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ABSTRACT 
 The purpose of this paper is to derive asymptotic efficiency formula in which an error variable ε has some 
probability density function in linear regression models such as normal, extreme- value for largest values and 
logistic distribution. The variances of the regression coefficients are estimated by ordinary least squares 
estimator and maximum likelihood estimator in order to obtain variance efficiencies. Some applications of 
asymptotic efficiency without simulation and with simulation have been done. Asymptotic efficiency values 
without simulation for the regression coefficient β1 were (1, 0.608, 0.912) for normal, extreme-value and logistic 
distributions respectively. 
 
1- Introduction 
  The linear regression model, together with variances of regression coefficients of the least- squares estimator 
and maximum likelihood estimator, plays a fundamental role in derivation of asymptotic efficiency formula (Cox 
and Hinckley, 1968). 
 Consider the multiple linear regression model (Jin, Z.L et al, 2006) and (Draper and   Smith, 1982) and 
(Lawless, 1982). 
 
                  Yi    = µ i + ε i = xi` β + ε i ,  i = 1, 2 , …n                                       (1)                           
 
Where xi`= (1, xi1, xi2 , … x i k)  , β` = (β0 , β1 , …., β k )  , the values x i1, xi2, … x i k, representing observations on k non- 
random explanatory variables for the i t h individual and  ε i random errors. 
We shall assume that ε has independently and identically distributed with 
        
                              E(ε i) = 0   ,        v (ε i ) = σ2 , i = 1, 2 …, n                               (2) 
  
Assuming that x is of rank k+1, the OLS estimator is given by  
 
                          β

~= (x/  x )-1   x` Y                                                                                        (3)  
With                                                                                   
                                  E(β~

 ) = β      ,   COV(  β~) = σ2 (x/  x )-1                                                (4) 
 
  Where x is the design matrix with (n (k+1)) . 
                                                                                                              
 The OLS estimators of β, denoted by β~ and the ML estimators of β, denoted by β^. Thus asymptotic efficiency 
for OLSE formula is  
                   
                 E r =  V(β r

^) / V(β r
~ ) = { A є v( є ) }  , r =0, 1,2,...k                         (5)  

  
  Where E r are asymptotic efficiency for (β0  , β1 , …., β k )                                 
 
2- Derivative of asymptotic efficiency formula 
 In this section, we will derive asymptotic efficiency formula for some probability density function in linear 
regression models such as (Normal, Extreme, Logistic distributions). 
Statistically the general mean is very important in linear model, if we consider that the expiration   without loss 
of generality, we will assume that 
                                                                        n 
                    xi0= 1  ,    i = 1, 2, …, n       , ∑x i r  = 0 , r= 1, 2, …,k                             (6) 

                                                                    i=1  
 Also, statistically the orthogonal is important to the general mean. In this paper we will consider that regression 
coefficients (β1 , …., βk) so that to derive asymptotic efficiency formulae. 
 If we have the probability density function (p.d.f) of errors (ε i) , denoted by f(ε , λ ) .Where   λ are unknown 
parameters, representing dispersion parameter such as scale parameter or shape parameter or location parameter 
of underline distribution.   
 If we refer to equation (1), the log likelihood function is  
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             n                                    n 
    L =   ∑  log f( Yi - µi , λ ) =  ∑  g( Y i - µi , λ )                                                              (7) 
           i= 1                                i= 1                                        
To get the expected values for the second partial derivative of the log likelihood function as follows:  
                            n   

∂ L ⁄ ∂ β r = ∑   g/ (Y i - µi , λ ) ∂ µi ⁄ β r                
                    i= 1 
 And  
                                                 n    

       ∂ 2 L ⁄ ∂ β r β s = ∑ g/ / (Yi - µi , λ ) ∂ µi ⁄ β r  ∂ µi ⁄ β s                                 
                                i= 1  
                                   n 
                               = ∑ g/ / (Yi - µi  , λ ) x i r x i s                                                                     (8)                                               
                                 i = 1 

Let   λ are fixed, then  the expectation will be as follows:   
                                       n                          
E( -  ∂ 2 L ⁄ ∂ β r β s ) = ( ∑   xi r xi s)  A є                                                                   (9)                                          
                                      i = 1 
  Where  
          A є = E {- g/ / (є, λ} 
                     
                    ∞ 
                = - ∫ f (є, λ) ∂ 2 Log f (є , λ )  ⁄ ∂ є2 d є                                                       (10)      
                   - ∞ 

Also 

                          n                          
∂ 2 L ⁄ ∂ β r λ u = ∑   ∂ ⁄ ∂ β r {∂ g (Y i - µi , λ )  ⁄ ∂ λ u }                                                         
                                       i= 1    
                                 
                            n                          
                         = ∑   ∂ ⁄ ∂ є i {∂ g (є i , λ )  ⁄ ∂ λ u } ∂ є i  ⁄ ∂ β r                                                       
                                         i= 1    
                                     n 
                               = - ∑ { ∂ 2 g (є i , λ )  ⁄  ∂ є i  ∂ λ u }  x  i r                                   (11) 
                                   i = 1  
  Since                                                                                    n  
    E{ ∂ 2 g (є i , λ )  ⁄  ∂ є i  ∂ λ u } is the same for each i and ∑ x i r = 0                               
                                                                                               i= 1 
 We get  
               E(∂ 2 L ⁄ ∂ β r λ u ) = 0   , r = 0, 1, …,k  , u = 1,2, … , v                           (12)                               
 Using (8), we get the following  
                                                 n 
                E(∂ 2 L ⁄ ∂ β r λ u ) = ∑ x i r E{ g/ / (є i , λ ) }                                                (13) 
                                                i= 1  

                                                = 0                     n 
 Because E{ g/ / (є i , λ ) }  is a constant  and    ∑ x i r = 0 .  
                                                                        i = 1  
Using (12) and (13), we can obtain the information matrix as follows:  
   
     
             I              =    {I1         0 }                                                                                (14) 
(v+k+1)(v+k+1)        {0           I2}  
 
Where I1 belong to β 0 and   λ  ,  I2 belong to  β1 , …., β k  . From (9), we obtain (r, s)th element in   I2  .   
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We consider orthogonal condition that showed in (6), so that the covariance matrix for OLSE (β
~
1 , β

~
2,   … β~ 

k )  
as follows :   
  

                          n    
          V(β~ ) = {∑ x i r x i s }

-1  V(є)                                                                                                              (15)                                             
                          i=1  
Also the inverse of the information matrix as follows:   
 
 
                 I -1 =    {I1 

-1         0 }                                                                                                                    
  {0           I2

-1}                            
 
 
Whereas the covariance matrix for MLE (β

^
1 ,  β

^
2  , …   β^

 k  ) as follows: 
                                        n 
               V(β^ ) = I2

-1 = {∑ x i r x i s }
-1   A є 

-1                                                               (16)                   
                                       i=1    
Thus, asymptotic efficiency formula is 
      
 E r =  V(β r

^) / V(β r
~ ) = { A є v( є ) } -1  , r = 0,1,2,...k                                       (17) 

   
 Where E r are asymptotic efficiency for (β0 , β1 , …., β k )                                 
 
3- Application Side (Results and Discussion) 
 In this section, there are two applications as follows: 
 
3-1 Application without Simulation 
 This section deal with some applications of asymptotic efficiency formula (17) without simulation when ε has 
independently and identically distributed with the following distributions:  
     1- Normal Distribution  (Jin, Z.L et al, 2006) and see (Haddaw, 2014) 
The p.d.f. of the errors ε being 
   
      f(ε) = 1 ⁄ √2πσ exp(-½ є2 ⁄ σ2 )       ,             - ∞< є < ∞                                      (18) 
 
The log likelihood function is 
         Log f(ε) = -½ log (2 π) – log σ - (-½ є2 ⁄ σ2) ,  
   
     ∂ Log f(ε) ⁄ ∂ ε = - ε ⁄ σ2  , ∂ 2 Log f(ε) ⁄ ∂ ε2 = - 1 ⁄ σ2 
     
Thus A є = 1⁄ σ2 ,    v(є) = σ2  
Thus, asymptotic efficiency formula is 
          
V(β^

 r)/ V(β~
 r ) = { A є  V(є) } -1   = (  1⁄ σ2   σ2 ) -1   = 1 ,  r=1, 2,…k                  (19) 

 
  Statistically, the OLS estimators β~ and the ML estimators β^  for the normal case are the same.   
 
2- A Type 1 Extreme Value Distribution for the largest values (Haddaw and Young,1986) , the p.d.f. of the 
errors ε being 
f(ε) = 1⁄ θ exp{- (є ⁄ θ + γ) – exp(- (є ⁄ θ + γ)}        ,         - ∞< є < ∞                       (20) 
 
Where γ = 0.57722, v (є) = 1⁄ 6π2 θ2, θ is scale parameter of the distribution. 
  The log likelihood function is 
  
      Log f(ε) = - log θ - є ⁄ θ – γ - exp(- (є ⁄ θ + γ) 
    
    ∂ Log f(ε) ⁄ ∂ ε = -1⁄ θ + 1⁄ θ exp(- (є ⁄ θ + γ) 
  
    ∂ 2 Log f(ε) ⁄ ∂ ε2 = -1⁄ θ2 exp(- (є ⁄ θ + γ) 
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Then          ∞ 
         A є = - ∫ 1⁄ θ exp{- (є ⁄ θ + γ) - exp(- (є ⁄ θ + γ) }{-1⁄ θ

2 exp(- (є ⁄ θ + γ) }∂ ε  
                  -∞   
              ∞ 
           = 1⁄ θ

3 ∫ exp[-2(є ⁄ θ + γ) – exp(- (є ⁄ θ + γ)] d ε 
             -∞ 
 Using integral by part  
    
      u= exp(- (є ⁄ θ + γ)  
   
     du = - 1⁄ θ exp{- (є ⁄ θ + γ)} d ε , we obtain 
                ∞ 
        A є = ∫ u exp(-u) du = 1⁄ θ

2 
                0  
 Thus, asymptotic efficiency formula is 
  
V(β

^
 r)/ V(β~

 r) = { A є  V(є) } -1   
=(1⁄ θ

2 1⁄ 6π
2 θ2 ) -1 =6 ⁄ π

2 = 0.608 ,                 (21) 
 r=1, 2,…k 
 
3- Logistic Distribution (Al-Sarraf, 1986) 
The p.d.f. of the errors ε being 
 
f(ε) =1⁄ θ {exp(- є ⁄ θ) ⁄ (1+ exp(- є ⁄ θ)

2}         ,        - ∞< є < ∞                               (22) 
 
 v(є) = π2 θ2 

⁄ 3 
 
  The log likelihood function is 
 
Log f(ε) = - log θ - є ⁄ θ – 2 log(1+ exp(- є ⁄ θ) 
 
∂ Log f(ε) ⁄ ∂ ε = -1⁄ θ +{2exp(- є ⁄ θ) ⁄ θ(1+ exp(- є ⁄ θ) } 
 
∂ 2 Log f(ε) ⁄ ∂ ε2 = -2⁄ θ

2 2exp(- є ⁄ θ) ⁄ θ(1+ exp(- є ⁄ θ) }+ 2exp(- є ⁄ θ) ⁄ θ{1⁄ θ {exp(- є ⁄ θ) ⁄ (1+ exp(- є ⁄ θ)
2} 

 = - 2exp(- є ⁄ θ) ⁄ θ
2(1+ exp(- є ⁄ θ)

2 
                  ∞ 
A є =2 ⁄ θ

3 ∫ exp(- є ⁄ θ) ⁄  1+ exp(- є ⁄ θ)
2 d є  

              -∞ 
                  ∞ 
      = 2 ⁄ θ

3 ∫ exp(- 2є ⁄ θ) ⁄  1+ exp(- є ⁄ θ)
4   d є 

                -∞ 
                 ∞ 
     = 2 ⁄ θ

2 ∫ exp(- 2x) ⁄  1+ exp(- x)4   d x 
              -∞ 
                 ∞ 
     = 2 ⁄ θ

2 ∫ v dv  ⁄ (1+v) 
4 

                 0                   
                                   ∞          ∞ 
    = 2 ⁄ θ

2
{[v(1+v)  ⁄ -3]  + 1/3∫ (1+v)-3 dv} 

                                    0          0 
                                    ∞ 
 = 2 ⁄ θ

2 [0- 1/6(1+v)-2 ]  = 1/ 3 θ2 
                                    0 
Thus, asymptotic efficiency formula is 
 
 V(β^

 r)/ V(β~
 r) = { A є  V(є) } -1   = {1/ 3 θ2 π2 θ2 

⁄ 3}-1 = 9/ π2 = 0.912,                (23) 
 r=1, 2,…k 
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3-2 Application with Simulation 
 This section deal with some applications of asymptotic efficiency formula (17) with simulation when ε has 
normal, extreme- value or logistic distribution .      
 In this section we conducted simulation studies, a Monte Carlo simulation study was made for the case of a 
single explanatory variable to assess the performance of asymptotic efficiency of the OLS estimator relative to 
the ML estimator, for of the regression coefficient β1. 
For normal distribution, Yi   having the density 
 

 f (yi) = 1/ σ√2π exp[ -1/2(yi - βo - β1 xi / σ)2 ] ,   - ∞ < yi < ∞,                               (24)   

For extreme- value distribution, Yi   having the density 

  f (yi) =1⁄ θ exp{- (yi - βo -β1xi ⁄ θ + γ) – exp(- (yi - βo -β1 xi ⁄ θ + γ)},- ∞< yi < ∞,    (25)  

 For logistic distribution, Yi   having the density 

f (yi) =1⁄ θ {exp(-(yi - βo -β1 xi ⁄ θ)) ⁄ (1+ exp(-(yi - βo -β1 xi) ⁄ θ)
2}, - ∞< yi < ∞,    (26)  

 An assessment of the Ml estimator and the OLS estimator, for β1, the variance efficiency of the estimator for β1 

has been made by a Generalized Linear Modeling using SPSS Version 20 for the case of simple linear 
regression, Yi having the density normal, extreme-value and logistic distribution. 
 Equally spaced values for x were taken with xi = i – ½(n+1), i=1 , … n . Equal sample sizes n=5, 10, 20 with a 
run-size of 3000 were used. Without loss of generality, the y- observations were generated putting β0= β1=0 and 
θ or σ=1 in the regression model.                                                                                                                     
The values of variances of the ML estimators, OLS estimators were estimated by simulation. The variance 
efficiencies of the estimator for β1are shown in Tables 1, 2, 3 . 

 
Table 1 Variance efficiencies for estimation of β1, Normal Error 

Sample Size V (β1
~) V(β1

^) Efficiency 

5 
10 
20 

0.205 
0.195 
0.147 

0.201 
0.186 
0.145 

0.980 
0.986 
0.996 

 
Table 2 Variance efficiencies for estimation of β1, E-Value Error 

Sample Size V (β1
~) V(β1

^) Efficiency 
5 
10 
20 

3.250 
1.600 
0.820 

2.145 
1.008 
0.508 

0.660 
0.630 
0.62 

     
Table 3 Variance efficiencies for estimation of β1, Logistic Error 

Sample Size V (β1
~) V(β1

^) Efficiency 
5 
10 
20 

0.510 
0.459 
0.402 

0.454 
0.411 
0.362 

0.890 
0.895 
0.900 

 
In Table 1, Table 2 and Table 3, it can be seen  
1- The OLS efficiency for normal error is appreciably higher than the asymptotic value (one) when n=5, 10, 

but for higher value of n=20 its performance is much better than that of n=5, 10. 

2- The OLS efficiency for extreme error is appreciably higher than the asymptotic value (0.608) when n=5, 10, 
but for higher value of n=20 its performance is much better than that of n=5, 10. 

3- The OLS efficiency for logistic error is appreciably higher than the asymptotic value (0.912) when n=5, 10, 
but for higher value of n=20 its performance is much better than that of n=5, 10. 
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4-Conclusion 
 From literature review, there are some of authors such as (Lawless,1982) , (Haddaw and Young,1986), Jin, Z.L 
et al, 2006) and others considered in which the error variable ε has non normal distribution. Asymptotic 
efficiency formula of the OLS estimator relative to the ML estimator, for some probability density function in 
linear regression models are derived.    Asymptotic efficiency values for the regression coefficient β1 were (1, 
0.608,0.912) for normal, extreme-value and logistic distributions respectively. The OLS efficiency for normal, 
extreme-value and logistic error with n=20 its performance is much better than that of n=5, 10. 
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