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Abstract 

The cutting forces and dynamic stability of end milling of full radial immersion are compared for 

end-millers of one to ten teeth. The parameters; tool mass            tool natural frequency 

             , tool damping ratio        and feed speed               are considered fixed 

for the millers. An end-milling tooth normally has positive rake angle and small cutting edge radius thus 

workpiece material cutting coefficient                  is also considered fixed since ploughing 

effect is not expected to be noticeably affected by change in number of teeth. It is seen that periodic cutting 

force reduces as the number of teeth increases. A method of milling stability analysis as proposed by Ding 

et al known as full-discretization is utilized in generating the stability charts. Use is made of the Simpson’s 

rule in establishing for the studied system that chatter stability decreases as the number of teeth increases in 

the low spindle speed range              and that lowest chatter stability at high spindle speed range 

                 occurs for the five tooth miller. Recommendations are made for the machinist 

based on these findings. The critical characteristic multipliers at single minimum point of each secondary 

Hopf bifurcation lobe (SHBL) are postulated to leave the unit circle along imaginary axis when number of 

teeth of slotting miller is greater than two. This phenomenon is noticed for the one and two tooth millers at 

two turning points that are not necessarily local minima of each SHBL. 

Keywords: Chatter, delay, full-discretization, periodic cutting force, discrete time map, bifurcation 

 

1.  Introduction 

Chatter is an unstable vibration in machining due regenerative effects that are originally triggered by 

internal and external perturbations. Regenerative effect is the effect of waviness created on a machined 

surface due to perturbed dynamic interaction between the tool and the workpiece. In the next tool pass there 

will be a variation in chip thickness with concomitant cutting force variation causing vibration which 

subsequently builds up to chatter if cutting parameter combination is unfavourable. Modelling of 

regenerative vibration normally results in delay-differential equations (DDEs) which is periodic for milling 

process. Time domain numerical analysis of this equation by Ozoegwu (2012, pp. 43-55) resulted in the 
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deduction that perturbation history does not affect stability in large as long as cutting parameter 

combination is stable thus a deterministic or stochastic sequence of perturbations is not expected to affect 

chatter stability of milling with stable cutting parameter combination. It is then considered a milestone that 

cutting parameter space of milling can be demarcated as done in this work into stable and unstable 

subspaces. 

The subtleties of milling process are considerably studied. It has been proven both analytically by Insperger 

& Stepan (2000, pp.119-123) and experimentally by Davies et al (2002, pp.217-225) that milling 

bifurcation is either of secondary Hopf or flip type. The stability of low radial immersion milling is given 

detailed study by Davies et al (2002, pp.217-225). Details of development of analytical model of 

fully-immersed end-milling are presented in this work.  End-milling process with the parameters; tool 

mass            tool natural frequency              , tool damping ratio       , workpiece 

material cutting coefficient                  and feed speed              are inserted into the 

model at different number of teeth  . The resulting stability charts are validated by numerical simulation 

of solution of governing DDE by MATLAB dde23. Attention is given to the numerical results to quantify 

the effect   has on periodic cutting force       and chatter stability. It is observed that amplitude and 

range       decrease as   of end miller increases. Effect of   on size of chatter stability of resulting 

charts is investigated using the Simpson’s rule. 

Another major contribution of this work is that the stability lobes of the resulting charts are studied by 

numerical simulation. In the spindle speed range                   , secondary Hopf lobes 

(SHBLs) and flip bifurcation lobes (SHBLs) are seen when     while only the former is seen when 

   . It is confirmed in another work by Ozoegwu et al (2012) that the result that characteristic 

multipliers at single minimum point of each SHBL of a slotting three tooth end-miller is pure imaginary. 

This same result is also seen in this work to be applicable when    . This same result is discovered here 

to be applicable at two turning points (not necessarily local minima) of each SHBL when     or  . The 

equation postulated by Ozoegwu (2012) to hold for chatter frequencies at minimum point of each SHBL for 

    is also concluded to hold at the two pure imaginary turning points of each SHBL of     or  

and those of     

2. The milling cutting force 

A good model for cutting force is needed for successful dynamic modelling of machining. Cutting force is 

distributed in three dimensions on the active face of the tool having components in the tangential, radial and 

axial directions of the tool.  Obtaining an accurate model for cutting force is impossible not only because 

it basically has chaotic features but because of the complexities deriving from chip formation effects like 

friction, heat, plastic flow, mechanical hardening and fracture. This means that the most accurate cutting 

force model can only result from advanced continuum mechanics. Stepan (1998, pp. 165-192) noted that 

such complex model would make analytical study of machining stability impossible. Davies et al(1999) 

pointed out that cutting force models used in machine tool stability analysis are thus based on empirical 

determination of cutting force coefficients that provide a good approximation of the effects of chip 

formation process. In these simplistic models, cutting force is no longer distributed but concentrated. A 

cutting force model found in the work of Stepan et al (2003, pp. 1-2) and credited to the works of Tlusty in 
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which the component of cutting force in line with prescribed feed    has a non-linear empirical form  

       
 
                     (1) 

is an example of such force model. In (1),   is the cutting force coefficient,   is the depth of cut,    is 

the actual feed rate which is the difference between present and one period delayed position of tool and   

is a less-than-unity exponent that is experimentally determined.   has a typical value of      for the 

three-quarter rule adopted in this work. Equation (1) is applied directly in dynamic modelling of orthogonal 

turning process because of time-invariance of chip thickness under unperturbed cutting conditions. In 

orthogonal cutting process, the cutting edge of the tool is perpendicular to the feed motion as seen in John 

(1992, p.360). The end-milling system of figure1a in which a machined surface that is at right angle with 

the cutter axis is produced gives that the tool holder is fixed during milling operation. The spindle is given a 

rotational speed of Ω rpm while milling feed rate      in meters per tool period is imparted on the 

worktable.   is prescribed feed speed and   is tool period given as spindle period per teeth for uniformly 

space teeth. The model being considered is a milling tool of   teeth creating a slot through a workpiece. 

In end-milling there are added complexities due to multiplicity of tool cutting edge and time-dependence of 

chip thickness as seen in figure1b.  

(a)                       (b)   

 

 

 

  

Figure 1. (a) End-milling (b) Dynamical model of end-milling 

The  -component of cutting force for the     tooth of a milling tool is a vector sum of tangential and 

normal cutting force components            and            respectively as shown in a milling 

tooth-workpiece disposition of figure2. The  -component of cutting force is considered in this work to be 

of much less dynamic consequence since the tool is constrained from motion in  -direction in slotting 

operation especially when    . 

 

 

 

 

 

 

 

 

 

 

Figure 2. Milling tooth-workpiece disposition 

The cutting force law adopted from Insperger (2002) for the  th tooth is                          
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      .   is the initial angular position of the tooth with  =1. The   component of cutting force on 

the tool becomes 

                                   (2) 

where                                            
 
    and screen or switching function       

takes the values 1 or 0 depending on whether  th tooth is cutting or not. For slotting operation considered 

as shown in figure1b, the start and end angles will have the values       and        . Under this 

condition it becomes clear from the workpiece-tool disposition of figure2 that             

   sin   . In end-milling, cutting edge radius is very small and uncut chip thickness relatively big with it. 

This means that variation in ploughing effect with variation in number of teeth at fixed tool diameter could 

be ignored. The implication is that the constants  ,    and 0.3 in the cutting force law are considered 

fixed for all the tools considered. This assumption is seen implied in the work by Bobrenkov et al (2010, pp. 

585–606) in which the same set of parameters are used in the stability analysis of one tooth, four tooth, six 

tooth and ten tooth millers. 

Stationary milling is the needed ideal that can only occur when there is no perturbation. In stationary 

milling the actual feed    becomes equal to the prescribed feed      such that (2) becomes 

                              (3) 

This is the stationary cutting force about which the realistic cutting force of (2) varies. If the milling process 

is stable, an initially chaotic cutting force will tend to equilibrium (stationary) cutting force as perturbation 

dies out. Since tool-workpiece disposition repeats after every time             interval, the cutting 

force of stationary milling as given in (3) is  -periodic. Under stationary condition the end-milling tool is 

periodically excited by the periodic force      .       is studied for milling processes with the typical 

specification;                 ,        ,            ,           and           

as adopted from Ozoegwu (2012) for one to ten tooth end-millers and plotted in figure3. The amplitude and 

range of periodic cutting force designated PCFA and PCFR respectively vary with   as seen in figure3. 

PCFA and PCFR are plotted against   in figure4. A very important observation from figure4 is that PCFA 

and PCFR decreases as   of end-miller increases from one to four. Though there is net increase in PCFA 

and net decrease in PCFR on increase from  =4 to  =10, there is slight fluctuation at every step of  . 

PCFA could be considered fixed at about 3.1N for     while PCFR approaches zero for increasing   

beyond 4. This means that if   is infinitely large       can be approximated as a constant force. This 

suggests that milling approaches turning in behaviour as   increases. The deduction from the studied 

system becomes that tool wear and fatigue of machine tool structure would reduce on increasing   in the 

range       while the rate of tool wear and fatigue of machine tool structure is not anticipated to be 

affected by increase on   beyond 4. Recommendation made from standpoint of stationary cutting force 

becomes that higher number of teeth is more preferred since tool wear and fatigue of machine tool structure 

would reduce. 
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 (a)       (b)       (c) 
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Figure 3: Periodic cutting force of full immersion end-milling for (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 

(i) 9 and (j) 10 teeth end-millers. 
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Figure 4. A plot of amplitude of periodic cutting force (PCFA) and Range of periodic cutting force (PCFR) 

 

3. The equation of regenerative vibration for milling process 

The parameters of the milling process as depicted on the dynamical model of figure1b are;   mass of tool, 

  the equivalent viscous damping coefficient modelling the hysteretic damping of the tool system and   

the stiffness of the tool. Figure1b is a single degree of freedom vibration model of a slotting end-milling 

tool. Single degree of freedom model is considered because most encountered resonance in machining 

involves the fundamental natural frequency especially when it is far separated from higher frequencies. 

This is based on the works by Stepan (1998, p. 165-192) and by Stepan and Kalmar-Nagy (1997). Also 

majority the tools (especially the ones with more than three teeth) are considered in this work to be 

constrained to vibrate predominantly in the feed direction under full-immersion. The wavy regenerative 

machined surface that sustains chatter vibration is shown enlarged on figure1b. The differential equation 

governing the motion of the tool as seen from figure1b is as given in (4) 

                                              (4) 

The compact notations;        and           are hence used. The motion of the tool is modeled 

by Insperger (2002) to be a linear superposition of prescribed feed motion   , tool response  to   

-periodic force       of non-perturbed tool-workpiece interaction        and perturbation      such that  

                               (5)  

In light of the fact that                       and              , substitution of (5) into 

(4) gives 

                                          
     (6) 

Without perturbation (that is       ),  (6) simplifies to 

                           (7) 

 It is seen from (7) that  -periodic tool response        is a steady state response driven by        . The 

trajectory of tool periodic motion can be estimated via harmonic or Fourier series analysis in which motion 

is calculated as a linear superposition of tool response to individual harmonics of excitation         This 

is not done here due to lack of space albeit such analysis is necessary because some very productive cutting 

parameter combination that are chatter free will highly intensify the amplitude of       and facilitate tool 

and machine structural fatigue and wear. This effect will be worst felt under resonant conditions. Equation 

(7) means that (6) becomes  
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        (8)          

Linearized Taylor series of (8) reads 

                                     (9) 

Equation (9) put in modal form becomes 

             
  

     

 
   

     

 
                (10) 

Where the specific force variation                   could be seen to have the same period and shape 

or profile but not amplitude or range as      . With the substitutions      and       made, (10) 

could be put in state differential equation form as 

                                  (11) 

 

where     
   
   

 ,     
    

    
 ,    

  
   

      
  and       

  

 
     

 
 
 . The natural frequency 

and damping ratio of the tool system are given in terms of modal parameters     and   respectively as 

                            . These modal parameters could easily be extracted from 

experimental plot of the tool frequency response function                               

for forced single degree of freedom vibration. Either of the equations (10 or 11) is the general linear 

periodic delay-differential equation model for milling process with single discrete delay.  

 

4. Chatter stability analysis via full-discretization method 

A method of full-discretization is first developed by Ding et al (2010, pp.502–509) for study of milling 

stability. The method of full-discretization is compared with the method of semi-discretization by Insperger 

(2010, pp.658–662). The method of full-discretization is based on a       -dimensional discrete time 

map of (11) which reads 

                              (12) 

with 

   

 
 
 
 
 
   

       
       

 

      
      
      
       

 
 
 
 

      (13) 

          
                 (14) 

where                     
          

           ,    
           

      ,       
  

         
    , 

    
 

  
   

 

  
   

 

          
 

  
   

 

          

      
 

  
   

 

          
 

          

,               , 

              ,                    

Equation (12) is obtained by dividing the discrete delay   of the system into   equal time intervals 

          and approximating (11) as 

                         ,                          (15) 
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where     
 

 
    ,          

       

  
      ,          

       

  
       and             

           

  
      . It should be understood that    equals      . Equation (15) is solved as an ordinary 

differential equation and coupled for all discrete intervals to give discrete time map (12) with the 

monodromy operator             acting as a linear operator that transforms the delayed state    

to the present state   . The necessary and sufficient condition for asymptotic stability of the system is that 

all the eigen-values of the matrix   must exist within a unit circle centred at the origin of the complex 

plane. The magnitude of the eigen-values depends on the cutting parameter combination thus stability 

transition curve along which the maximum magnitude characteristic multipliers lie on the unit circle is 

tracked to demarcate stable from unstable sub domains. These critical eigenvalues are analytically 

established for milling process by Insperger & Stepan (2000, pp.119-123) and experimentally established 

by for milling process by Davies et al (2002, pp.217-225) to be either -1 (in the case of flip or period two 

bifurcation) or a complex conjugate pair ( in the case of secondary Hopf or Neimark-sacker bifurcation). 

5. Results and discussions 

 Making use of      in eigen-value analysis of   for end-milling systems with the following 

parameters;                                                                  , 

results in the stability transition curves of figure5. Figures5a to 5j are for one to ten tooth end-milling 

respectively. The light sub area is for stable operations while the dark sub area is for unstable operation. 

Periodic cutting force will act as an attractor to initially perturbed cutting force as time progresses at any 

operation in the stable sub area. The uniqueness of each stability chart means that   has considerable 

effect on chatter stability of full-immersion end-milling. In order to quantify this effect, numerical 

integration method of Simpson’s rule is used to get an estimate of the stable areas of the charts. This result 

is summarized in figure6 in which the stable area of the low spindle speed range              

designated    (but as Al in fig. 6), the stable area of the high spindle speed range                  

designated    (but as Ah in fig. 6) and total stable area of spindle speed range                

designated    (but as At in fig. 6) are plotted against  . It is seen that stability decreases as   increases 

in the low spindle speed range being that    has the biggest value at      and the lowest value at 

    . It is seen from the variation of    with   that lowest chatter stability of slotting at high spindle 

speed occurs at    . It is also seen from variation of    that minimum overall stability occurs at 

   . The areas    and    follow similar trends approaching each other as   increases towards 10. 

This means chatter stability of low spindle speed range is least at     . Mathematical validity of the 

stability charts of figure5 is based on numerical simulation using MATLAB dde23 in which graphical 

solutions of (11) are generated at chosen cutting parameter points of the charts. For example, results of such 

numerical simulation at            and          for one tooth miller and           and 

      for six tooth miller are shown in figure7. The history used is    0.0000001m and 

  =0.000001m/s for         . Slot end-milling of one tooth miller at            and          

is seen from figure7.a to be a stable operation in which perturbation asymptotically approaches zero in large. 

Solution at           and       for six tooth miller as shown in figure7.b is unstable being 

that perturbation grows with time. The stability chart of the three tooth end-miller is seen in the work by 

Ozoegwu (2012) to be given detailed simulated validation. This is shown in figure8.  

The nature of bifurcation occurring at different portions of the stability transition curve is determined by 

insertion of critical parameter combinations into   and extracting the critical characteristic multipliers. 
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Both secondary Hopf bifurcation lobes (SHBLs) and flip bifurcation lobes (FBLs) are seen in the transition 

curves of the fully-immersed one, two and three tooth end-milling in the spindle speed range         

            considered. Any two nearest downward arrow encloses bifurcation lobe of either 

secondary Hopf type (indicated with H) or flip type (indicated with F). FBL is not seen for higher number 

of teeth in this   range. Stability charts for       exhibit SHBLs with one local minimum each while 

one and two tooth charts exhibit SHBLs that has more than one local minimum. A discovery on stability 

chart of  slotting three tooth end-miller that critical characteristic multipliers are almost pure imaginary at 

the minimum points of SHBLs and get closer to the negative real axis when critical spindle speed increases 

from the minimum points is already made by Ozoegwu et al (2012). An equation  

     
   

   
                                                          (23) 

that governs the infinitely many but discrete secondary Hopf bifurcation chatter frequencies at minimum 

points of SHBLs of three tooth miller is also postulated by Ozoegwu et al (2012). This equation is 

confirmed in this work to be applicable at minimum points of slotting when     but not when     

or   since investigation of SHBLs enclosed within the downward arrows connected by horizontal lines 

(see figure 6a and b) shows that this equation can only be applicable at points marked by inclined arrows. 

These points are two for     or   and are not necessarily local minima thus these SHBLs differs from 

those of     in a fundamental way. What looks like jagged edges of hack saw occurs in the high spindle 

speed range when     could be as a result of low tool damping. The calculated characteristic 

multipliers at the critical parameter combinations (25000rpm, 0.001m), (27000rpm, 0.001m) and 

(29000rpm, 0.0014m) of five tooth miller are -0.9741 + 0.0940i, -1.0150 and -1.0001 respectively. This 

suggests that flip bifurcation starts to occur at           . At this point there is a physical change in 

the stability transition curve. Characteristic multipliers calculated on the jagged edges when     

indicates both flip and secondary Hopf bifurcations though there is rising preponderance of flip 

eigen-values and decrease in the size of imaginary part of secondary Hopf eigen-values as   increases in 

the jagged domain. This means that the jagged domains are extensions of SHBLs to which they are attached 

though vertical lines are used in figures5e to 5j to mark the spindle speed range in which SHBL are 

obviously seen. The only major physical difference between tools with     and the ones with     

or  is simultaneous teeth engagement that occurs when    . This is considered to be a contributor of 

the observed differences in SHBLs of tools with     and the ones with     or  
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Figure 5. Stability charts at full-immersion on       space with light stable sub-domains and dark 

unstable sub-domains for (a) 1 (b) 2 (c) 3 (d) 4 (e) 5 (f) 6 (g) 7 (h) 8 (i) 9 and (j) 10 teeth end-millers. 

 

 

 

 

 

 

 

 

 

Figure 6. Stable areas of the charts against  .    is stable area of low-speed range,    is stable area of 

high-speed range and    is total stable area 
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Figure 7. Tool response at (a)            and          for 1 tooth miller is stable, (b) 

          and       for 6 tooth miller is unstable. 

 

 

 

 

  

 

 

Figure 8. The stability chart of a fully immersed 3 tooth end-miller with detailed simulated validation. Stars 

are for stable where diamonds are for unstable MATLAB dde23 solutions. 

 

6. Conclusion 

The stationary cutting forces of slotting one to ten tooth end-millers are compared. It is observed that 

amplitude and range of stationary cutting force decrease as the number of teeth of end miller increases. 

Recommendation is then made that higher number of teeth should be more preferred if tool wear and 

fatigue of machine tool structure are of highest priority.  

Stability analysis of end-milling on parameter plane of spindle speed and depth of cut using 

full-discretization method as proposed by Ding et al results in the generation of stability charts for one to 

ten tooth end-millers with parameters;                         ,       ,        

          and              . The stability of the low spindle speed range              

decreases as the number of teeth increases. Lowest chatter stability of slotting at high spindle speed range 

                 occurs for the five tooth miller.  Minimum overall stability also occurs for the 

five tooth miller in the overall spindle speed range                considered .The recommendation 

becomes  that an operator of a low speed end-milling machine tool should go for tools with number of 

teeth less than three if component dimensional integrity and accuracy are of highest priority. If the machine 

operates in the high speed range three to seven tooth end-miller should be avoided. Though 

recommendations based on periodic cutting force and chatter stability partly contradict each other for high 

speed operation a productive and economic compromise can be reached when equipped with these charts 

such that productive depth of cut is milled at relatively low stationary cutting force.  

It is seen that each secondary Hopf bifurcation lobe of full-immersion end-milling has one local minimum 

when the number of teeth is above three. A discovery made in another work for a three tooth miller that 
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critical characteristic multipliers are almost pure imaginary at the minimum point of each secondary Hopf 

bifurcation lobe and get closer to the negative real axis when critical spindle speed increases from the 

minimum point is seen in this work to be applicable for higher number of teeth. It is seen that pure 

imaginary critical characteristic multipliers occur at two distinct turning points that are not necessarily local 

minima when the number of teeth is one or two. 
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