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2. INTRODUCTION  

 

Fixed point theory plays basic role in application of various branches of mathematics from elementary calculus 

and  linear algebra to topology and analysis. Fixed point theory  is not restricted to mathematics and  this theory 

has many application in other disciplines. 

          The study of non-contraction mapping concerning the existence of fixed points draws attention of various 

authors in non-linear analysis. It is well known that the differential and integral equations that arise in physical 

problems are generally non-linear, therefore the fixed point methods especially Banach’s contraction principle 

provides a powerful tool for obtaining the solutions of these equations which were very difficult to solve by any 

other methods. Recently Verma [13] described about the application of Banach’s contraction principle [4]. 

Ghalar [8] introduced the concept of 2-Banach spaces. Recently Badshah and Gupta [5], Yadava, Rajput and 

Bhardwaj [14], Yadava, Rajput, Choudhary and Bhardwaj [15] also worked for Banach and 2-Banch spaces for 

non-contraction mappings. In present paper we prove some fixed point and common fixed point theorems for 

non-contraction mappings, in 2-Banach spaces motivated by above, before starting the main result   

 first we write some definitions . 

 Definition (2.A), 2-Banach Spaces: In a paper Gahler [8] define a linear 2-normed space to be 

pair  where  is a linear space and  non- negative, real valued function defined on  

such that  a,b,c   

(i)  = 0 if and only if  a and b are Linearly dependent 

(ii)  =   

(iii)  =  ,  is real 

(iv)      

Hence   is called a 2- norm. 

 

Definition (2.B): 

A  sequence   in a linear 2 – normed space L ,is called a convergent  sequence if  there is , x  , such 

that  = 0 for all y  . 
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Definition (2.C): 

A sequence   in a linear 2 – normed space L,is called a Cauchy  sequence  if there exists y, z   , such 

that y and z are linearly  independent and   

  

                           = 0 

Definition (2.D): A linear 2-normed space in which every Cauchy sequence is convergent is called 2-Banach 

spaces. 

 

Theorem (2.E) (Banach’s contraction principle) Let (X, d) be a complete metric space, c∈(0,1) and f: X→X be a 

mapping such that for each x, y ∈X,  

d(fx, fy) ≤ cd (x, y) Then f has a unique fixed point a ∈X, such that for each 

 x∈ X,    

 

After the classical result, Kannan [11] gave a subsequently new contractive mapping to prove the fixed point 

theorem. Since then a number of mathematicians have been worked on fixed point theory dealing with mappings 

Satisfying various type of contractive conditions. 

          

         In 2002, A. Branciari [3] analysed the existence of fixed point for mapping f defined on a complete metric 

space (X,d) satisfying a general contractive condition of integral type. 

 

Theorem (2.F) (Branciari) Let (X,d)  be a complete metric space ,c  and let f : X  be a mapping 

such that for each x, y ∈X,  

  ≤ c  where [0,+ [0,+  is a Lebesgue integrable  

mapping which is summable on each compact subset of  [0,+  ,  non-negative ,and such that  for each 

,  , then f has a unique fixed point  a ∈X, such that for each  x ∈ X,   

 

After the paper of Branciari, a lot of research works have been carried out on generalizing contractive condition 

of integral type for different contractive mappings satisfying various known properties. A fine work has been 

done by Rhoades [5] extending the result of Branciari by replacing the condition [1.2]  by the following 

 

 ≤  . 

 

Theorem (2.G): 

Let T be a mapping of a 2 – Banach spaces into itself. If   T satisfies the following conditions: 

 

          (1)      , where   is identity  mapping 

 

 (2)    + 

 +  +    

 

Where x  , a  is real with 8   Then  T has unique fixed 

point. 

 Our main result is modified the above result in integral type mapping. 
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3. MAIN RESULTS 

 

Theorem 3.1      

Let T  be  a  mappings of a 2- Banach space X into itself. T  satisfy the  following  conditions : 

 

(1)     , where   is  identity  mapping, 

(2)   +   

 +    

+   +    

      +       

 

For every x, y ∈X,    ∈ [0,1] with x and  

  4. Also  [0,+ [0,+  is a Lebesgue 

integrable  mapping which is summable on each compact subset of  [0,+  ,  non-  negative ,and 

such that  for each ,  , Then T has  unique  fixed point .  

Proof :  Suppose x is any point in 2- Banach space  X. 

 

           Taking y = x, z = T(y)  

 

 =  =    

              

             +     

            +   +    

            +   +      

 

    

    +     

     +     +    
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    +    +     

 

 

 

  

   +       

  +   +    

    +    +   

 

  

  +   +   

 

 +   +    

 

 +    

 

 +   +   

 

 +   +     

 

+    

  

   

   +     

  

     

 

    +      

   

     ----------------------------------- (3.1.1) 

 

Now for   
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 =  =    

  

 

 +    +  

 +   +    

            +   

 

 +     

    +   +    

   +      +     

 

 

 +     +  

 +   +    

    +    

 

  +        

  

    +    

 

       --------------------------------------------------- (3.1.2) 

 

Now 

 

 =  +    

 

    +      

   

   +    
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   +           

 

       

     +      

 

       

     +      

 

 On the other hand   

 

 =   

 

                           =   

  

                           = 2   

So  

 

2         

     +      

    

    

 

       

 

    k      

                                  

                 as (   4)  

 

Where   k =   1   

 

Let R =  ( T+I ) , then  

 

  =  
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                                       =   =    

 

                                          

 

By the definition of  R we claim that   is a Cauchy sequence in X ,  is  converges to so 

element   in X . So =  . Hence T( =   

  

So   is a fixed point of  T. 

 

Uniqueness: 

 

If possible let     is another fixed point of T . Then  

 

 

  =    

  

 

 +   

 +   + 

  +    

 

+    

  

      +   +   

        +   

 

      

 

Which is contradiction  as     4  

 

 so . Hence fixed point in unique. 

  

 

Theorem 3.2 

Let T and G be two expansion mappings of a 2- Banach space X into itself. T and G satisfy the following 

conditions: 

 

(1)  T  and G commute 

(2)   and   , where   is  identity  mapping, 
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(3)   +  

 +   + 

  +   +   

   

 

For every x, y ∈X,    ∈ [0,1] with x  and    and  

  1. Also  [0,+ [0,+  is a Lebesgue integrable  mapping which is 

summable on each compact subset of  [0,+  ,  non- negative ,and such that  for each , 

  

 Then there exists a unique common fixed point of T and G such that  T(   and G(  

. 

Proof:- 

Suppose x is point in 2- Banach space X ,it is  clear that    

 

   +   

 

              

        +   

        +     

        +    

         +      

 

 

    

 

+    +    

 

 +    
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+   +    

 

Taking G(x) = p , G(y) = q , where  p q  

 

  

 

+   +    

 

 +    

 

+    +    

  

 

Taking TG = R we get 

 

    

 

+    

+   +    

 

+     +    

  

 

It is clear by  theorem (1.1) ; that  TG = R  has at least  one fixed point  say   in K  that is R(  = 

TG(  =   

 

And so T.(TG)  = T(   or   T(     

 

G (  = T (     

 

Now  

 

  =   

 

          =   
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+    

 

+     + 

  +    

+    

   

 

= ( +  )   

 

So   =       (   1)  

 

That is   is the fixed point of T. 

 

But        =G ( )      so G ( ) =        

 

Hence   is the fixed point of  T and G. 

 

Uniqueness: 

 

If possible let     is another common fixed point of T and G. 

 

 =    

 

                             =    

 

                                

     +    

 

+     

 +   +     

 

+    
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  ( +  )   

 

But    1  

   

So   , so common fixed point in unique. 
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