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Abstract 

The data mining provides better insight rather than the predefined queries or reports for quality enhancement and 

improvement of an academic program to extract hidden knowledge in students’ performance in various courses. 

This paper presents data mining approach applied to discover students’ performance patterns in two different 

perspectives (a) supervised and unsupervised assessment instruments and (b) discover students’ performance 

patterns in mathematics, English, and programming courses in an engineering degree program. The interesting 

patterns emerging from both analytic studies offer helpful and constructive suggestions for the improvement and 

revision of assessment methodologies, restructuring the curriculum, and modifying the prerequisites 

requirements of various courses. 
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1. Introduction 

The past several decades have witnessed a rapid growth in the use of data and knowledge mining as a means by 

which academic institutions extract useful hidden information in the student result repositories in order to 

improve students’ learning processes. Data mining (also called data or knowledge discovery) is the method of 

analyzing data from different perspectives to discover interesting and helpful information. The information 

gained through data mining has been effectively used in various sectors ranging from finance, agriculture to 

health and education. There are many data mining tools (Weka 2012), (XLMiner 2013), (KNIME 2013) 

available that allow users to analyze data from many different aspects, categorize it, and discover the identified 

relationships. Technically, data mining is a technique of finding correlations or patterns among many fields in 

large databases. Educational data mining is fast becoming an interesting research area which allows researcher to 

extract useful, previously unknown patterns from the educational databases for better understanding, improved 

educational performance and assessment of the student learning process (A.Y.K. Chan et al. 2007) It facilities 

the exploration of unique information from students’ result database in academic institutions.  

The essential part of curriculum of a computer science and engineering degree program is English, mathematics, 

and programming. The programming is taught at introductory level, intermediate level and advanced levels. The 

programming often requires expertise in many different subjects, including knowledge of the application domain, 

analytical skills, and comprehension of the program requirement specification. One of the main objectives of the 

calculus courses is to develop analytical skills in the student whereas the English courses develop the 

comprehension of the problem statements in programming or any other area. The student’s performance in a 

course is assessed through a variety of assessment instruments i.e. assignments, projects, laboratory work, 

semester end examinations etc. Some of these assessment instruments are unsupervised such as assignments, 

homework, and projects for which students are at a liberty to take help from textbooks or reference material etc. 

The assessments in this category are an essential part of learning process and can be regarded as a mean of 

preparing students for supervised assessments, for example, tests, presentations, oral examinations. The 

unsupervised assessments are administered under the constant vigilance of a teacher or an examiner with no 

outside help or assistance. It is generally expected that students performing well in an unsupervised assessment 

would also perform well in a supervised assessment. Similarly, it is also a perception that if a student’s 

performance is better in a prerequisite course of a course under assessment or in mathematics and English then 

he will also perform better in the a programming course. 

From the stand view of the e-learning scholars, data mining techniques have been employed to solve different 

problems in the educational environment. The selection of data mining tools and techniques mostly depends on 

the scope of the problem and the expected results from the analysis. For example, a classification approach is 

used (B. Minaei Bidgoli 2003) to classify students to predict their final year performance based on different 

parameters derived from the data in an educational web-based system. A clustering algorithm is used (G.J. Tsai) 

to categorize students with similar behavioral characteristics.  Association rule mining techniques have 

frequently been used to solve educational problems and carry out critical analysis in an academic environment 
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for improving the learning process of student. These efforts are carried out in order to raise the standards and 

administration of educational processes by investigating the learning systems, learning resources arrangements, 

and students’ results, curriculum restructuring, and institutional websites (R. Damasevicius et al. 2009), 

(Talavera, L. et al. 2004), (S. Z. Erdogan et al. 2005). In one study (Anna Katerina et al. 2010) clustering and 

association rule mining techniques have been applied to students’ data to mine the common factors affecting the 

learners’ performance that can be utilized as a base for providing some clues and hints for future learners. In 

another study (David H. et al. 2010), students’ actions logged during tutor session have been categorized, binned, 

and symbolized to discover student behavior patterns. 

In this paper we used Appriori algorithm to mine rules in (a) supervised and unsupervised assessment results and 

(b) programming, mathematics, and English results. The rules meeting the predefined support and confidence are 

mined to expose the hidden knowledge from the available student assessment data.  These mined rules are 

analyzed to review the existing assessment processes and recommend constructive actions to academic planners. 

In section 2, we present relevant information about knowledge discovery process along with the data mining and 

association rule that we have used for the discovery of hidden knowledge. The results of the analysis and the 

rules discovered from the present study are discussed in section 3. The conclusions of our work are given in 

section 4.  

 

2. Proposed system 

Knowledge Discovery (KD) process is one of the basic concepts of the field of Knowledge Discovery and Data 

mining (KDD). Figure 1 illustrates the knowledge discovery employed in the present study that we have adapted 

from (Anna Katerina Domminguez et al. 2010). Solid-line arrows represent various important data processing 

steps leading towards the knowledge discovery whereas dotted-line arrows show the steps that may form an 

iterative cycle in order to refine the knowledge discovery process.  

2.1 Selecting Mining Frequent Patterns and Associations 

The association rule mining finds interesting associations and/or correlation relationships among large set of data 

items. Association rules show attributes’ value conditions that occur frequently together in a given dataset 

(Jiawei Han et al 2006). The preliminaries necessary to understand for performing data mining on any data are 

discussed below. 

Let 
},....,,,{ 321 mIIIII =

be a set items. Let D, the task relevant data, be a set of database transactions where 

each transaction � ⊆ �. Each transaction is an association with an identifier, called transaction identification 

(TID). Let A be a set of items. A transaction T is said to contain A if and only if TA⊆ . An association rule is 

an implication of the form BA⇒ , where
IBIA ⊂⊂ ,

, and
φ=∩BA

. 

Support (s) and confidence (c) are two measures of rule interestingness. They respectively reflect the usefulness 

and certainty of the discovered rule. A support of 2% of the rule BA⇒ means that A and B exist together in 

2% of all the transactions under analysis. The rule BA⇒  having confidence of 60% in the transaction set D 

means that 60% is the percentage of transactions in D containing A that also contains B. 

A set of items is referred to as an itemset. An itemset that contains k items is a k-itemset. The occurrence 

frequency of an itemset is the number of transactions that contain the itemset. If the relative support of an itemset 

I satisfies a prescribed minimum support threshold, then I is a frequent itemset. 

The association rule mining can be viewed as a two-step process: 

a. Find all frequent itemsets: Each of these itemsets will occur at least as frequently as a predetermined 

minimum support count. 

b. Generate strong association rules from the frequent itemsets: The rules must satisfy minimum support and 

confidence. These rules are called strong rules. 

2.2 Apriori Algorithm 

Apriori is a seminal algorithm proposed by (R. Agarwal et al. 1994) for mining frequent itemsets for Boolean 

association rules. The name of the algorithm is based on the fact that the algorithm uses prior knowledge of 

frequent itemset properties. The following lines state the steps in generating frequent itemset in Apriori 

algorithm. 

Let Ck be a candidate itemset of size k and Lk as a frequent itemset of size k. The main steps of iteration are: 

Find frequent set Lk-1  

Join step: Ck is generated by joining Lk-1 with itself (cartesian product Lk-1 x Lk-1) 

Prune step (apriori property): Any (k − 1) size itemset that is not frequent cannot be a subset of a frequent k size 

itemset, hence should be removed 

Frequent set Lk has been achieved 
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2.3 Task Relevant Data Collection 

We analyzed the available result data of three courses in two perspectives described earlier. The score of each 

student was transformed into transactions (assignment, laboratory work, class test, final examination) for 

supervised and unsupervised perspective and (TID, programming grade, mathematics grade, and English grade) 

for analyzing correlation of results in three courses. The student ID will serve as TID, however, it is not included 

while applying data mining algorithm.  

2.4 Data Preprocessing 

The real-world databases are highly susceptible to noisy, missing, and inconsistent data due to their typically 

huge size and their likely origin from multiple, heterogeneous sources. Low-quality data will lead to low-quality 

mining results (Han, J. et al. 2005). Therefore, data preprocessing is an important task in data mining. The data 

we used was in the percentages as discussed above and needed to be transformed to same level of achievement in 

each assessment. Hence, all scores in different assessment instruments were transformed to a number calculated 

out of 100. Table 1 show the data used in the analysis after preprocessing. Symbols A, Q, FL, T, and FE are used 

to identify assignments, quizzes, laboratory work, test, and final examination respectively. The result data in 

each assessment instrument was preprocessed to grades (Stage-1) A(>= 90), B(>= 80), C(>=70), D(>= 60), and 

F(<60) as shown in Table 1. These grades were concatenated with the type of assessment for example an A-A 

represents A grade in assignment and FE-B represents a B grade in final examination. The final pre-processed 

form (Stage-2) of assessment transaction, for example, is highlighted in the left part of Table 1 by a rectangular 

box. 

2.5 Data Cleaning 

It is fundamental truth that incorrect or inconsistent data can lead to false conclusions and hence wrong 

inferences and decisions. Therefore, high quality data needs to pass a set of quality criteria; accuracy, integrity, 

completeness, validity, consistency, uniformity, density, and uniqueness. Data cleaning routines attempts to fill 

in missing values, smooth out noise, and correct inconsistencies in the data. There are a number of data cleaning 

techniques (Han, J. et al. 2005) in the literature such as fill missing values, binning, regression, and clustering. 

We used the following criteria to clean our data: 

a. If a student did not sit in the final examination then zero is entered in his score. We removed all such tuples 

from our result data. 

b. If a student is absent in one or two assessment instrument then his score was replaced by average of the 

students score in that assessment. 

c. If a student is absent in more than two assessment instruments then all such tuples were removed. 

Table 1: Transformed assessment data 

For perspective (a) 

(a) Preprocessed data (Stage 1) (b) Preprocessed data (Stage 3) 

A Q FL T FE A Q FL T FE 

A D F C D A-A Q-D FL-F T-C FE-D 

F F D C D A-F Q-F FL-D T-C FE-D 

B F F F F A-B Q-F FL-F T-F FE-F 

F F F F F A-F Q-F FL-F T-F FE-F 

A F D C F A-A Q-F FL-D T-C FE-F 

B B D C B A-B Q-B FL-D T-C FE-B 

A C F C C A-A Q-C FL-F T-C FE-C 

A C F F F A-A Q-C FL-F T-F FE-F 

B F F F F A-B Q-F FL-F T-F FE-F 

A D F C F A-A Q-D FL-F T-C FE-F 

B D F D F A-B Q-D FL-F T-D FE-F 

B F F D F A-B Q-F FL-F T-D FE-F 

B C F C F A-B Q-C FL-F T-C FE-F 

A F F F F A-A Q-F FL-F T-F FE-F 

F F F F F A-F Q-F FL-F T-F FE-F 

F F F F F A-F Q-F FL-F T-F FE-F 

B F F F F A-B Q-F FL-F T-F FE-F 
 

For perspective (b) 

Preprocessed data (Stage 2) Transformed data (Stage 3) 

P M E-1 E-2 P M E 

C 
C C A 

P-C 
M-C E-C 

C C B A P-C M-C E-A 

C C B B P-C M-C E-B 

C C C B P-C M-C E-A 

A A A A P-A M-A E-A 

C C C B P-C M-C E-B 

D D C B P-D M-D E-C 

D C C C P-D M-C E-C 

C C C A P-C M-C E-C 

C D C D P-C M-D E-D 

F D C F P-F M-D E-D 

C C A B P-C M-C E-B 

B B A A P-B M-B E-A 

C C B B P-C M-C E-A 

B B A B P-B M-B E-B 
 

 

The final pre-processed form of assessment data using to mine association for perspective (b) is also shown in 
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Table 1 where P represents grades in programing course, M represents grades in calculus course, E is used for 

English comprehension course and technical writing courses. The abbreviation of courses is used as prefix to the 

grades in these courses i.e. P-C represents C grade in programming, as highlighted by a rectangular box. 

 

3. Results and Rules Analysis 

The association rules mined from supervised and unsupervised students’ results are shown in Table 2 whereas 

the association rules from the results of programming, mathematics, and English courses are shown in Table 3. A 

number of uninteresting rules have been excluded from Tables 2 and 3 due to the limitation of the space. The 

association rules depicted in Tables 2 and 3 are mined using a data mining tool (XLMiner 2013). This tool 

allows mining the association rules by setting various minimum support thresholds. It is observed that by 

lowering the minimum support threshold there is a marked increase in the number of association rules generated 

by XLNimer tool in both perspectives. 

 

Table 2: Association rules mined; minimum support 7 and confidence 75% 

Rule # Antecedent  Consequent  Support Conf. % 

1 A-A FL-F 8 87.5 

2 A-A FE-F 8 75 

3 A-B, FE-F FL-F 6 100 

4 A-B, FL-F FE-F 6 100 

5 A-B FE-F, FL-F 7 85.71 

6 A-B FE-F 7 85.71 

7 A-B FL-F 7 85.71 

8 A-F Q-F 6 100 

9 FE-F, FL-F, Q-F T-F 13 84.62 

10 FL-F, Q-F FE-F, T-F 13 84.62 

11 FL-F FE-F 21 80.95 

12 Q-F FE-F 15 93.33 

13 Q-F FL-F 15 86.67 

14 T-F FE-F, FL-F, Q-F 12 91.67 

 

Table 3: Association rules mined; minimum support 8 and confidence 86% 

Rule # Antecedent  Consequent Support Conf. % 

1 P-A M-A 9 100 

2 E-A & P-A M-A 9 100 

3 P-A M-A & E-A 9 100 

4 P-B M-B 12 100 

5 P-C M-C 38 88 

6 E-A & P-C M-C 10 100 

7 E-B & P-C M-C 17 100 

8 E-C & P-C M-C 10 86 

9 M-A E-A 9 100 

10 P-A E-A 9 100 

11 M-A & P-A E-A 9 100 

12 M-A E-A & P-A 9 100 

13 M-A P-A 9 100 

14 M-A & E-A P-A 9 100 

15 M-B P-B 12 100 

16 M-C & E-A P-C 10 86 
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The analysis of the generated rules perspective (a) presented in Table 2 shows that rule 1 (support = 8, 

confidence 87.5%) indicates that students who performed excellent in assignment failed to perform even 

satisfactorily in the final laboratory examination. The rule 2 (support = 8, confidence 75%) is also strong and 

extracts knowledge that students who performed excellent in assignment failed in final examination. Similarly, 

rule 6 (support = 7, confidence 85.71%) and rule 7 (support = 7, confidence 85.71%) show that students who 

performed very good i.e. scored B grade failed to score similar grades in the final examination and the final 

laboratory work, respectively. A similar trend is observed in the rules generated with minimum support 3 and 

minimum confidence greater than 80%. We could not find a single rule with minimum support 3 and 6 and 

minimum confidence greater that 75% that verifies that students performing excellent in the unsupervised 

assessment instruments surely performed well in the supervised assessment instruments. The discovered rules 

are strangely contradictory to the fact that if a student’s performance is excellent in the unsupervised assessment 

(homework or assignments) then he/she must perform better in the supervised assessment instruments such as 

tests, laboratory works, and/or final examination. This could be due to a variety of reasons; (i) assignments or 

homework were not developed properly, (ii) there might be an impedance mismatch in the unsupervised and 

supervised assessments, (iii) the students were not able to apply the knowledge and skills gained through 

unsupervised assessments in the final laboratory examination and/or class tests or final examination, (iv) the 

students might have copied the assignments and homework either from the resources available on the Internet or 

from their friends. This might be another possible explanation for the strange results uncovered from this study. 

The analysis of the generated rules perspective (b) presented in Table 3 show that if a student’s performance is 

excellent in mathematics or mathematics and English then he/she must perform better in the programming 

courses but excellent performance in English alone does not guarantee same performance in programming 

course. This could be due to the reason that the students understand the problem by translating the problem 

statement in English to their native language. The rules discovered in this perspective do confirm many findings 

from previous studies using non KDD approaches (Talavera, L. et al. 2004). There is a positive correlation 

between the students’ problem solving ability and their programming performance. 

 

4. Conclusion 

The paper presented the potential use of one of the data mining approaches called association rule mining 

algorithm in enhancing the quality and experience of students’ performances in higher education. The analysis 

reveals that there are more students who got excellent grades in supervised assessment but failed to attain similar 

level of performance in the unsupervised assessments and if a student’s performance is excellent in mathematics 

or mathematics and English then he/she must perform better in the programming courses but excellent 

performance in English alone does not guarantee same performance in programming course. All these and alike 

hidden patterns could serve as an important feedback for instructors, curriculum planners, academic managers, 

and other stakeholders in making informed decisions for evaluating and restructuring curricula and associated 

assessment methodologies with a view to improve students’ performance in supervised and unsupervised 

assessment instruments.  
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