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NATURE’S GENERAL LEDGER : “THE GRAND DESIGN” MODEL FOR A SIMULATED 

UNIVERSE-A GIANT DIGITAL COMPUTER AT WORK 
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ABSTRACT:     Consciousness could be thought of as the problem to which propositions belong and 

concomitantly correspond as they indicate particular responses ,signify instances of general solutions, with its 

essential configurations, rational representations conferential extrinsicness, interfacial interference, 

syncopated justices, heterogeneous variations testimonies,apodeictic knowledge of ideological 

tergiversation,sauccesful reality,sleaty sciolisms,tiurated vaticinations,anchorite aperitif  anamensial 

alienisms and manifest subjective acts of resolution . Consciousness in its organization of singular points, 

series and displacements, is doubly generative; it not only engenders the logical propositions with its 

determinate dimensions but also its correlates. The equivocality, ambiguity, in the synchronicity of the 

problem and proposition both in the sets and subsets of the ontological premises and logical boundaries, 

“error in perception” arises in the field of consciousness. Far from indicating the subjective and provisional 

state of empirical knowledge consciousness refers to an ideational objectivity or to a structure constitutive of 

space and time, the knowledge and the known, the proposition and its correlates. The question of “question” 

in consciousness does not bear any resemblance to the proposition which subsumes it, but rather it determines 

its own conditionalities and representationalitiesof and assigns them to its constituents in various 

permutations and combinations, that are done with corporate signification, personalized manifestation, 

individual denotation and organizational individuation. Consciousness is only the shadow of the problem 

projected or rather constructed based on empirical propositions. It is the same ‘illusion’ which does not allow 

it to be reduced to any empirical thesis or antithesis for that matter. Retroactive movement of consciousness 

based on morphemes, semitones and relational openness leads to disintegration of external relations and 

dysfunctional fissures in the personality domains of resolvability are relativistic in the self determination of 

the consciousness problem. Consciousness makes signification as the condition of truth and proposition as 

the conditional truth; it is necessary that we should not vie the condition as the one who is conditioned, lest 

the biases of internationality and subject object conflict arise. Witness consciousness is the best answer to the 

problems that we face in science. Static genesis sets right the “aham brahasmi” (I AM Brahman) and “from 

Brahman we came” problem. Consciousness thus is neutral but never the double of the propositions which 

express it. “Events” have critical points like say liquids have, or water has. in all its pristine glory and 

primordial mortification consciousness is just “knowledge”, expressed in bytes, visual field capacity is also 

expressed. We make an explicit assumption that the storage is measured based on the number of bytes and 

that ASCII is used. Further assumption in gratification deprivation is that gratification increases in arithmetic 

progression, and deprivation in geometric progression. More you think, more you get angry. The still more 

you think you go mad. Repetitive actions and thoughts which are themselves actions are assumed to be 

recorded. by a hypothertical”neuron DNA”. We thus record everything in the general ledger of the universe. 

And lo! The grand design simulated by someone, with people like us with Tamás, rajas (dynamism) and 

sattva (the transcendental form of Tamás and rajas) react. The height’ is the murder, mayhem calypso and 

cataclysm. the depth is “non reaction ability”. With this we state that this universe is s grand design simulated 

and we are really playing our roles to fit in a virtual drama. 

 

 

 

INTRODUCTION: 

We take in to considerations following parameters: 

(1) Consciousness(just the amount of bytes recorded and visual representations measured by 

Information field capacity) 
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(2) Perception (What we see-It is said by many people like Kant and Indian Brihadyaranyaka Sutra that 

what you see is not what you see; what you do not see is not what you do not see; what you see is 

what you do not see and what you do not see is what you see –Here we assume that perception is 

what we see. And note in the Model we are making a case for the “augmented reality” or “dissipated 

reality” if the observer has “consciousness”, by which we mean what exactly is happening. If two 

crime syndicates are fighting each other, you may only see a terrible traffic and do not see anything 

else!) 

(3) Gratification (we assume that it increases, the balance increases by arithmetic progression .The more 

you think, the same sentences form again and can be measured by ASCII numbers…Too much 

needless to say leads to paranoid schizophrenia. All actions are performed by people to achieve 

gratification or deprivation, that includes sadists and masochists) 

(4) Deprivation(Balance here increases by GP ;again ASCII is used) 

(5) Space 

(6) Time 

(7) Vacuum Energy 

(8) Quantum Field 

(9) Quantum Gravity 

(10) Environmental Coherence 

(11) Mass  

(12) Energy 

 

 

 

 

 

  

CONSCIOUSNESS AND PERCEPTION MODULE NUMBERED ONE  
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NOTATION : 

    : CATEGORY ONE OF PERCEPTION                 

    : CATEGORY TWO OF PERCEPTION 

    : CATEGORY THREE OFPERCEPTION       

    : CATEGORY ONE OF THE CONSCIOUSNESS 

    : CATEGORY TWO OF THE CONSCIOUSNESS  

    :CATEGORY THREE OF THE CONSCIOUSNESS  

 

SPACE AND TIME MODULE NUMBERED TWO: 

============================================================================= 

    : CATEGORY ONE OFTIME             

    : CATEGORY TWO OF TIME 

    : CATEGORY THREE OF TIME 

    :CATEGORY ONE OFSPACE 

    : CATEGORY TWO OF SPACE  

    : CATEGORY THREE OF SPACE 

GRATIFICATIONA AND DEPRIVATION(MOSTLY UNCONSERVATIVE HOLISTICALLY AND 

INDIVIDUALLY! WORLD IS AN EXAMPLE) MODULE NUMBERED THREE: 

============================================================================= 

    : CATEGORY ONE OF  DEPRIVATION 

    :CATEGORY TWO OF  DEPRIVATION 

    : CATEGORY THREE OF DEPRIVATION 

    : CATEGORY ONE OF  GRATIFICATION 

    :CATEGORY TWO OF GRATIFICATION 

    : CATEGORY THREE OF GRATIFICATION 

 

 

MASS AND ENERGY:MODULE NUMBERED FOUR: 

============================================================================ 

 

    : CATEGORY ONE OF MATTER 
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    : CATEGORY TWO OFMATTER 

    : CATEGORY THREE OF MATTER 

    :CATEGORY ONE OF ENERGY 

    :CATEGORY TWO OF ENERGY  

    : CATEGORY THREE OF ENERGY 

VACUUM ENERGY AND QUANTUM FIELD:MODULE NUMBERED FIVE: 

=============================================================================  

    : CATEGORY ONE OF  QUANTUM FIELD 

    : CATEGORY TWO OFQUANTUM FIELD 

    :CATEGORY THREE OF QUANTUM FIELD 

    :CATEGORY ONE OF VACUUM ENERGY 

    :CATEGORY TWO OF VACUUM ENERGY  

    :CATEGORY THREE OF VACUUM ENERGY 

ENVIRONMENTAL COHERENCE AND QUANTUM GRAVITY:MODULE NUMBERED SIX: 

=============================================================================  

    : CATEGORY ONE OFENVIRONMENTAL COHERENCE 

    : CATEGORY TWO OF ENVIRONMENTAL COHERENCE 

    : CATEGORY THREE OF ENVIRONMENTAL COHERENCE 

    : CATEGORY ONE OF QUANTUM GRAVITY 

    : CATEGORY TWO OF QUANTUM GRAVITY  

    : CATEGORY THREE OF  QUANTUM GRAVITY 

==============================================================================

= 

(   )
( ) (   )
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( ) (   )
( ) (   )

( ) (   )
( ) (   )
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are Dissipation coefficients 

The differential system of this model is now (Module Numbered one) 

CONSCIOUSNESS AND PERCEPTION MODULE NUMBERED ONE 
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 (   
  )( )(     )    First augmentation factor   

 (   
  )( )(   )     First detritions factor  

The differential system of this model is now ( Module numbered two) 

SPACE AND TIME MODULE NUMBERED TWO 
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 (   
  )( )(     )    First augmentation factor   

 (   
  )( )((   )  )     First detritions factor   

The differential system of this model is now (Module numbered three) 

GRATIFICATIONA AND DEPRIVATION(MOSTLY UNCONSERVATIVE HOLISTICALLY AND 

INDIVIDUALLY! WORLD IS AN EXAMPLE) MODULE NUMBERED THREE 
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 (   
  )( )(     )    First augmentation factor  

 (   
  )( )(     )     First detritions factor   

MASS AND ENERGY:MODULE NUMBERED FOUR: 

The differential system of this model is now (Module numbered  Four) 
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The differential system of this model is now (Module number five) 

VACUUM ENERGY AND QUANTUM FIELD:MODULE NUMBERED FIVE 
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 (   
  )( )((   )  )     First detritions factor   

The differential system of this model is now (Module numbered Six) 

ENVIRONMENTAL COHERENCE AND QUANTUM GRAVITY:MODULE NUMBERED SIX 
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HOLISTIC  CONCATENATE SYTEMAL EQUATIONS HENCEFORTH REFERRED TO 

AS “GLOBAL EQUATIONS” 

CONSCIOUSNESS AND PERCEPTION MODULE NUMBERED ONE 

SPACE AND TIME MODULE NUMBERED TWO 

GRATIFICATIONA AND DEPRIVATION(MOSTLY UNCONSERVATIVE HOLISTICALLY AND 

INDIVIDUALLY! WORLD IS AN EXAMPLE) MODULE NUMBERED THREE 

VACUUM ENERGY AND QUANTUM FIELD:MODULE NUMBERED FIVE 

MASS AND ENERGY:MODULE NUMBERED FOUR 

ENVIRONMENTAL COHERENCE AND QUANTUM GRAVITY:MODULE NUMBERED SIX 
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Where (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )   are first augmentation coefficients for category 1, 2 and 3  

  (   
  )(    )(     )  ,  (   
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  )(    )(     )  are second  augmentation coefficient for category 1, 2 and 3   

  (   
  )(    )(     )    (   
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  )(    )(     )  are third  augmentation coefficient for category 1, 2 and 3  

 (   
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  )(        )(     )  are fourth augmentation coefficient for category 1, 2 and 3 

 (   
  )(        )(     )   (   
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  )(        )(     )   are fifth  augmentation coefficient for category 1, 2 and 3 
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Where  (   
  )( )(     )     (   

  )( )(     )    (   
  )( )(     )  are first augmentation coefficients for category 1, 2 and 3   

 (   
  )(    )(     )  ,  (   

  )(    )(     )  ,  (   
  )(    )(     )   are second augmentation coefficient for category 1, 2 and 3    

 (   
  )(     )(     )    (   
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  )(     )(     )  are third  augmentation coefficient for category 1, 2 and 3   
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  )(         )(     )   are fourth augmentation coefficient for category 1, 2 and 3   
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  )(         )(     )   are sixth augmentation coefficient for category 1, 2 and 3   
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  )(       )(     )   (   
  )(       )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(   )(     )   

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(    )(     )  

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )

  ]      
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      (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )                                                               

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                

  (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                

 (   
  )(       )(     )   (   

  )(       )(     )   (   
  )(       )(     )    are fourth augmentation coefficients for category  1, 2,and  3  

 (   
  )(       )(     ) ,  (   

  )(       )(     )   (   
  )(       )(     )   are fifth augmentation coefficients for category  1, 2,and  3  

 (   
  )(       )(     ) ,  (   

  )(       )(     ) ,  (   
  )(       )(     )  are sixth augmentation coefficients for category  1, 2,and  3  

 

  

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(    )(     )   

 (   
  )(       )(   )    (   

  )(       )(     )  – (   
  )(       )(     )

]      

 

       (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )                                                             

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                               

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                             

 (   
  )(       )(   )   (   

  )(       )(   )  ,  (   
  )(       )(   )                                                                

 (   
  )(       )(     ) ,  (   

  )(       )(     ) ,  (   
  )(       )(     )                                                             

– (   
  )(       )(     )  – (   

  )(       )(     )  – (   
  )(       )(     )                                                             

 

  

  

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )   (   

  )(    )(     )   (   
  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 

(   
 )( )  (   

  )( )(     )   (   
  )(    )(     )   (   

  )(     )(     )   

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )

 

 ]      

 

       (   
  )( )(     )    (   

  )( )(     )    (   
  )( )(     )                                                                
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     (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                                 

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                               

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are fourth augmentation coefficients for category 1,2, and 3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth augmentation coefficients for category 1,2,and  3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )   are sixth augmentation coefficients for category 1,2, 3    

  

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(         )(   )    (   

  )(         )(     )  – (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(         )(   )    (   

  )(         )(     )  – (   
  )(         )(     )

 ]      

 

    

  
 (   )

( )    [ 
(   

 )( )  (   
  )( )(     )    (   

  )(    )(     )  – (   
  )(     )(     )   

 (   
  )(          )(   )    (   

  )(         )(     )  – (   
  )(         )(     )  

]      

 

      – (   
  )( )(     )      (   

  )( )(     )     (   
  )( )(     )                                                                

 (   
  )(    )(     )    (   

  )(    )(     )    (   
  )(    )(     )                                                             

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                              

 (   
  )(         )(   )   (   

  )(         )(   )     (   
  )(          )(   )   are fourth detrition coefficients for category 1,2, and 3 

 (   
  )(         )(     )   (   

  )(         )(     )   (   
  )(         )(     )  are fifth detrition coefficients for category 1,2, and 3 

– (   
  )(         )(     ) , – (   

  )(         )(     )  – (   
  )(         )(     )  are sixth  detrition coefficients for category 1,2, and 3 

 

  

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )   (   

  )(     )(     )   (   
  )(      )(     )   

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )

]      

 

 (   
  )( )(     )   (   

  )( )(     )   (   
  )( )(     )                                                                 

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                                 

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )                                                                  
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 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )   - are fourth augmentation coefficients 

 (   
  )(           )(     )   (   

  )(           )(     )   (   
  )(           )(     )    - fifth augmentation coefficients 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   sixth  augmentation coefficients   

  

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

 

    

  
 (   )

( )    [
(   

 )( )  (   
  )( )(     )  – (   

  )(     )(     )  – (   
  )(      )(     )   

 (   
  )(           )(   )    (   

  )(           )(     )  – (   
  )(           )(     )

]      

 

 (   
  )( )(     )    (   

  )( )(     )     (   
  )( )(     )                                                               

 (   
  )(     )(     )    (   

  )(     )(     )    (   
  )(     )(     )                                                                 

 (   
  )(      )(     )    (   

  )(      )(     )    (   
  )(      )(     )                                                            

 (   
  )(           )(   )   (   

  )(           )(   )   (   
  )(           )(   )    are fourth detrition  coefficients for category 1, 2, and 3 

 (   
  )(           )(     ) ,  (   

  )(           )(     )   (   
  )(           )(     )   are fifth detrition  coefficients for category 1, 2, and 3 

– (   
  )(           )(     ) , – (   

  )(           )(     )  – (   
  )(           )(     )   are sixth detrition coefficients for category 1, 2, and 3 

 

 

  

Where we suppose  

(A) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )      

                  

(B) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(   )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

(C)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (   )    (  )

( )      

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              
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They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(    )  (  

  )( )(   )  (  ̂   )
( )          (  ̂   )( )   

 

 

 

With the Lipschitz condition, we place a restriction on the behavior of functions 

(  
  )( )(   

   )   and(  
  )( )(     )   (   

   ) and (     ) are points belonging to the interval  

[(  ̂   )
( ) (  ̂   )

( )] . It is to be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the 

fact, that if (  ̂   )
( )    then the function  (  

  )( )(     ) , the first augmentation coefficient WOULD be 

absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(D) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(E) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with   (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )  and  (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

 

 

 

 

Where we suppose  

(F) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                        

(G) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded.  

Definition of (  )
( )   (  )

( ):  

(  
  )( )(     )  (  )

( )  (  ̂   )
( )

   

(  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( )   

(H)        (  
  )( ) (     )  (  )

( )  

       (  
  )( ) ((   )  )    (  )

( )   

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( ) are positive constants  and              

 

They satisfy  Lipschitz condition:  

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )    

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )    
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With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    then 

the function  (  
  )( )(     ) , the SECOND augmentation coefficient would be absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(I) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together 

with (  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             

  satisfy the inequalities  

 

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )      

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )      

Where we suppose  

(J)    (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )(     )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

       (  
  )( ) (     )  (  )

( )  

      (  
  )( ) (     )    (  )

( )           

 Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants   and              

 

 

 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
     (  ̂   )( )   

 

 

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) And (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    then 

the function  (  
  )( )(     ) , the THIRD augmentation coefficient, would be absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  
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(K) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

There exists two constants There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

 

 

 

 

 

Where we suppose  

(L) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

 

(M) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

  

(N)        (  
  )( ) (     )  (  )

( ) 

      (  
  )( ) ((   )  )    (  )

( )         

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

 

   They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    then 

the function  (  
  )( )(     ) , the FOURTH augmentation coefficient WOULD be absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(O) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

(P)  
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     
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Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(Q) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

 

Where we suppose  

(R) (  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                      

(S) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

  

(T)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) (     )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants  and              

 

They satisfy  Lipschitz condition: 

   (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    then 

the function  (  
  )( )(     ) , theFIFTH augmentation coefficient attributable would be absolutely 

continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(U) (  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

(V) There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )                   satisfy the inequalities  
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(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     

Where we suppose  

(  )
( ) (  

 )( ) (  
  )( ) (  )

( ) (  
 )( ) (  

  )( )                       

(W) The functions (  
  )( ) (  

  )( ) are positive continuous increasing and bounded. 

Definition of (  )
( )   (  )

( ): 

     (  
  )( )(     )  (  )

( )  (  ̂   )
( )  

     (  
  )( )((   )  )    (  )

( )  (  
 )( )  (  ̂   )

( ) 

 

  

(X)        (  
  )( ) (     )  (  )

( ) 

           (  
  )( ) ((   )  )    (  )

( )           

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

            Where (  ̂   )
( ) (  ̂   )

( ) (  )
( )   (  )

( )  are positive constants and              

 

They satisfy  Lipschitz condition: 

 (  
  )( )(   

   )  (  
  )( )(     )  (  ̂   )

( )         
    (  ̂   )( )   

 (  
  )( )((   )

   )  (  
  )( )((   )  )  (  ̂   )

( )  (   )  (   )
     (  ̂   )( )   

 

With the Lipschitz condition, we place a restriction on the behavior of functions (  
  )( )(   

   )   

and(  
  )( )(     )  . (   

   ) and (     ) are points belonging to the interval  [(  ̂   )
( ) (  ̂   )

( )] . It is to 

be noted that (  
  )( )(     ) is uniformly continuous. In the eventuality of the fact, that if (  ̂   )

( )    then 

the function  (  
  )( )(     ) , the SIXTH augmentation coefficient  would be absolutely continuous.  

 

Definition of (  ̂   )
( ) (  ̂   )

( ) :  

(  ̂   )
( ) (  ̂   )

( )   are positive constants 

      
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )    

 

Definition of (  ̂   )
( ) (  ̂   )

( ) : 

There exists two constants (  ̂   )
( ) and (  ̂   )

( ) which together with 

(  ̂   )
( ) (  ̂   )

( ) ( ̂  )
( )    (  ̂   )

( )  and the constants 

(  )
( ) (  

 )( ) (  )
( ) (  

 )( ) (  )
( )   (  )

( )             
satisfy the inequalities  

 

(  ̂   )( )   (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( ) (  ̂   )
( )     

 

(  ̂   )( )    (  )
( )  (  

 )( )    (  ̂   )
( )   (  ̂   )

( )  (  ̂   )
( )     
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Theorem 1: if the conditions IN THE FOREGOING above are fulfilled, there exists a solution satisfying the 

conditions 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

  

  

Definition of     ( )    ( ) 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

  

 

   ( )   (  ̂   )
( ) (  ̂   )( )    ,        ( )    

    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

                                         

 

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

Definition of     ( )    ( ) : 

   ( )   (  ̂   )
( )

 (  ̂   )( )    ,        ( )    
    

  ( )   (  ̂   )
( ) (  ̂   )( )      ,         ( )    

    

 

Proof: Consider operator   ( )  defined on the space of sextuples of continuous functions               

which satisfy                                           

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      
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    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

  

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               which 

satisfy             

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

Proof:  

Consider operator   ( )  defined on the space of sextuples of continuous functions               which 

satisfy         
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  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

 Consider operator   ( )  defined on the space of sextuples of continuous functions               which 

satisfy                               

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
    

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

Consider operator   ( )  defined on the space of sextuples of continuous functions               which 

satisfy               
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  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )     

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))   ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
 

Where  (  )  is the integrand that is integrated over an interval (   ) 

 

 

Consider operator   ( )  defined on the space of sextuples of continuous functions               which 

satisfy      

 

  ( )    
      ( )    

      
  (  ̂   )

( )    
  (  ̂   )

( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )      

    ( )    
  (  ̂   )

( ) (  ̂   )( )    

By 

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )     

  )( )(   ( (  ))  (  )))    ( (  ))]   (  )
 

 
  

 

  ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))  ((   
 )( )  (   

  )( )(   ( (  ))  (  )))    ( (  ))]   (  ) 
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
  ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
   

 ̅  ( )     
   ∫ [(   )

( )   ( (  ))   ((   
 )( )   (   

  )( )( ( (  ))  (  )))    ( (  ))]   (  )
 

 
 

Where  (  )  is the integrand that is integrated over an interval (   ) 
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(a) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )  

(  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

 

Analogous inequalities hold also for                        

(a) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

 

Analogous inequalities hold also for                        

(b) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that  
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(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

(c) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 1 

 

(d) The operator  ( ) maps the space of functions satisfying GLOBAL EQUATIONS into itself .Indeed it 

is obvious that 

  

    ( )     
  ∫ [(   )

( ) (   
  (  ̂   )

( ) (  ̂   )( ) (  ))] 
 

 
  (  )    

           (  (   )
( ) )   

  
(   )( )(  ̂   )( )

(  ̂   )( ) ( (  ̂   )( )   )  

 

 From which it follows that 

(   ( )     
 )  (  ̂   )( )  

(   )( )

(  ̂   )( ) [((  ̂   )
( )     

 ) 
(  

(  ̂   )( )    
 

   
 )

 (  ̂   )
( )]  

(  
 ) is as defined in the statement of theorem 6 

Analogous inequalities hold also for                       

 

  

  

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  
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In order that the operator  ( ) transforms the space of sextuples of functions        satisfying GLOBAL 

EQUATIONS into itself 

 

The operator  ( ) is a contraction with respect to the metric  

 (( ( )  ( )) ( ( )  ( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    

 

 Indeed if we denote   

Definition of  ̃  ̃ : 

(  ̃  ̃ )   ( )(   ) 

It results 

| ̃  
( )

  ̃ 
( )

|  ∫ (   )
( ) 

 
|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )    

∫  (   
 )( )|   

( )
    

( )
|  (  ̂  )( ) (  )  (  ̂  )( ) (  )

 

 
   

(   
  )( )(   

( )
  (  ))|   

( )
    

( )
|  (  ̂  )( ) (  ) (  ̂  )( ) (  )   

   
( )

 (   
  )( )(   

( )
  (  ))  (   

  )( )(   
( )

  (  ))    
 (  ̂  )( ) (  ) (  ̂  )( ) (  )   (  )  

Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

 

| ( )   ( )|  (  ̂  )( )  
 

(  ̂  )( ) ((   )
( )   (   

 )( )  (  ̂  )
( )  (  ̂  )

( )(  ̂  )
( )) (( ( )  ( )   ( )  ( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

 (             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  
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    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 Remark 5: If       is bounded from below and       ((  
  )( ) ( ( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )( ( )  )         ( )  ( )( )  

 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ( ( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

  

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
( )     (  ̂   )

( ) large to have 

 

(  )
( )

( ̂  )( ) [(  ̂  )
( )  ((  ̂   )

( )    
 ) 

 (
(  ̂   )( )   

 

  
 )

]  (  ̂   )
( )  

 

 

(  )
( )

( ̂  )( ) [((  ̂   )
( )    

 ) 
 (  

(  ̂   )( )   
 

  
 )

 (  ̂   )
( )]  (  ̂   )

( )  

 

In order that the operator  ( ) transforms the space of sextuples of functions        satisfying   

The operator  ( ) is a contraction with respect to the metric  

 (((   )
( ) (   )

( )) ((   )
( ) (   )

( )))    

   
 

    
    

 

 |  
( )( )    

( )( )|  ( ̂  )( )     
    

 |  
( )( )    

( )( )|  ( ̂  )( )    
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Indeed if we denote   

Definition of    ̃    ̃ :   (    ̃    ̃ )   ( )(       ) 

 

It results 
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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( )|  (  ̂  )( )  
 

(  ̂  )( ) ((   )
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 )( )  (  ̂  )
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( )) (((   )

( ) (   )
( )  (   )

( ) (   )
( )))  

 

And analogous inequalities for          . Taking into account the hypothesis  the result follows  

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is analogous 

with the preceding one. An analogous property is true if     is bounded from below. 
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 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

 

Then  
     

  
 (   )

( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

 

    (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that     is unbounded. The 

same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

 

  

It is now sufficient to take 
(  )

( )

(  ̂   )( )    
(  )

( )

(  ̂   )( )     and to choose 

(  ̂   )
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In order that the operator  ( ) transforms the space of sextuples of functions         into itself  

The operator  ( ) is a contraction with respect to the metric  
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 

| ( )   ( )|  (  ̂  )( )  
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( )  (  ̂  )

( )(  ̂  )
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( ) (   )
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( ) (   )
( )))  

And analogous inequalities for          . Taking into account the hypothesis  the result follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )
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  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )
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     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 
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 (   

 )( )    and by integrating  
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( )((  ̂  )
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 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
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( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

 Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        

(   )
( )  (  

  )( )((   )( )  )         ( )  ( )( )  

 

Then  
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( )( )( )        which leads to  

     (
(   )( )( )( )

  
) (       )     

        If we take    such that         
 

 
  it results  

     (
(   )( )( )( )

 
)           

 

  
  By taking now      sufficiently small one sees that      is unbounded. 
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The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions  

  

It is now sufficient to take 
(  )
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(  )
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In order that the operator  ( ) transforms the space of sextuples of functions        satisfying  IN to itself  

The operator  ( ) is a contraction with respect to the metric  
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses it follows 
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And analogous inequalities for          . Taking into account the hypothesis the result follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 
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necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 

suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      

From 19 to 24 it results  

   ( )    
  [ ∫ {(  

 )( ) (  
  )( )(   ( (  ))  (  ))}  (  )

 
 ]     

   ( )    
  ( (  

 )( ) )      for     

 

Definition of  ((  ̂  )
( ))

 
  ((  ̂  )

( ))
 
     ((  ̂  )

( ))
 
 : 

Remark 3: if     is bounded, the same property have also              . indeed if  

    (  ̂  )
( ) it follows 

    

  
 ((  ̂  )

( ))
 
 (   

 )( )    and by integrating  
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 (   

 )( )  

In the same way , one can obtain 

    ((  ̂  )
( ))

 
    

   (   )
( )((  ̂  )

( ))
 
 (   

 )( )  

 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                 The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

Remark 5: If       is bounded from below and       ((  
  )( ) ((   )( )  ))  (   

 )( ) then         

Definition of  ( )( )        : 

Indeed let     be so that for        
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( )( )( )        which leads to  
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) (       )     

        If we take    such that         
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  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   

 )( ) 

We now state a more precise theorem about the behaviors at infinity of the solutions ANALOGOUS 

inequalities hold also for                       
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 It is now sufficient to take 
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In order that the operator  ( ) transforms the space of sextuples of functions         into itself  

The operator  ( ) is a contraction with respect to the metric  
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Where  (  ) represents integrand that is integrated over the interval       

From the hypotheses  it follows 
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And analogous inequalities for          . Taking into account the hypothesis (35,35,36) the result follows 

 

Remark 1: The fact that we supposed (   
  )( )     (   

  )( ) depending also on   can be considered as not 

conformal with the reality, however we have put this hypothesis ,in order that we can postulate condition 

necessary to prove the uniqueness of the solution bounded by (  ̂  )
( ) (  ̂  )( )      (  ̂  )

( ) (  ̂  )( )  

respectively of     

If instead of proving the existence of the solution on   , we have to prove it only on a compact then it 
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suffices to consider that (  
  )( )     (  

  )( )            depend only on     and respectively on 

(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      

From GLOBAL EQUATIONS it results  
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Remark 3: if     is bounded, the same property have also              . indeed if  
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 If             is bounded, the same property follows for           and            respectively. 

 

Remark 4: If         bounded, from below, the same property holds for                 The proof is 

analogous with the preceding one. An analogous property is true if     is bounded from below. 

 

Remark 5: If       is bounded from below and       ((  
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  By taking now      sufficiently small one sees that      is unbounded. 

The same property holds for      if       (   
  )( ) ((   )( )  )  (   
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We now state a more precise theorem about the behaviors at infinity of the solutions  

Analogous inequalities hold also for                       
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It is now sufficient to take 
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And analogous inequalities for          . Taking into account the hypothesis the result follows 

 

Remark 1: The fact that we supposed (   
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(   )(             ) and hypothesis can replaced by a usual Lipschitz condition. 

Remark 2: There does not exist any    where    ( )           ( )      

From 69 to 32 it results  
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( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  

 

 

and analogously 

 

       (  )
( )  (  )

( ) (  )
( )  (  )

( )    (  )
( )  (  )

( ) 

 

       (  )
( )  (  )

( ) (  )
( )  ( ̅ )

( )     (  )
( )  (  )

( )  ( ̅ )
( )  

     and (  )
( )  

   
 

   
   

 

    (   )
( )  (  )

( ) (  )
( )  (  )

( )    ( ̅ )
( )  (  )

( )  where (  )
( ) ( ̅ )

( ) 

are defined respectively 

 

 

Then the solution  satisfies the inequalities 

 

      
  ((  )( ) (   )( ))     ( )     

  (  )( )  
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where (  )
( ) is defined 

 

      (  )( )    
  ((  )( ) (   )( ))     ( )  

 

(  )( )    
  (  )( )   

 

 

(
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( )  ]     

   (  )( )     ( )  

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]      

   (   
 )( ) )  

 

 

   
  (  )( )     ( )     

  ((  )( ) (   )( ))    

 

 

 

(  )( )    
  (  )( )     ( )  

 

(  )( )    
  ((  )( ) (   )( ))   

 

 

(   )( )   
 

(  )( )((  )( ) (   
 )( ))

[ (  )( )    (   
 )( ) ]     

   (   
 )( )     ( )    

 
(   )( )   

 

(  )( )((  )( ) (   )( ) (  )( ))
[ ((  )( ) (   )( ))    (  )( ) ]     

   (  )( )   

 

 

Definition of (  )
( ) (  )

( ) (  )
( ) (  )

( ):- 

 

Where (  )
( )  (   )

( )(  )
( )  (   

 )( )  
  

             (  )
( )  (   )

( )  (   )
( )  

 

             (  )
( )  (   )

( )(  )
( )  (   

 )( )   

 

             (  )
( )  (   

 )( )  (   )
( )  

 

  

Proof : From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))   (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( ) 
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 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for the 

special case  

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

  

 we obtain   
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  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

From which one obtains  

Definition of ( ̅ )
( ) (  )

( ) :- 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

    ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

 

In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( )  

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

(  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )    

    
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

And so with the notation of the first part of condition (c) , we have  

 

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
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.  

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

 

  

From GLOBAL EQUATIONS we obtain  

  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

Definition of  ( ) :-          ( )  
   

   
 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 

 From which one obtains  

(a) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

 ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

            (  )
( )   ( )( )  (  )

( )  

 

 In the same manner , we get 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

Definition of ( ̅ )
( ) :- 

From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

(b) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

 (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  
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(c) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

(  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( )  

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

Particular case : 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( ) 

 

  

: From GLOBAL EQUATIONS we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(d) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

   ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

            (  )
( )   ( )( )  (  )

( )  

 

 

In the same manner , we get 
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  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

(e) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

  

(f) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )   

 

  

        From  GLOBAL EQUATIONS we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 
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 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(g) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

            (  )
( )   ( )( )  (  )

( )  

 

In the same manner , we get 

 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(h) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

            
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(i) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 
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consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

 

  

we obtain  

 
  ( )

  
 (   )

( )  ((   
 )( )  (   

 )( )  (   
  )( )(     ))  (   

  )( )(     ) 
( )  (   )

( ) ( )  

 

 

Definition of  ( ) :-          ( )  
   

   
 

 

It follows 

  ((   )
( )( ( ))

 
 (  )

( ) ( )  (   )
( ))  

  ( )

  
  ((   )

( )( ( ))
 
 (  )

( ) ( )  (   )
( )) 

 

 

 From which one obtains  

 

Definition of ( ̅ )
( ) (  )

( ) :- 

 

(j) For   (  )
( )  

   
 

   
  (  )

( )  ( ̅ )
( ) 

 

       ( )( )  
(  )( ) ( )( )(  )( ) 

[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

     ,    ( )( )  
(  )( ) (  )( )

(  )( ) (  )( )  

 

            (  )
( )   ( )( )  (  )

( )  

 

 

In the same manner , we get 

 

  ( )( )  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

      ,   ( ̅)( )  
( ̅ )( ) (  )( )

(  )( ) ( ̅ )( )    

 

   From which we deduce (  )
( )   ( )( )  ( ̅ )

( ) 

 

 

(k) If    (  )
( )  (  )

( )  
   

 

   
  ( ̅ )

( ) we find like in the previous case, 

 

      (  )
( )  

(  )( ) ( )( )(  )( ) 
[ (   )( )((  )( ) (  )( ))  ]

  ( )( ) 
[ (   )( )((  )( ) (  )( ))  ]

   ( )( )   

 

  
( ̅ )( ) ( ̅)( )( ̅ )( ) 

[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 ( ̅ )
( )  

 

(l) If    (  )
( )  ( ̅ )

( )  (  )
( )  

   
 

   
   , we obtain 

 

  (  )
( )    ( )( )  

( ̅ )( ) ( ̅)( )( ̅ )( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

  ( ̅)( ) 
[ (   )( )(( ̅ )( ) ( ̅ )( ))  ]

 (  )
( ) 

 

And so with the notation of the first part of condition (c) , we have  

Definition of   ( )( ) :- 

 

(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

In a completely analogous way, we obtain  

Definition of   ( )( )  :- 
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(  )
( )    ( )( )  (  )

( ),     ( )( )  
   ( )

   ( )
 

   

Now, using this result and replacing it in GLOBAL EQUATIONS we get easily the result stated in the 

theorem. 

 

Particular case : 

 

If (   
  )( )  (   

  )( )      (  )
( )  (  )

( )  and in this case (  )
( )  ( ̅ )

( ) if in addition (  )
( )  

(  )
( ) then   ( )( )  (  )

( ) and as a consequence    ( )  (  )
( )   ( ) this also defines (  )

( ) for 

the special case . 

Analogously if  (   
  )( )  (   

  )( )      (  )
( )  (  )

( ) and then 

 (  )
( )   ( ̅ )

( )if in addition (  )
( )  (  )

( ) then     ( )  (  )
( )   ( ) This is an important 

consequence of the relation between (  )
( ) and ( ̅ )

( )  and definition of (  )
( )  

  

  

We can prove the following 

Theorem 3: If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined, then the system 

 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions   

(   
 )( )(   

 )( )  (   )
( )(   )

( )       

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,   

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

 

 If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions   
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(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  are satisfied , then the system 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions 

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined  satisfied , then the system 

 

If (  
  )( )    (  

  )( ) are independent on   , and the conditions  

(   
 )( )(   

 )( )  (   )
( )(   )

( )      

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

(   
 )( )(   

 )( )  (   )
( )(   )

( )    ,  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   )

( )  (   
 )( )(   )

( )  (   )
( )(   )

( )     

      (   )
( ) (   )

( ) as defined are satisfied , then the system 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )     (   

 )( )  (   
  )( )( )           

(   )
( )     (   

 )( )  (   
  )( )( )           

(   )
( )     (   

 )( )  (   
  )( )( )           

has a unique positive solution , which is an equilibrium solution for the system  

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )     (   

 )( )  (   
  )( )(   )           
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(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

has a unique positive solution , which is an equilibrium solution for   

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

(   )
( )     (   

 )( )  (   
  )( )(   )           

has a unique positive solution , which is an equilibrium solution  

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]         

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )     (   

 )( )  (   
  )( )((   ))          

 

 

(   )
( )     (   

 )( )  (   
  )( )((   ))          

 

 

(   )
( )     (   

 )( )  (   
  )( )((   ))          

 

 

has a unique positive solution , which is an equilibrium solution for the system  

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

has a unique positive solution , which is an equilibrium solution for the system   

(   )
( )    [(   

 )( )  (   
  )( )(   )]        
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(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )    [(   

 )( )  (   
  )( )(   )]        

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

(   )
( )     (   

 )( )  (   
  )( )(   )          

 

 

has a unique positive solution , which is an equilibrium solution for the system   

  

 

(a) Indeed the first two equations have a nontrivial solution          if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

 

(a) Indeed the first two equations have a nontrivial solution          if  
 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  

(   
  )( )(   )(   

  )( )(   )      

 

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  (   
  )( )(   )(   

  )( )(   )      

 

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  

(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  (   
  )( )(   )(   

  )( )(   )      

 

 

(a) Indeed the first two equations have a nontrivial solution          if  

 (   )  
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(   
 )( )(   

 )( )  (   )
( )(   )

( )  (   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )  (   
  )( )(   )(   

  )( )(   )      

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

 

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 
 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

Definition  and uniqueness of    
   :-   

After hypothesis   ( )     ( )     and the functions (  
  )( )(   ) being increasing, it follows that there 

exists a unique      
    for which   (   

 )   . With this value , we obtain from the three first equations  

     
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

      ,           
(   )( )   

[(   
 )( ) (   

  )( )(   
 )]

 

 

(e) By the same argument, the equations 92,93  admit solutions         if  

 ( )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )( )  (   
 )( )(   

  )( )( )] (   
  )( )( )(   

  )( )( )     

 Where in  (           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 
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exists a unique    
  such that  (  )    

(f) By the same argument, the equations 92,93  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

 

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(g) By the same argument, the concatenated equations  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in    (           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(h) By the same argument, the equations of modules  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(i) By the same argument, the equations (modules)  admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values from 96. It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  ((   )

 )    

 

(j) By the same argument, the equations (modules) admit solutions         if  

 

 (   )  (   
 )( )(   

 )( )  (   )
( )(   )

( )    

[(   
 )( )(   

  )( )(   )  (   
 )( )(   

  )( )(   )] (   
  )( )(   )(   

  )( )(   )      

Where in (   )(           )         must be replaced by their values It is easy to see that   is a 

decreasing function in     taking into account the hypothesis   ( )      ( )     it follows that there 

exists a unique    
  such that  (  )    

 

 

 

 

Finally we obtain the unique solution of 89 to 94  
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            (  )    ,    

            (   
 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(  )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )(  )]
 

Obviously, these values represent an equilibrium solution  

Finally we obtain the unique solution   

   
            ((   )

 )    ,    
            (   

 )    and  

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     
 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

 

Obviously, these values represent an equilibrium solution  

Finally we obtain the unique solution  

   
            ((   )

 )    ,    
            (   

 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

      ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

 

Obviously, these values represent an equilibrium solution  

 

Finally we obtain the unique solution  

   
            (   )    ,    

            (   
 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    

 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

Obviously, these values represent an equilibrium solution  

 

Finally we obtain the unique solution  

   
            ((   )

 )    ,    
            (   

 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

 

 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

Obviously, these values represent an equilibrium solution 

 

Finally we obtain the unique solution  
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            ((   )

 )    ,    
            (   

 )    and 

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

    ,      
  

(   )( )   
 

[(   
 )( ) (   

  )( )(   
 )]

     

   
  

(   )( )   
 

[(   
 )( ) (   

  )( )((   ) )]
      ,      

  
(   )( )   

 

[(   
 )( ) (   

  )( )((   ) )]
 

Obviously, these values represent an equilibrium solution  

 

ASYMPTOTIC STABILITY ANALYSIS 

Theorem 4:   If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  

Belong to  ( )(   ) then the above equilibrium point is asymptotically stable. 

Proof:  Denote 

Definition of       :- 

                           
             ,      

     

                      
 (   

  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
(    )       

 

Then taking into account equations (global) and neglecting the terms of power 2, we obtain   

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

 If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  Belong to 

 ( )(   ) then the above equilibrium point is asymptotically stable 

 

Denote 

Definition of       :- 

 

     
             ,      

      

 (   
  )( )

    
(   

 )  (   )
( )   ,  

 (  
  )( )

   
( (   )

  )       
 

taking into account equations (global)and neglecting the terms of power 2, we obtain   

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   
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  ((   

 )( )  (   )
( ))    (   )

( )    (   )
( )   

       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

    

  
  ((   

 )( )  (   )
( ))    (   )

( )    ∑ ( (  )( )   
   )

  
       

 If the conditions of the previous theorem are satisfied and if the functions (  
  )( )     (  

  )( )  Belong to 

 ( )(   ) then the above equilibrium point is asymptotically stabl 
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And as one sees, all the coefficients are positive. It follows that all the roots have negative real part, and this 

proves the theorem. 
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