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Abstract 

In the present article, we have studied the effects of heat and mass transfer on the MHD flow of an incompressible, 

electrically conducting couple stress fluid through a porous medium in an asymmetric flexible channel over which a 

traveling wave of contraction and expansion is produced, resulting in a peristaltic motion. The flow is examined in a 

wave frame of reference moving with the velocity of the wave. Formulas of dimensionless velocity, temperature and 

concentration are obtained analytically under assumptions of long wavelength and low Reynolds number. The effects 

of various parameters of interest such as the couple stress fluid parameter, Darcy number, Hartmann number and 

Schmidt number on these formulas were discussed and illustrated graphically through a set of figures. 
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1. Introduction 

           Peristalsis is a form of transporting fluids in which an induced wave causes the propagation of the 

flexible walls of a channel/tube. This mechanism is seen in many biological systems such as the transportation of 

urine from kidney to bladder, movement of chyme in the gastroin testinal tract, blood circulation in the small blood 

vessels, and in the ducts efferentes of the male reproductive tract. Also in industry the phenomenon of peristaltic 

pumping are used in many useful applications like transportation of sanitary fluids, blood pump in heart lung 
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machines and also in transporting of corrosive and toxic liquids to avoid contamination with the outside 

environment.  

           Recently, Elshehawy et al. [2] studied the peristaltic transport in an asymmetric channel through a 

porous medium. Srinivas and Kothandapani [12] examined the heat transfer analysis for peristaltic flow in an 

asymmetric channel. Mekheimer and Abdelmaboud [7] discussed the influence of heat transfer and magnetic field on 

peristaltic transport of a Newtonian fluid in a vertical annulus. 

           Since most of physiological and industrial fluids are non-Newtonian fluids, Numerous attempts were 

done by researchers to study various models of non-Newtonian fluids. We might mention some of the recent studies 

that dealt with the peristaltic flow of non-Newtonian fluids. Hayat et al. [4] and they have analyzed the effect of an 

induced magnetic field on the peristaltic transport of a Carreau fluid. Haroun [3] has studied the peristaltic transport 

of fourth grade fluid in an inclined asymmetric channel. Wang et al. [15] have examined the magnetohydrodynamic 

peristaltic motion of a Sisko fluid in symmetric or asymmetric channel. Nadeem and Akram [9] have studied the 

peristaltic flow of Williamson fluid in an asymmetric channel. Eldabe et al. [1] have made an interesting analysis on 

the mixed convective heat and mass transfer in a non-Newtonian fluid obeying the biviscosity model at a peristaltic 

surface with temperature dependent viscosity. Abdelmaboud and Mekheimer [6] analyzed the transport of second 

order fluid through a porous medium. Nadeem et al. [8] have discussed the influence of heat and mass transfer on 

peristaltic flow of a third order fluid in a diverging tube. 

           The couple stress fluid is a special case of the non-Newtonian fluids where these fluids are consisting 

of rigid randomly oriented particles suspended in a viscous medium and their sizes are taken into account. This 

model can be used to describe human and animal blood, infected urine from a diseased kidney and liquid crystals. 

There have only few attempts for studying the peristaltic flow of a couple stress fluids, first discussed by Stokes [13]. 

From the recent attempts dealing with the couple stress model, we refer to Mekheimer [5], as he has investigated the 

problem of the peristaltic transport of a couple sterss fluid in a uniform and non-uniform channel. Also Nadeem and 

Akram [10] have investigated the peristaltic flow of a couple stress fluid under the effect of induced magnetic field in 

an asymmetric channel, and Sobh [11] has studied the effect of slip velocity on peristaltic flow of a couple stress 

fluid in uniform and non uniform channels.  

           In dealing with heat and mass transfer problems, we observe a phenomenon called diffusion - thermo 

effect (Duffor effect) in which an energy flux could be generated by the concentration gradients in addition to that 

generated by the temperature gradients, also on the other hand mass fluxes could be created by heat gradients which 

is known by themal- diffusion effect (Sort effect).  

           To the best of our knowledge no attempt has been reported yet to discuss the peristaltic transport of a 

couple stress fluid in the presence of heat and mass transfer. The aim of the present study is to investigate the effect 
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of the mixed convective heat and mass transfer on the peristaltic transport of a couple stress fluid in an asymmetric 

channel through a porous medium in the presence of magnetic field while taking into consideration the viscous 

dissipation effect during this work. So that this study is useful in filling that gap. 

2. Mathematical Analysis 

           Consider the flow of an incompressible, electrically conducting, couple stress fluid through a porous 

medium in an asymmetric two dimensional channel having  width �� � �� with a sinusoidal waves travelling 

down its walls with a constant speed c. A rectangular coordinate system ��, �	 is choosen such that �-axis lies 

along the direction of wave propagation and �-axis transverse to it. The fluid is subjected to a constant transverse 

magnetic field 
�� 
 �0, 
�, 0	 . The effects of induced magnetic field is neglected by considering small magnetic 

Reynolds number, also the effect of Julian dissipation is neglected. 

The geometry of the channel walls is given by 

� 
 ����, �	 
 	�� � ��	��� ���� 	�� � ��	�			                           upper wall  (1) 

� 
 ����, �	 
 	��� � ��	��� ���� 	�� � ��	 � ��                  lower  wall (2) 

Where  ��  and		��  are amplitudes of the waves .  �  is the wavelength,  �  is the time,   �� � ��  is the 

width of  the channel and the phase difference  � varies in the range  0 � � �    ,  where  ��, ��, ��, ��  

and  �   satisfies  ��� � ��� � 2�������� � ��� � ��	�   in order for the channel walls not to collide with each 

other. At the lower wall of the channel the temperature is "� and the concentration is #�while at the upper wall the 

temperature is "�and the concentration is #�. See Fig. (20). 

In Laboratory frame ��, �	, the Governing equations are given by: 

$%$& � $'$( 
 0   (3)                                                                                                                

) *$%$+ � , $%$& � -	 $%$(. 
 � $/$& � 0 *$1%$&1 �	$1%$(1. � 2 *	$3%$&3 � 2	 $3%$&1$(1 � $3%$(3. � 4	
��	, � 56 	,                       

(4)                                    

) *$'$+ � ,	 $'$& � -	 $'$(. 
 � $/$( � 0 *$1'$&1 �	$1'$(1. � 2 *	$3'$&3 � 2	 $3'$&1$(1 � $3'$(3. � 56 	-                                        

(5)                  

7 *$8$+ � ,	 $8$& � -	 $8$(. 	
 				 9:; *$18$&1 � $18$(1. � < =2 *$%$&.� � 2*$'$(.� � *$%$( � $'$&.�> �                                                             

?; @*$1'$&1 �	$1'$(1.� � *$1%$&1 �	$1%$(1.�A � BC	6D	EF *$1G$&1 � $1G$(1.                     (6)       
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 *$G$+ � ,	 $G$& � -	 $G$(. 
 		HI *$1G$&1 � $1G$(1. � BC	6D8J *$18$&1 � $18$(1.                                                                    

(7)    

in which ,, - are the velocity components in the laboratory frame ��, �	 , � is the time, P is the pressure, ) is 

the density, " is the temperature of the fluid, # is the concentration of the fluid, "J is the mean value of  "� and 

"�, HI is the coefficient of mass diffusivity, 0 is the coefficient of viscosity of the fluid, < is the kinematic 

viscosity of the fluid,	7 is the specific heat at constant pressure, K is the permeability parameter, 4 is the electrical 

conductivity of the fluid, L�is the thermal conductivity of the fluid, �M is the concentration susceptibility and 2 is a 

constant associated with the couple stress. 

Introducing a wave frame �N, O	  moving with the velocity �  away from the fixed frame ��, �	  by the 

transformation  

N 
 � � ��	, O 
 �	, P 
 , � �	, Q 
 -	, R�N	 
 S��, �	                                          (8) 

in which �P, Q	 are the components of the velocity in the wave frame. 

and defining the following non dimensional quantities   

N̅ 
 U� 	 , OJ 
 VW: 	 , PJ 
 XE 	 , Q̅ 
 YE , �̅ 
 E� �, Z� 
 [:W: 	 , Z� 
 [1W: 	 , \ 
 W:� 	,		 ] 
 ^_5 
���	, ` 
 GaGbG:aGb	.   

� 
 W1W: 	 , � 
 d:W: 	 , � 
 		 e:W: 	 , R̅ 
 W:1f5E� 	 , gh 
 ;EW:5 	,			i 
 8a8b8:a8b 	 , jk 
 ;BC6D�8:a8b	8	l5�G:aGb	 	 , Hd 
 6W:1 	 , m� 
 5?	���	  

Sk 
 ;	n	o9: 	 , jE 
 5;	BC 	 , Hp 
 ;BC6D�G:aGb		5	o	EF	�8:a8b	 		 , qE 
 E1o	�8:a8b				     (9) 

where Re is the Reynolds number, ] is the Hartmann number, Hd is the Darcy number, Sk  is the Prandtl number, jE	is the Schmidt number, jk  is the Soret number,	qE  is the Eckert number, Hp is the Dufour number and  m  is 

the couple stress fluid parameter. 

The non-dimensional time averaged flows	r and s in the wave and in the laboratory frames respectively are related        

by 

 s = 1 � � � r                                                                      (10.a)  

in which      r 
 	u P	�Ov1v:                                                                 (10.b)                                

   3. Analytic Solutions 

Using the above transformations (8) and the non-dimensional quantities (9) with the assumptions of long wave 

length and low Reynolds number. Eqs. (4) - (7) can be written after dropping the bars in the following form:  

� $f$U � $1X$V1 � �w1 $
3X$V3 � *]� � �Bx. �P � 1	 
 0                (11) 
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$f$V 
 0                                                (12)  

�/y $1z$V	1 � qE�$X$V	� � {|w1 	�$1X$V1	� � Hp 	$1}$V1 	
 0                                                                                             

(13) 

�~| $
1}$V1 � jk $1z$V	1 
 0                                      (14) 

and assuming that the components of the couple stress tensor at the walls to be zero [14], the corresponding  

boundary conditions in dimensionless form are given by 

 P 
 �1,				 $1X$V1 
 0,				i 
 0	,				` 
 0         at  O 
 Z� 
 1 � �	cos	�2	 	N	             (15) 

 P 
 �1	,			 $1X$V1 
 0	,			i 
 1	,			` 
 1          at  O 
 Z� 
 �� � �	cos	�2	 	N	 � �	      (16) 

From Eq. (12)  R � R�O	 and therefore   
$f$U 
 WfWU . 

The closed form solution of Eq. (11) is given by 

P 
 �� 	ha	���√1 � ��h���√1 � ��ha	���√1 � ��h���√1 � ��*������1.Bx���1 	Bx                              (17) 

where   �� 
 ^m� 	� 	 		��			Bx       ,    �� 
	^m� 	� 		��			Bx 	      and   		�� 
 �m�	Hd��4 � ��4	]� � m�		Hd	 
(18) 

and using appropriate boundary conditions (15) and (16) to evaluate ��, ��, ��	and �� , we get 

�� 
 ����	�
����:��1	√1 	Bx	�w1 	Bx�	��	

������:√1 �	����1√1 �	����1	Bx		��
                   ,            �� 
 ����		Bx	�w1	Bx�	��	

������:√1 �	����1√1 �	����1	Bx		��
  

�� 
 

����	�
����:��1	√1 	Bx	�a	w1	Bx�	��	

������:√1 �	����1√1 �	����1	Bx		��
                   ,           �� 
 ����		Bx 	�a	w1	Bx�	��	

������:√1 �	����1√1 �	����1 	Bx		��
                                       

(19)     

Using  Eqs. (10.b) , (17) and (19) to get an explicit form for 
WfWU , we get 

WfWU 
 � �����1	Bx����v:av1		
Bx		�v:av1	��		a		√1	� 1	¡x�		���	Dx¢�=

��1√1	��:£�1	>		��	��	��:£�1	 		�		√1	� 1	¡x£		���	Dx¢�= ��1√1	��:£�1	>		��	��	��:£�1	 	¤	
                                                  

(20) 
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Using Eqs. (14) and (17) into Eq. (13), the solution of  Eq. (13) in terms of i in closed form is given by 

i 
 �¥ � �¦	O � {|	/y	V1	�:3�a���:§ 			Bx � ��√1	�	�� 		{|	/y	�11	�	��a�	w1	Bx�a	�√1	�	�� 		{|	/y	�31 	�	����	w1	Bx�	¥	�a���:§ 			w1	Bx 	  

        �	{|	/y	�*a		�£√1	�	��	�:1	�		�£√1	�	�� 	�§	1 .	��	�	�	w1	*	�£√1	�	�� 	�:1	�		�£√1	�	�� 	�§	1 .	Bx			¥	�a���:§			w1	Bx  

        � ©̈©©
ª�	�	��	���£��	√1 	�1 	�§�	��	�£�����	√1 	�:	�3¤	{|	/y	�:b	

�a���:§			���a��	1	Bx «¬
¬¬
­ � ©̈©©

ª�	�	�£	�	������	√1 	�:	�§�	��	������	√1 	�1	�3¤	{|	/y	�::	
�a���:§			������	1	Bx 	

«¬
¬¬
­
 .                

(21) 

and upon substituting Eq. (21) into Eq. (14) and solving ,we obtain a solution for ` in closed form as 

` 
 ��� �	���	O � �:1		�:3		V1	�a���:§ 			Bx � �√1	�	��	�:1	�11	�	��a�	w1	Bx�	¥	�a���:§			w1	Bx �	�:1	Bx		�£	�	�§	�����	√1¥	�a���:§			��§	 	 @�4	�	4	h�	√�	V	�� 	��	��	          

 �m� � ��	��			�� � 	4	h√�	V	������		��	��	�m� � ��	��			�� � 4	h 	√�	V	�� 	��	��	�m� � ��	��		�� �		 
4	h√�	V	��	�����		��	��	�m� � ��	��		�� � 	h 	V	��	��a��	√� 	m���� 	��4 � 3		��	 � 	 	h 	V	��	�����	√� 	m�	��� 	��4 � 3		��	 � 

	h 	�	�	�����	√1 	m�	���	�4 � 3		��			 � �	�8	h�√�	V	�� 	��	��	��		��� � 	8	h√�	V	�	�����		��	��	��		��� �  

8	h√�	V	���� 	��	��	��¦ � 	8	h√�	V	�	�	�����		��	��	��	��¦ �	hV	��	��a��	√� 		m�	��4	]� �	m�		��� 	��8 � 3	��	 � 

h§	�	�	�����	√1 	m�	��4	]� �	m�		��� 		��8 � 3	��	 �	h�	�	�����	√1 	m�	��4	]� �	m�		���		�8 � 3	��				Hd �   

m�	��4	]� �	m�	� 	°	�	h�	�	�����	√1 		��� � h�	�§	��£��	√1 	��� 	� h§	�	�	�����	√1 		��	� ±	Hd�			A .                                          

(22)    

where,    ��� 
 ��2 � ��2	]� �	��	��		Hd		 ,     ��� 
 �2 � �2	]� �	��	��		Hd		 ,    ��� 
qE 	Sk	jE 	jk     

 ��� 
 Hp	Sk 	jE 	jk  ,      ��� 
 ���	�� �	��	��		�1 � ]�	Hd		,       ��� 
 �m�	��	�� � 	2]���m� �
��	��		,     ��¥ 
 �m�	��	�� � 	2]��m� � ��	��		 ,       ��¦��m�	��	�� � 	2]��m� � ��	��		  .                                       

(23)                                                                               

Using Appropriate boundary conditions from (15) and (16) into (21) and (22) and solving, we get 

�¥ 
 �	 �v:a	v1 	@	 a����	a��	�:§			Bx @a	�√1	��	�:	{|	/y	�11	���a	�	w1	Bx�	�		�√1	��	�: 	{|	/y	�31	����	�	w1	Bx��	w1 �	        
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��	����£��		�:√1 		�1	�§	�	�	��£�����		�:√1 		�:	�3		{|	/y		�:b	���a��	1 �	 ��	�£������		�:√1 		�:	�§	�	�	�������		�:√1 		�1 	�3		{|	/y		�::	������	1 �      

        
�£	√1	������		{|	/y	�	�√1	��	�: 	�:1	���a	�	w1	Bx�	a		�√1	��	�:	�§1	����	�	w1	Bx�			�	w1 � 	2	qE 	Sk 	���	Z��	A	Z�	 �           

Z�@�1 � 	�√1	��	�1 	{|	/y	�11	���a	�	w1	Bx��		�√1	��	�1 	{|	/y		�31	����	�	w1	Bx��	*	� 	£	√1	��	�1 	�:1	�	�£	√1	��	�1	�§1.�	�	w1	Bx	a	{|	/y	�� 	��¥	�a���:§			w1	Bx	 �  

  

��	����£��		�1√1 		{|	/y	�1	�§	�:b�	�	��£�����		�1√1 		{|	/y	�:	�3	�:b				�a���:§			���a��	1	Bx 	� �	�£	������		�1√1 		{| 	/y	�:	�§	�::��	� 	������		�1√1 		{|	/y	�1	�3	�::	�a���:§			������	1 	Bx � 

   
{|	/y	�:3	v11�a���:§			Bx]] .                                                                                                                         

(24) 

�¦ 
 a��	v: 	@	�√1	��	�: 		{| 	/y	�11	��������1aw1�	Bx	��a���:§		���a	w1	Bx	 �	 	�√1	��	�:		{|	/y	�31	�a������a�1�w1�	Bx	��a���:§		����	w1	Bx	 	� 	�	{|	/y	�:3	v:1	�a��	�:§		Bx 	�  

	@{|/y���*a	�£√1	��	�:�:1��£√1	��	�:�§1.��w1Bx*�£√1	��	�:�:1�	�£√1	��	�:�§1.	A		�	�a��	�:§		w1	Bx 	 � ��1�§����£��		�:√1 �	�:�3	�£���£��		�:√1 	�{|/y�:b	�a���:§			���a��	1	Bx �  

��:�§ 	�£	������		�:√1 �	�1�3	�������		�:√1 	�{|/y�::	�a���:§			������	1	Bx �	 �	v:a	v1 	 @ a���a��	�:§		Bx 	�	�√1	��	�: 		{|	/y	�1	1 �a�a����a�1�w1�	Bx	�	a���	w1	Bx �   

	�√1	��	�: 	{|	/y	�31 	�a������a�1�w1�	Bx 	�	���	w1	Bx � ��1	�§ 	����£��		�:√1 �	�:�3	�£	���£	��		�:√1 	�	{|	/y	�:b���a��	1 	� 2	qE	Sk 	���	Z�� 	�  

��:�§ 	�£	������		�:√1 �	�1�3	�������		�:√1 	�{|/y�::		������	1	 � ��	w1		 ha	√�	������		v: 	qESk�	h√�	��	v:	���	��� � 	3	m�	Hd	 �		          

	h√�	��	v:������ � 3m�Hd		Z� � Z���1 � 	�√1	��	�1 	{|/y�1	1 ��������1aw1�	Bx 	��	�a���:§		���a	w1	Bx	 � 	�√1	��	�1{|/y�31	�a������a�1�w1�Bx��	�a���:§		����	w1	Bx	 �  

	{|	/y	��a	�£	√1	��	�1 		�:1�		�£	√1	��	�1 	�§1			���	�	w1	{|	/y	�	�£	√1	��	�1		�:1�		�£	√1	��	�1 	�§1			Bx		¥	�a�	��:§			w1	Bx �		 	{|	/y	�:3	v11�a�	�	�:§		Bx �  

��1	�§	����£��		�1√1 �		�:�3 	�£	���£��		�1√1 			�	{|	/y	�:b	�a���:§			���a��	1	Bx � ��:	�§	�£	������		�1√1 �		�1�3	�£	������		�1√1 			�	{|	/y	�::	�a���:§ 			������	1	Bx  )]]  .                   

(25) 

���	 
 �v:a	v1 	 @@�	 	�√1	��	�:	�11	�:1	�	��a�	w1 	Bx�	¥	�a���:§			w1	Bx � Bx 	�:1 	�£		�§	�����		�:√1¥	�a���:§			��§	 	��4	�	4	h�	√�	��	v:	��	��	�m� � ��	��		�� �  

 4h√�	������		v:	�����m� � ����	�� � 4	h√�	��	v:	�����m� � ����	�� � 4h√���	�����	v:	�����m� � ����	�� � 

h 		��	��a��		v:√� 	m������4 � 3	��	 � h 	�	�	�����		v:√� 	m�	��� 	��4 � 3	��	 � h 		�	�����		v:√� m����	�4 � 3	��		 � 
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  ��8	h�	√�	��	v:	��	��	��	��� � 8	h 	√�	�	�����		v:	��	��	��	��� � 8	h 	√�	�	�	�����		v:	��	��	��	��¦ �  

8	h 	√�	�� 	v:	��	��	��	��¦ �	h 		��	��a��		v:√� 	m�	��� 	��8 � 3	��		��4	]� �	m�	 � 

h 		��	�����		v:√� 	m�	��� 	��8 � 3	��		��4	]� �	m�	 � h 		�	�����		v:√� 	m����	�8 � 3	��		��4	]� �	m�			Hd � 

m�	��4	]� �	m�	 ²	�	h 	�	�����		v:√� 		��� � h 	��	��a��		v:	√� 	��� 	� h�		�	�����		v:	√� 		��	� ³	Hd�		 � ���	Z����1 � ���			Hd 	A	Z� �		 

	Z���1 � 	h√�	��	v1 	��� 	���	�	�� � 3	m�	Hd	8	��1 � ���			m�	Hd � Hd	���	ha		��	�����		v1√�8	��1 � ���			��� 	 	 ��4	�	4	h�	√�	��	v1 	��	��	�m� � ��	��		�� � 

4h√�	������		v1 	�����m� � ����	�� � 4h√�	��v1�����m� � ����	�� � 4h√�	�������		v1	��	��	�m� � ��	��	�� � 

h 		��	��a��		v1√� 	m������4 � 3	��	 � h 	�	�	�����		v1√� 	m�	��� 	��4 � 3	��	 � h 		�	�����		v1√� m����	�4 � 3	��		 � 

   ��8	h�	√�	��	v1 	��	��	��	��� � 8	h 	√�	�	�����		v1	��	��	��	��� � 8	h 	√�	�	�	�����		v1	��	��	��	��¦ �  

8	h 	√�	�� 	v1	��	��	��	��¦ �	h 		��	��a��		v1√� 	m�	��� 	��8 � 3	��		��4	]� �	m�	 � 

h 		��	�����		v1√� 	m�	��� 	��8 � 3	��		��4	]� �	m�	 � h 		�	�����		v1√� 	m����	�8 � 3	��		��4	]� �	m�			Hd � 

m�	��4	]� �	m�	� °	�	h 	�	�����		�1√1 		��� � h 	�§	��£��		�1	√1 	��� 	� h§		�	�����		�1	√1 		��	� ±	Hd�		 � �:3	v11�a���:§			Bx	A  .              

(26) 

��� 
 �:1	�£		�§	�����		�:√1¥	�a���:§			��1	�v:av1	 ��4°�h 		�	�����		�:√1 	��� � h 		�	�	�����		�:√1 	��� � h 		�	§	��£��		�:√1 	��� �		h 		§	�		�����		�:√1 		��	� ± �� �  

(16h�	√�	��	v:	��	�� ��m� � ����	+(16h√�	������		v:���� ��m� � ����	 � �16h√�������	v:�����m� �����	 �   

�16	h√�	��	�����		v: 	��	��	�	m� � ��	��	 � h�§��£��	�:√1 	��� 	��� � h§������	�:√1 	��� 	��� � h������	�:√1 	��	� ��� �   

h�	�	�����			�:√1 	��	� ���		Hd � �3	h 		�	�����			�:√1 		m�	��4	]� �	m�			��� � 3	h 		�	�	�����			�:√1 	m�	��4	]� �	m�			��� �  

3	h 		�	§	��£��			�:√1 	m�	��4	]� �	m�			��� � 3	h 	§	�		�����		�:√1 	m�	��4	]� �	m�			��� � 8	h�	√�	��	v:	��	��	��� �  

8	h√�	������		v:	������� � 8	h√�	�� 	v:	��	��	��¥ � 	8	h√�	��	�����		v:	��	����¥	Hd�	 � 

 � �:1	�:3	v:1�a���:§		Bx	�av:�v1	� �£		�	§	�����			�1√1¥	�a���:§ 			��1	�av:�v1	 �4	�����h 		�	�����		�1√1 	��� � h 		�	�	�����		�1√1 	��� � h 		�	§	��£��		�1√1 	��� �		 
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h 		§	�		�����		�1√1 		��	� 		�� � 8h 		�	§	�����			�1√1 	m����	�� �	��	��		Z��		 � 	 	Hd��16h�	√�	�� 	v:	��	����m� � ����	A�� �	   

16h√�	������		v1���� ��m� � ����		A�� � 16h√�������	v1�����m� � ����		A�� �   

16	h√�	��	�����		v1 	��	��	�	m� � ��	��		A�� � 	32	h 			��	�����		v1√� 	m�	��1 � ���		 � h 			��	��a��		v1√� ��� 	A��	A�� �	 
h 			§�	�����		�1√1 ���	A��A�� � h 			�	�����		�1√1 		���	A��A�� � h 			�	������		�1√1 	��� 	A��A�� � 8	h 			�	§�����		�1√1 m���8	]� �	m�	  

���	�� � ��	��		���	Z��		 � Hd�	��3	h 		�	�����			�1√1 		m�	��4	]� �	m�			���	��� � 3	h 		�	�	�����			�1√1 	m�	  

��4]� � m�			��	� ��� � 3	h 		�	�	��a�� 			v1√� 	m�	��4	]� �	m�			������ � 3	h 	�	�		�����		v1√� 	m�	��4	]� �	m�		��	� ��� � 

8	h 			�	§�����		�1√1 	m�	��4	]� �	m�	��1 � ���	 � 8	h�	√�	��	v1	��	��	���	��� � 	8	h√�	������		v1	���������� �  

8	h√�	��	v1	�� 	��	���	��¥ � 8	h√�	��	�����		v1	��	��	���	��¥�	Hd�	 � 8	h 			�	§�����		�1√1 	]�	m���4	]� �	m�		  

���	�� �	��	��		���	Z�� .                                                                                                

(27) 

4. Results and discussions 

           In this section, we shall discuss the influence of various physical parameters of interest on the pressure 

gradient �R �N⁄ , the pressure rise ∆S, the temperature profile i and the concentration profile `. For this purpose 

Figures (1) - (19) were prepared. In all these figures, as m → ∞, this corresponds to the case of considering a 

Newtonian fluid. 

            Figures (1) - (4) illustrate the variations of �R �N⁄  for a given wavelength versus	N, where N ∈ @0,1A. 
Figure (1) shows that by increasing ], �R �N⁄  increases in the narrow part of the channel N ∈ @0.27,0.64A and 

decreases in the wider part of the channel N ∈ @0,0.27A ∪ @0.64,1A. Figure (2) indicates that the effect of Hd on 

�R �N⁄  is quite opposite to that of ]. From Figure (3) it can be seen that an increase in m decreases �R �N⁄  in the 

narrow part of the channel N ∈ @0.27,0.64A while in the wider part of the channel N ∈ @0,0.27A ∪ @0.64,1A there is 

no noticeable difference. Figure (4) indicates that as � increases, a lesser amount of pressure gradient is required in 

order to pass the flow in the narrow part of the channel. 

            Figures (5) - (7) present the variation of the pressure rise ∆S per wavelength against the time 

averaged flux s.When pressure difference ∆S 
 0 which is the case of free pumping, the corresponding time 

averaged flux s  is denoted by s∗ ¾ 0 . Here we subdivide the graph into four regions, (I)  ∆S 
 0  and 
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s 
 s∗ ¾ 0 (free pumping region ), (II) ∆S ¾ 0 and  s ¿ 0  (backward pumping region), (III) ∆S ¾ 0 and 

s∗ ¾ s ¾ 0 (peristaltic pumping region), (IV) ∆S ¿ 0 and s∗ ¿ s  (co-pumping region). Figure (5) depicts that 

with increasing m, ∆S decreases in the backward, peristaltic and free pumping regions till it reaches a critical value 

s 
 1.6 in the co-pumping region where ∆S starts to increase by increasing m. From Figure (6) it is noticed that 

by increasing Hd , ∆S decreases in the backward pumping region till it reaches a critical value s 
 0.62 in the 

peristaltic pumping region after which ∆S increases with decreasing Hd . From Figure (7) we observe that the 

effect of  ] is quite opposite to that of  Hd in all pumping regions, however that critical value s 
 0.62 remains 

unchanged. 

            Figures (8) - (13) describe the variation of the temperature profile with y for several values of 

Hd	, qE 	, Sk	,  m and ]. From Figures (8), (9), (12) and (13) it is clear that by increasing qE	, Sk , Hd	and jE the 

temperature profile increases, while from Figures (10) and (11) we observe that the temperature profile decreases 

with the increase in m and ]. 

            Figures (14) - (19) are plotted to study the effects of jk	, Hp	, Hd	, m, jE and ] on the concentration 

profile. Here we have chosen the values of jk  and 	Hp such that their product is a constant value, as we assume that 

the mean temperature is kept constant. Figure (15) shows that by decreasing Hp  and increasing jk  the 

concentration profile decreases, while in Figure (16) it is clear that by increasing Hp  and decreasing jk  the 

concentration profile increases. Figures (17) and (19) show that concentration profile decreases with the increase in 

Hd and jE . Figures (14) and (18) illustrates that by increasing ] and m the concentration profile increases. 

 

5. Conclusion 

           In this article, we have presented a mathematical model that describes a MHD peristaltic flow of a 

couple stress fluid through a porous medium in an asymmetric channel in presence heat and mass transfer. The 

governing equations of the problem were solved analytically under assumptions of long wavelength and small 

Reynolds number. A set of graphs were plotted in order to analyze the effects of various physical parameters on these 

solutions. The main findings can be summarized as follows: 

•  The peristaltic pumping region increases as the couple stress parameter  m decreases. 

•  By decreasing the couple stress parameter m, the longitudinal pressure gradient �R �N⁄  increases in the   

narrow part of the channel while in the wider part there is no appreciable difference. 

• By increasing the couple stress parameter m the temperature profile decreases and the concentration profile 

increases. 

• Increasing the value of  jE leads to an increase in the temperature profile whereas it causes a decrease in the 

concentration profile. 
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• The concentration profile of the fluid decreases with decrease of  Hp (or increase in jk) and vise versa. 

• By letting m → 	∞, Hd → 	∞, 	Hp → 0, jk → 0, jE → 0, we can get the results obtained for the temperature 

profiles by Srinivas and Kothandapani [12].  
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    Figure (1). Pressure gradient versus N for � 
 0.6,                Figure (2). Pressure gradient versus 

N for � 
 0.6,       
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     Figure (3). Pressure gradient versus N for � 
 0.6,             Figure (4). Pressure gradient versus N 

for � 
 0.6,             
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 �� , r 
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 Figure (5). Pressure rise versus s for � 
 0.7,	                      Figure (6). Pressure rise versus s 

for � 
 0.7,	 
      � 
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 0.5, � 
 �� , Hd 
 2.                               � 
 1.2 , � 
 2,] 

0.5, � 
 �� , m 
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         Figure (7). Pressure rise versus s for � 
 0.                Figure (8). Temperature profile for � 
 0.7, � 
 0.8, 
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    Figure (9). Temperature profile for � 
 0.7, � 
 0.8,       Figure (10). Temperature profile for � 
0.7, � 
 0.8,	     
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  Figure (11). Temperature profile for � 
 0.7, � 
 0.8,        Figure (12). Temperature profile for � 
0.7, � 
 0.8,                  
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  Figure (13). Temperature profile for � 
 0.7, � 
 0.8,        Figure (14). concentration profile for � 
0.7, � 
 1.2,         
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       Figure (15). Concentration profile for � 
 0.7, � 
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 Figure (16). concentration profile for � 
 0.7, � 
 1.2,         Figure (17). Concentration profile for � 
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 1.2,       
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Figure (18). concentration profile for � 
 0.7, � 
 1.2,       Figure (19). Concentration profile for � 
 0.7, � 

1.2,                                                                                       
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Figure (20).  

Geometry of the problem 
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