Cognitive Factors in Students' Academic Performance Evaluation using Artificial Neural Networks

Etebong Isong, Udonyah Kingsley, Godwin Ansa

Abstract


Performance evaluation based on some cognitive factors especially Students’ Intelligent Quotient rating (IQR), Confidence Level (CoL) and Time Management ability gives an equal platform for better evaluation of students’ performance using Artificial Neural Network. Artificial Neural Networks (ANN) models, which has the advantage of being trained, offers a more robust methodology and tool for predicting, forecasting and modeling phenomena to ascertain conformance to desired standards as well as assist in decision making. This work employs Machine Learning and cognitive science which uses Artificial Neural networks (ANNs) to evaluated students’ academic performance in the Department of Computer Science, Akwa Ibom State University. It presents a survey of the design, building and functionalities of Artificial Neural Network for the evaluation of students’ academic performance using cognitive factors that could affect student’s performances.

Keywords: Cognitive, Intelligent Quotient Rating, Machine Learning, Artificial Neural Network.

 


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: IKM@iiste.org

ISSN (Paper)2224-5758 ISSN (Online)2224-896X

Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org