factorization, the original matrix A is decomposed into two matrices 

L and U. Its Algorithm in dense format is shown in 4.1. In this Algorithm, there three nested for loops 

required (Steps -1, 2 and 9), these nested loops  

1 for ( i = 0 to n)     

2 for (j = i+1 to n) do  

3 Uj,i = A j,i  ;  

4 if (Uj,i = = 0.0) then   

5 Lj,i  = 0.0 ;  

6 else 

7 	rs,/C 		tu,5t5,5 		 ;	 
8 end if 

9 for (k = i+1 to n) do  

10 if (Uj, k ≠ 0.0) then  

11 Uj, k  — = L j, i X Ui, k   

12 end if 

13 end for  

14 end for  

15 L i,, i = 1.0 ;   

16 end for  

Algorithm 4.1 Dense ILUT algorithm (Saad, 1996) generates the data depending of the matrix elements of L and 

U. This depending implies that for calculating the elements of the (i+1)
th 

, (i+2)
th 

 rows, the elements from the i
th
 

or previous row are required . Further, this data dependency is a hindrance to parallelising the Algorithm 

(Basermann, 2000). In the parallel version the matrix is divided into different parts which are available on 

different processors of the parallel computer (Li, 2005). Therefore, the elements of previous rows may not 

available on the same processor and those elements have to be brought from other processors.    

In Algorithm 4.1 there are three for loops, its computational complexity can be calculated by observing the 

number of counts in each loop. The outer loop runs from 0 to (n—1) and other loop run from (i+1) to (n—1). 

The total number of counts can be expressed  ∑ �Z ! x�2y/CE                            (11)  

Which has complexity has order  z	�Z{ ! Z2� but in algorithm ILUT algorithm in diagonal format, there is one 

for loop so its complexity is given as z�Z�| . Moreover, the matrix vector product in Algorithm requires only one 

for loop. Therefore, its computational complexity can also be given as n. 

The computational complexity of the matrix-vector products in other sparse formats (Shahnaz et al. 2006; 

Straubhar, 2008) are 5n.  

 

5.  Discussion and Conclusion  

The main conclusions can be summarized from the above studies:   

(i) the diagonal format occupies less memory storing  penta diagonal matrices.  

(ii) solving the linear system consumes most of the computational time of the simulation. 

(iii) a short description of the iterative methods has been investigated. 

(iv) the Bi-CGSTAB method requires four inner products and two matrix vectors products.  

(v) these products are developed a diagonal format reducing the computational complexity of the 

solver.  

(vi) the need for preconditioners  has been highlighted.  

(vii) the main computational steps of Krylov-Subspace methods have been demonstrated. 

(viii) the parallel Bi-CGSTAB method has been integrated into Navier Stokes solver. Furthermore, all 

the parallel computational tools (C++ code with MPI) for simulating the multiphase flow 

phenomena have been investigated.  
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