
Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

143

Knowledge Management: the agile way

Amitoj Singh
1*

 Kawaljeet Singh
2
Neeraj Sharma

2

1. PMN College, Rajpura, Punjab, India

2. Punjabi University, Patiala, Punjab, Inida

* E-mail of the corresponding author: amitoj@mail.com

Abstract

The logic behind the acceptance of agile practice is that along with software development, project and knowledge

management (KM) practices are woven into the practices of agile methodologies, which have made these

methodologies very popular among software development communities. There are many practices in agile (e.g. Pair

programming, scrum meetings, onsite customer etc.) which encourage creation, retention and dissemination of

knowledge. Therefore, there is an urgent need to analyze agile software development practices from KM perspective.

Many covert and overt factors are identified in applying agile practices in software development organisations.

Different knowledge creation and management theories are analyzed from agile perspectives and relationship is

established among knowledge management and agile practices with a special focus on Indian software engineering

organisations.

Keywords: Agile software development, Knowledge management, Scrum, Extreme programming

1. Introduction

Technology progresses too fast, requirements change at rates that swamp traditional methods (Highsmith et al., 2000)

and customers are no longer available to state their needs up-front, while, at the same time, expecting more from

their software. As a consequence, several consultants have independently developed methods and practices to react to

the inevitable change they were experiencing. These practitioners had their own philosophies about how software

should be developed. However, all of them advocated close collaboration between software development and

business teams, as opposed to silo development by software teams; face-to-face communication, as opposed to

over-stress on written documentation; frequent delivery of segment of working software, as opposed to final delivery

of the complete product at the end; accepting changing requirements, as opposed to defining fixed requirements.

These principles (Fowler 2002) underlie the philosophy of agile software development (ASD). The name ‘agile’

came about in 2001, when seventeen process methodologists held a meeting to talk about the future trends in

software development. The outcome to this meeting was the formation of ‘agile alliance’ and its manifesto for agile

software development.

What is the meaning of being agile? Jim Highsmith enunciates that being agile means being able to deliver quickly,

change quickly, and change often (Highsmith et al., 2000). In agile methods, people play a driving role in the success

of the project and lot of short-time meetings are conducted for knowledge sharing and for the random change in the

project, if required. Methodologists argue that working software without documentation is better than non-working

software with a huge amount of documentation (Koskela and Teknillinen, 2003). There is no universally accepted

definition of agility. Agility is dynamic, context-specific, aggressively change embracing, and growth-oriented

(Goldman et al., 1995). The core concept in agile is quick response to change (Cockburn and Highsmith, 2001). A

description of the various agile principles is given in the Agile Alliance (2004).

2. Review of Literature

Conboy and Fitzgerald (2004) carried out a review of the literature on agility across several disciplines and provided

a broad definition of agility as the continual readiness of an entity to rapidly or inherently, proactively or reactively,

embrace change, through high quality, simplistic, economical components and relationships with its environment.

Despite the differences, all definitions of agility emphasize the speed and flexibility as the primary attributes of an

agile organization (Gunasekaran, 1999). Schuh (2004) presents précis of agile development by stating that agile

practices are not new, what is different and original about the agile approach is that the agile alliance has published

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

144

these practices, fused them with core values about people and project environments and stated the way to build

software better. Publication of the manifesto did signal industry acceptance of agile philosophy. Agile methodologies

are made up of values, principles and practices. While agile practices may differ a little according to specific agile

methodologies, there exist fundamental agile practices that are based on the four agile values and twelve principles

and are common to all agile methodologies (Agile Alliance, 2004). Table 1 highlights some of the agile

methodologies used frequently in literature along with the published resource work.

Table 1: Summary of Agile Methods by Earliest Date of Publication

Sr.

No
Agile Method Acronym Primary Source

 Journal Article Book

1.
Dynamic Systems

Development method
DSDM Stapleton (1997)

2. Crystal method Crystal
Cockburn (1998);

Cockburn (2002)

3. RUP (Configured) Dx Martin (1998)

4. Extreme Programming XP Beck (1999) Beck (2000)

5.
Adaptive Software

Development
ASD Highsmith et al. (2000)

6. Scrum Scrum

Beedle, Devos, Sharon,

Schwaber and Sutheriand

(1999)

7. Pragmatic Programming PP Hunt and Thomas (2000)

8.
Internet Speed

Development
ISD

Cusumano and

Yoffie (1999)

Baskerville and Pries Heje

(2001)

9. Agile Modeling AM Ambier (2002)

10.
Feature Driven

Development
FDD Paimer and Feising (2002)

12. Lean Development LD

Charette (2002);

Poppendiek and

Poppendiek (2003)

Values in agile manifesto give purpose to software development, complement each other, and are aligned with life

goals (for example, putting more value on development of working software instead of writing comprehensive

documentation). Principles are more general and they may clash (for example, cost versus quality, the principle is to

maintain low cost and high quality). Practices are less flexible, they bring accountability, and they take the purposes

depicted in the values to real practice (for example, pair programming improves the level of individual interactions

within a team) (Beck and Andres, 2004). We further analyze agile manifesto according to the dependencies of the

values and principles. The dependencies of agile manifesto values and principles are summed up in the Table 2.

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

145

Table 2: Enslavement of Principles on Agile Manifesto

Agile Manifesto Agile principles

Primary Secondary 1 2 3 4 5 6 7 8 9 10 11 12

Individuals and interaction processes and tools X X X X X X

Working software comprehensive documentation X X X X X X

Customer collaboration contract negotiation X X X X

Responding to change following a plan X X X X X

Although agile methodologies concur with the current software development practice, they are not all suitable for all

phases in the software development life-cycle. Abrahamaaon et al. (2002) explain different phases of software

development that are supported by different agile methods. Each method is divided into three blocks. The first block

indicates if a method offers support for project management. The second block identifies whether a process is

described within the method. The third block indicates whether the method describes the practices, activities to be

followed and used. A gray color in a block indicates that the method supports the life-cycle phase and a white color

indicates that the method does not provide detailed information. As shown in the Figure 1, these practices lack

approaches that support software development, except RUP and DSDM which do not require any outside support.

Figure 1: Life Cycle support of Various Agile Methods (Adopted from Abrehamsson et al. (2002)

Qurner and Henderson (2008) also examine product engineering process of software development. They state that

product engineering process can be further divided into development process and project management process.

Authors look into some of the agile methodologies and try to map their practices with development and project

management processes. Table 3 shows the practices followed by different agile practices and category in which they

fall.

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

146

Table 3: Enslavement of Agile Practices on Software Process

Software

Process
XP Scrum FDD ASD DSDM Crystal

Development

Process

1.Short

releases

2.Metaphor

3.Simple

design

4.Testing

5. Refactoring

6.Pair

programming

7.Collective

ownership

8. Continuous

integration

9. On- site

customer

1.Scrum

team

2.Product

backlog

3. Sprints

4.Sprints

reviews

1. Domain object

modelling

2. Developing by

feature

3.Indivdual class

ownership

4. Inspections

5.Regular builds

1. The project

mission

development

2.Developing

by components

3.Collaborative

teams

4. Joint

application

development

5. Customer

focus group

reviews

6. Software

inspection

1. Active user

involvement

2. Empowered

teams

3.Frequent product

delivery

4. Fitness for

business purpose

5. Iterative and

incremental

development

6. Reversible

changes

7.Requirements

are based at high

level

8.Integrated

testing

9. Collaboration

and cooperation

among

stakeholders

1.Staging

2. Holistic

diversity and

strategy

3.Parallelism

and flux

4.User

Viewings

5. Revisions

and reviews

Project

Management

Process

1.The

planning

game

1.Scrum

master

2. Sprint

planning

meeting

3. Daily

scrum

meeting

1.Reporting/

Visibility of

results

1. Adaptive

cycle planning

2. Adaptive

management

model

Not specified 1.Monitoring

of progress

Software

Configuratio

n control

process

/support

process

Not

Specified

Not

Specified

1.Configuration

management

Not Specified Not Specified Not Specified

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

147

Process

management

Not

Specified

Not

Specified

Not Specified 1.Project

post-mortem

Not Specified 1,Reflection

workshops

methodology

tuning

In software development, knowledge is considered as the most important asset. Hansan et al. (1999) state that in

practice, most organizational KM strategies are either codification strategies or personalization strategies. Lot of

studies in literature have been found which show that agile software development practices use personalization

strategies for managing the critical knowledge. Our arguments are with reference to the findings of Boehm and

Turner (2004) as well as Paulk (2002) that compare plan-driven and agile software development and declare that

plan-driven approaches generally prefer codification of knowledge while agile approaches mainly attempt to

cultivate tacit knowledge. Similarly, Robinson and Sharp (2004), from their empirical studies on xp programming

teams, conclude that respect and trust are important prerequisites for the successful implementation of knowledge

sharing through conversation. Wendorff and Apshvalka (2005) in their research present the personalization strategy

used in agile software development.

3. Research Methodology

Proponents of agile acknowledge the use of technology for successful implementation of personalization strategy of

agile practices is distributed environment. It is vital to test this aspect from Indian perspective because most of the

Indian software development industry is working with agile methodologies in distributed environment. Organisations

are chosen on the basis of Goode’s (2001) recommendations to measure size of the organisations by number of

employees working in that firm. Stratified sampling technique is used for conducting survey on Indian industry.

Therefore, software engineering (SE) organisations have been classified in five broad categories according to their

size in terms of their employee strength, i.e. Very large-, Large-, Medium-, Small- and Very small- sized

organisations. The SE organisations identified as ‘very small’ companies (having up to 50 employees) have been

clubbed with ‘small’ (50-500 employees) to make a meaningful group of small companies. Furthermore, SE

organisations identified as ‘very large’ companies (having more than 100,000 employees) have been combined with

‘large’ SE organisations (having employees between 5001 and 100,000) because the number of ‘very large’

companies in India is very less. Only registered companies with NASSCOM (National Association of Software and

Service Companies) are included in the survey. Survey conducted in the study includes a mix of SE organisations

based on functional specialization, i.e., organisations developing software alone, organisations providing only

consultancy services, and organisations that perform both the functions.

Survey questionnaire was presented to 340 professionals working at different levels in Indian software engineering

industry. Frequency count and weighted average score (WAS) are computed from the data and conclusions are drawn

accordingly as per the recommendations of Sharma (2011).

WAS= ∑WX/∑X

Where ∑WX is total sum of weights assigned to responses. ∑X is sum of number of responses. Five point Likert

scale ranging from -2 to 2 (-2= strongly disagree, -1= disagree, 0- neutral, 1= agree, 2 strongly agree) is used for

measuring the perceptions of the respondents.

4. Results and Discussion

A set of questions were presented to the respondent organisations to know the technological support they were

providing to their employees to implement personalization of knowledge, as recommended by Hansan et al. (1999).

Respondent organisations were asked about the technological support they were using for knowledge sharing in

distributed agile teams. We calculate chi square, contingency coefficient and WAS for each dimension. Outcomes of

the survey are presented in the following sections.

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

148

4.1 Project Planning Tools help in Sharing Real-time Status

A consensus was found when organisations were asked if they were using any project planning tool in distributed

agile environment for managing their project work. All the organisations agreed that they were using tools for project

management across different dimensions of the agile organisations (c.f. Table 4). Only difference is found in case of

fully-agile and partially-agile companies, 71.3% of fully agile organisations use project management tool as

compared to 54.9% of partially-agile companies.

Table 4: Project Planning Tools used to Share a Real-time Status

Group/Sub-group SD D N A SA WAS Statistics

Size of Company

I 3.8 0 32.4 36.9 26.9 0.83
χ²= 31.537

C= 0.290
II 0 0 36.4 29.1 34.5 0.98

III 8.6 2.9 21.4 51.4 15.7 0.63

Core Area

Product Development 3.6 0 38.9 35.3 22.2 0.73
χ²= 19.69

C= 0.234
Consultancy 0 0 33.3 26.2 40.5 1.07

Both 4.6 1.5 21.4 43.5 29.0 0.91

Type of Company

Fully Agile 1.1 0 27.2 36.2 35.1 1.05 χ²= 21.88

C= 0.246 Partially Agile 6.6 1.3 36.2 38.8 17.1 0.59

Software Industry 3.5 0.6 31.5 37.4 27.1 0.84

* significant at 5% (p = 0.05) ** significant at 1% (p = 0.01)

WAS score of more than 1 in case of consultancy organisations confirms the fact that these organisations use this

technique more than the product development organisations or organisations working in both the domains. Similarly,

WAS score of 1.05 of fully-agile companies clearly shows the dominance of tools in distributed environment for

agile teams.

4.2 Maintaining Code Repository in Cloud for Sharing Source Code

Maintaining the source code for distributed agile teams is also a hindrance as agile teams have to implement

collective code ownership. So respondents were asked how they manage their source code. WAS score of 1.12 of

consultancy firms shows that they prefer using source code in the cloud to maintain collective code-ownership.

Similar trends were found in fully- and partially-agile organisations. WAS score of 1.08 of fully-agile organisations

shows that these organisations mostly used cloud for the storage of their source code as compared to partially-agile

organisations. Small organisations do not show complete agreement to this practice as around 28% of the

respondents were neutral about this practice (cf. Table 5).

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

149

Table 5: Sharing of Source Code by Maintaining Single Repository in Cloud

Group/Sub-group SD D N A SA WAS Statistics

Size of Company

I 0 10.6 21.2 35.6 32.5 0.90
χ²= 34.988

C= 0.305
II 0 19.1 17.3 17.3 46.4 0.91

III 5.7 14.3 28.6 24.3 27.1 0.53

Core Area

Product Development 2.4 15.0 22.8 24.0 35.9 0.77
χ²= 25.19

C= 0.263
Consultancy 0 0 35.7 16.7 47.6 1.12

Both 0 17.6 15.3 35.1 32.1 0.82

Type of Company

Fully Agile 1.1 4.3 22.9 29.3 42.6 1.08
χ²= 35.175

C= 0.306
Partially Agile 1.3 26.3 19.7 25.0 27.6 0.51

Software Industry 1.2 14.1 21.5 27.4 35.9 0.83

* significant at 5% (p = 0.05) ** significant at 1% (p = 0.01)

Around 55% of the overall organisations are using this practice with WAS of 0.83. Collective code ownership is a

prominent practice of agile software development methodologies. Organisations were asked if they share source code

in distributed agile teams by maintaining single repository in the cloud. 68.1% of size I organisations agreed that

source code should be stored in cloud whereas only 51.4% of size III organisations agreed with the statement.

Sharing source code through cloud decrements as we move down to organisations depending upon its size. As per

core area, 67.1% of organisations working in both (product development and consultancy) agreed that cloud is used

for sharing of source code. More than 71% of fully-agile organisations used cloud for sharing of source code whereas

27.8% of partially-agile organisations disagreed with this statement.

4.3 Overlapping of Development Hours for Synchronous Communication

To bridge time zone differences, it is always recommended to have overlapped working hours for distributed agile

teams so that teams can communicate easily. Organisations were asked if they follow this practice. Table 6 confirms

that size I and II organisations agree that this practice is used for synchronous communication between onshore and

offshore teams, whereas 30% of size III organisations do not use overlapping of working hours. 67.1% of product

development organisations use overlapped working hours, whereas 21.4% consultancies do not use overlapping of

working hours. 81.9% of fully-agile organisations use this practice for synchronous communication and on the other

hand 27.6% of partially-agile organisations reject this practice. WAS of 1.08 of fully-agile organisations gives us an

idea as how SE organisations are implementing synchronous communication between onshore and offshore teams.

On the other hand, WAS of 0.55 tells the partially-agile organisations do not overlap working hours for synchronous

communication. Around 70% of software organisations are using this practice for synchronous communication which

is also described by WAS 0.84.

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

150

Table 6: Overlapping of Development Hours

Group/Sub-group SD D N A SA WAS Statistics

Size of Company

I 0 10.6 14.4 43.1 31.9 0.96
χ²= 41.997

C= 0.332
II 0 12.7 12.7 40.9 33.6 0.95

III 5.7 24.3 25.7 11.4 32.9 0.42

Core Area

Product Development 2.4 17.4 13.2 43.7 23.4 0.69
χ²= 37.933

C= 0.317
Consultancy 0 21.4 26.2 4.8 47.6 0.79

Both 0 7.6 16.8 35.9 39.7 1.08

Type of Company

Fully Agile 1.1 4.3 12.8 48.9 33.0 1.08
χ²= 52.06

C= 0.364
Partially Agile 1.3 26.3 20.4 19.7 32.2 0.55

Software Industry 1.2 14.1 16.5 35.9 32.6 0.84

* significant at 5% (p = 0.05) ** significant at 1% (p = 0.01)

4.4 Collaborative Tools to Mimic face-to-face Communication

Collaborative tools are also used to mimic face-to-face communication. WAS of 0.92 and 0.97 by Size I and Size II

organisations respectively reveals the dominance of collaborative tool, especially in fully-agile organisations where

WAS is 1.03 (cf. Table 7).

Table 7: Collaborative tools to mimic face-to-face communication

Group/Sub-group SD D N A SA WAS Statistics

Size of Company

I 3.8 3.1 18.1 46.9 28.1 0.92
χ²= 36.384

C= 0.311
II 0 6.4 29.1 25.5 39.1 0.97

III 11.4 11.4 24.3 28.6 24.3 0.43

Core Area

Product Development 3.8 3.1 18.1 46.9 28.1 0.93
χ²= 25.44

C= 0.264
Consultancy 0 6.4 29.1 25.5 39.1 0.97

Both 11.4 11.4 24.3 28.6 24.3 0.43

Type of Company

Fully Agile 1.1 3.7 21.8 38.3 35.1 1.03
χ²= 16.044

C= 0.212
Partially Agile 7.9 8.6 24.3 33.6 25.7 0.61

Software Industry 4.1 5.9 22.9 36.23 30.9 0.84

* significant at 5% (p = 0.05) ** significant at 1% (p = 0.01)

Organisations were asked whether they use collaborative tools for communication in distributed environment.

Almost all the organisations agreed to the statement that they use collaborative tools to mimic face-to-face

communication except Size III organisations where 22.8% of the organisations do not deploy any collaborative tool

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

151

to mimic face-to-face communication. Overall 66% of the software industry accepts that they use collaborative tool.

5. Conclusion

This paper is a pivotal step in order to understand agile from knowledge management perspective. Many

practitioners argue that KM practices are embodied into agile practices which provide methodology an upper edge on

traditional software engineering practices. We find that rather than codification, agile practices emphasize on

personalization of knowledge, i.e. they rely more on tacit knowledge management. Technological support is

examined from knowledge management perspective and it is found that technological support is vital for

implementation of personalization strategy for knowledge management in agile organisations. Overall, we have an

agreement with other researchers in the agile domain that agile emphasize on personalization of KM and

technological support is essential for the implementation of this strategy.

References

Abrahamsson, P., Salo, O., Warsta, J., Ronkainen, J. (2002), “Agile software development methods: Review and

analysis, VTT Publications, (478)

Ambler, S. (2002), “Agile Modeling: Effective Practices for EXtreme Programming and the Unified Process”.

John Wiley & Sons

Baskerville, R., Pries-Heje, J.(2001), “Racing the E-Bomb: How the Internet Is Redefining Information Systems

Development Methodology”. In B. Fitzgerald and N. Russo & J. DeGross (Eds.), Realigning Research and

Practice in Is Development: The Social and Organisational Perspective, New York, Kluwer, pp. 49-68 (2001)

Beck K. (2000), “Extreme Programming Explained: Embrace Change”, Addison Wesley

Beck, K. (1999), “Embracing change with extreme programming”, Computer, 32(10), 70-77

Beck, K., Andres, C. (2004), “Extreme Programming Explained: Embrace Change”, Addison–Wesley

Professional

 Beedle, M., Devos, M.,Sharon, Y., Schwaber, K., Sutherland, J. (1999), “Scrum: A Pattern Language for

Hyperproductive Software Development”. In: Pattern Languages of Program Design, 4, 637-651 Harrison, Ed.

Boston: Addison-Wesley

Boehm, B. and Turner, R. (2004), “Balancing Agility and Discipline: A guide for the perplexed”,

Addison–Wesley, USA, first edition, 165–19

Charette, R. N. (2002), “Foundations of Lean Development: The Lean Development Manager's Guide”. 2, The

Foundations Series on Risk Management (CD). Spotsylvania, Va.: ITABHI Corporation

Cockburn, A., Highsmith, J. (2001), “Agile software development: the people factor”, IEEE Computer, 34(11),

131–133

Cockburn, A. (1998), “Surviving Object-Oriented Projects”, Addison-Wesley

Cockburn, A. (2002), “Agile Software Development”, Addison-Wesley

Conboy, K., Fitzgerald, B. (2004), “Toward a conceptual framework of agile methods: A study of agility in

different disciplines”, Proceedings of the 2004 ACM Workshop on Interdisciplinary Software Engineering

Research, 37-44

Fowler, M. (2002), “The Agile Manifesto: where it came from and where it may go”,

http://martinfowler.com/articles/agileStory.html

Goldman, S.L., Nagel, R.N. and Preiss K. (1995), “Agile Competitors and Virtual Organizations: Strategies for

Enriching the Customer”, Van Nostrand Reinhold

Goode, S. (2001), “Organisational size metrics in IS research: a critical survey of the literature 1989-2000”. In:

Finnie, G., Cecez-Kecmanovic, D., Lo, B. (eds.). In: Proceedings of 12th Australasian Conference on

Information Systems. 257-68

Information and Knowledge Management www.iiste.org

ISSN 2224-5758 (Paper) ISSN 2224-896X (Online)

Vol.3, No.3, 2013

152

Gunasekaran, A. (1999), “Agile manufacturing: a framework for research and development”, International

Journal of Production Economics, 62, 87–105

Hansen, M.T., Nohria, N., Tierney, T. (1999), “What is your strategy for managing knowledge?” Harvard

Business Review. 77(2), 106 - 116

Highsmith J., Orr K., Cockburn A. (2000), “E-Business Application Delivery”,

www.cutter.com/freestuff/ead0002.pdf, 4-17

Hunt, A., Thomas, D. (1999), “Pragmatic Programming”. Addison Wesley, First Edition

Koskela, teknillinen tutkimuskeskus, V. (2003), “Software configuration management in agile methods”, VTT

Technical Research Centre of Finland

Palmer, S.R., Feising, J.M. (2002), “A Practical Guide to Feature-Driven Development”, Prentice Hall, (2002)

Paulk, M.C. (2002), “Agile Methodologies and Process Discipline", CROSSTALK, The Journal of Defense

Software Engineering, 15(10), 15-18

Poppendieck, M., Poppendieck, T. (2003), “Lean Software Development: An Agile Toolkit” Addison-Wesley

Professional

Qumer, A., Henderson-Sellers, B. (2008), “An evaluation of the degree of agility in six agile methods and its

applicability for method engineering”, Information and Software Technology, 50(4), 280–295

Robinson, H. and Sharp, H. (2004), “The Characteristics of XP Teams”, In Eckstein, J. and Baumeister, H.

(Editors) Proceedings of the 5th International Conference on Extreme Programming and Agile Processes in

Software Engineering (XP 2004), Springer, 139-147

Schuh, P. (2004), “Integrating Agile Development in the Real World”, Charles River Media, Massachusetts,

USA, 1–6

Sharma, N. (2011), “Design of Experience Base Model for Software Process Improvement”. Doctoral Thesis,

Punajbi University, Patiala (2011)

Stapleton J. (1997), “DSDM: The Method in Practice”, Addison-Wesley Longman Publishing Co., Inc

Wendorff, P., Apshvalka, D. (2005), “The Knowledge Management Strategy of Agile Software Development”,

Proceeding of: 6th European Conference on Knowledge Management, University of Limerick, Ireland

