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Abstract  

This paper addresses the dynamic behaviour of 3-φ induction machines based on a quality mathematical model 

and computer program simulation in a stationary reference frame to avoid the complexity involved in the course 

of solving time-varying differential equations obtained from the dynamic model. Laplace transform of the 

dynamic equations was carried out to derive analytical solutions the current variables.  4
th

 0rder Runge-Kutta 

method is adopted to give numerical solution of the dynamic model. The basic electrical characteristics of the 3-

φ induction machine are considered in the two-phase approximate equivalent model. The graphical curves were 

obtained from MATLAB program code developed. 

Keywords: 3-ϕ Induction Machines, Dynamic Model, Reference Frame, αβ-Coordinate, Analytical and 

Numerical Solution, MATLAB program code 

 

1. Introduction 

With the advancement in motion control of an automation systems used in every section of industrial and 

commercial activities, induction motors AC drives are being preferred in contrast to their DC drives counterparts 

because of its low maintenance cost while offering equal and often superior dynamic performances in terms of 

speed and torque characteristics when compared with the DC drives. 

 However, squirrel cage rotor of induction motor is the most commonly used AC drives. The actual rotor 

cage contains a relatively large number of conductors (rotor bars) which are short circulated by the end rings. 

 It is clear that the dynamic model of an induction machine which comprises differential equations and 

algebraic expressions relating the machine variables (voltage, current and flux) and parameters during transient 

process and also, in the steady state is given by the voltage equations (Kirchoff’s and Faraday’s laws) and 

Newton’s differential equations of motion that described the electrical and mechanical subsystem of the 

induction motor respectively. But these set of differential equations and expressions describing the dynamic 

behaviors of the induction motor are time-varying due to relative motion in the electric circuits of an induction 

motor (except for the locked rotors). Owing to complexity involved when solving these time-varying differential 

equations, even when they are being transformed to complex frequency (s) domain (i.e Laplace transformed 

which is shown later) a change of variables is often adopted to minimize such complexity arises from the 

differential equations in the course of electric machine analysis. 

 Several transformation of variables approach have been developed (park, Stanley, Clarke, Brereton and 

kron et al) to eliminates time varying inductances by referring the stator and rotor variables to a frame of 

reference that may rotate at an angular velocity θef or remain stationary (i.e θef =0) and this is known as arbitrary 

reference form. 

 Because of the uncertainty in the choice of reference frame to give accurate and precise results while 

investigating the electrical behaviors of induction machines, dynamic modeling and steady state analysis of an 

induction machines have gained popular research interests. 

 Therefore, one of the reference frames used in this paper to validate the dynamic response of three 

phase induction motor is a reference frame fixed in the stator (stationary reference frame). In this transformation 

method, the stator AC vector variables defined by radial and tangential space vectors of cylindrical coordinate 

are represented by rectangular coordinate system of two orthogonal axes denoted by  and β on the same plane 

(Clarke E). By this approach, the original variables fabcx of the three phase machine model can be reduced to a 

sample, clear and intuitive (which is the basic purpose of any research wok) two-phase equivalent model having 

the same flux, torque and power as the original three phase induction machine. Note that the subscript ‘x’ in the 

variable fabcx could either be ‘s’ or “r” denoting variables and parameters associated with either stator or rotor 

circuits respectively. 

 

2. Induction motor mathematical model 

It is generally known, that the three phase induction motor has three sets of windings, spatially displaced 

by  electrical degrees. If these stator windings star (Y) connected are being fed by a balanced three phase 
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supply voltage defined as; 
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A desired magnetic field within the three phase induction motor is established by a set of three-phase 

currents of the same amplitude and angular frequency ‘ω’ expressed as; 
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Since the stator windings are considered to be three identical, sinusoidally distributed windings displaced by 

2  with Ns equivalent turns and resistances Rs per phase. Likewise, rotor windings are also considered as 

there identical simusoidally distributed windings displaced by 2 , with Nr equivalent turns and resistances Rr. 

 
The voltage equation in the motor variables may be expressed as; 

( )abcxxabcxxabcx N
dt

d
iRV φ+=         (3) 

Since;  abcxabcxxN ψφ =  

Therefore; the voltage equations are; 

abcrabcrrabcr

abcsabcssabcs

dt

d
iRV

dt

d
iRV

ψ

ψ

+=

+=

        (4) 

Where; variable ‘ψ’ is the flux linkages in the windings. 

The proceeding sections summarized the conversion of three phase winding model to its two phase equivalent 

model. 

 

2.1 Two – Phase Equivalent Model of the 3-Φ Induction Motor 

 In order to obtain the two-phase equivalent model of the three phase induction motor model variables; 

stationary reference fame of αβ – plane is used as shown in equation (5a). 

 abcxx fKf  =αβ         (5a) 

Where;  [ ] [ ] and                      ,   
T

cxbxaxabcx

T

xxx fffffff == βααβ  
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The instantaneous values of the three-phase system variables can be obtained from the stationary reference frame 

using: 

x

T

abcx fkf αβ=         (5b) 

Where; 
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2.2 Dynamic Equations of the Two Phase Equivalent Model 

The α-β transformation applied to the three-phase stator voltages of equation (1) is; 
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To obtain the dynamic equations of the motor, it is convenient to refer all rotor variables to the stator side by 

scaling rotor variables with appropriate transformation ratios (similar to transformer circuit). It is very important 

to note that all voltage terms due to angular speed of reference frame circuit are exempted since a stationary 

reference frame is adopted in this paper. The equivalent circuit of the motor referred to the stator is shown in 

Fig.2. 

siα
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A.) Voltage equations: 

Applying KVL and Faraday’s law around the stator and rotor loops respectively. 
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Stator Loops: 
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d
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       (7a) 

Rotor Loops: 

 

     (8a) 

  

But, rotor windings are short circuited by the end rings at of squirrel cage rotor. Therefore, . Thus, 

rotor voltage equations can be reduced to; 
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       (8b) 

Hence; the transformed dynamic voltage equation can be expressed in matrix form as; 

      (9) 

B.) Flux Linkage Equation 

The flux linkages within the stator and rotor of the motor equivalent circuit on αβ-plane are given by: 
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Re-writing the flux linkages of equation (10) in a state-variable form: 

 
Where;   

[ ] [ ]

T

r

r

s

s

TT

LL

LMM

LMM

MML

MML

L

iiiii

=



















−

−

=

==

          such that;            

0cossin

0sincos

cossin0

sincos0

as; defined is Lmatrix  inductance  theand              ,      rrssrrss

θθ

θθ

θθ

θθ

ψψψψψ βαβααββαβααβ

 

C.) Torque Equation 

The total torque on the rotor is; 

 

)]cossin()sincos([ θθθθ βααβαβ rrsrrsr iiiiiiMT +−−=   (11) 

With the load torque TL, the Newton’s equations are: 
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          Lr TT
dt

d
J −=

ω
       (12) 

And    
dt

dθ
ω =  

Where ‘θ’ is the transformation angle due to position changes of the motor motion with respect to the stator. 

N.B: All the dynamic equations derived above are for a paired of poles (i.e one North pole and one South Pole). 

 

2.3 Dynamic Equations of a Multiple Pairs of Poles Induction 

If the rotor has ‘P’ pairs of poles, the flux linkages are modified as; 
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Since, Ns and Nr were defined as the stator and rotor windings per a pole paired respectively. Therefore, the total 

number of windings in a stator phase windings are; PNs and PNr respectively. 

Then, the dynamic equations for P-multiple pairs of poles are; 
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3. Mathematical model solution using Laplace transformation 

Expanding equation (13) above; 
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If in equation (15):   .)sin(    and   )cos( III MPMMPM == θθ Then, taking the Laplace transform of 

the resulting equations, we have; 
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Where;  

If the initial conditions  are substituted in equation (16) and collecting 

the like terms; 
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Writing this in a state matrix form; 

  

    

   (17) 

 

This could be represented by; 
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Where the impedance matrix Z=Z
T 

is given by; 
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Solving equation (17) using Cramer’s rule; 
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Such that; analytical solutions to the currents are; 
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In sequel to the above Laplace transform which could only provide analytical solution to the unknown variables 

in the dynamic equations, there is a need to develop a quantitative method that can discretize the solutions of the 

equations (13) & (14) instead of analytical solution. Since this work is aimed at investigating the dynamic 

behavior of the motor. Therefore, the numerical values of the variables obtained in a discrete form could be used 

to display this in graphical form. The numerical method adopted in solving the differential equations in this 

paper is Fourth (4
th

)-Order Runge-Kutta method because it is an excellent general purpose differential equation 

solver [Greenberg, 1998]. Here we present 4
th

 order Runge Kutta method for generating approximate numerical 

solution values to an initial value problem; ),( yxfy I =  with initial condition 00 )( yxy =  at selected points 

xo, xn…….xN. If the distance between successive points at which approximate values of the solutions are 

computed (step size)=h. To compute point (xn, yn) require gradient of ),( nn yxff =  which can be 

summarized as follows; 
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So, from the dynamic equations (13) and (14) of multiple pole pairs of an induction motor; if the relative 

position of the rotor to the stator is set at θ = 0
0
 (i.e Maximum. magnetic coupling) and the number of pole pairs 

P=3; we have: 
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If the retarding torque produced by the friction in the ball bearing of the motor is modeled by fω, where 

f=Coefficient of Viscous Friction.  

Therefore, the equivalent Newton’s differential equation is; 
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βααβ )(
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Multiply equations (a) and (c) by Lr and M respectively; 
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Subtracting equations (f) from (e) to simplify; 

     (g)                              )( 2
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Likewise, multiply equations (b) and (d) by Lr and M respectively we have; 
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Subtracting equation (i) form (h), we have; 
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Also, if equations (a) and (c) are multiplied by M and Ls respectively we have; 
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Subtracting equation (l) from (k); 
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Also, if equations (b) and (d) are multiplied by M and Ls respectively, the resulting equations are (o) and (p); 
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Subtracting (p) from (o), we have (q); 

(q)                                    )( 2

dt

di
MLLiLRiMRMV

r

srrsrsss

β

βββ −−−=  

Arranging equations (g), (m), (j) and (q); 
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From equations (g), (m),, (j), (q) and (r), equations (20), (21), (22), (23) and (24) are obtained respectively; 
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And; 
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θ
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In order to simulate the two-phase equivalent of the three phase dynamic model of induction motor, the 

differential equations (20-25) will be solved using the 4
th

 Orrder Runge-Kutta described above with the aid of 

MATBLAB code program (M-file). 

 

4. Computer simulation and results 

The 3hp, 415volts, 50HZ, 1440rpm, 6poles, three phase induction motor chosen for this dynamic modeling and 

simulation has the following operating characteristics parameters: 

Per phase stator resistance Rs = 0.0135Ω 

Per phase rotor resistance referred to stator side = Rr = 0.9i6Ω 

Per phase stator inductance Ls = 0.5H 

Per phase rotor referred to stator side Lr = 1.7H 

Per phase mutual inductance M = 0.0117H 

Moment of inertial J = 0.001kg-m
2
 

Load Torque TL = 0.8 Nm 

 

The MATLAB code program developed to solve the dynamic differential equations of the three-phase induction 

motor was achieved using the algorithm stated in the flow-chat of fig.3 below. 
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4.1 Results and Discussions 

The MATLAB computer simulation of the model was carried out under the following basic assumptions:- (i) 

Lumped Parameter Assumptions (LPA) and (ii) Effect of magnetic saturation is neglected. 

The graphical results obtained from the computer simulation of the induction motor for dynamic 

analysis in a stationary reference frame are shown in the figures below:  

 

Start 

Input induction motor parameters 

Print; iαs, iαr, iβs, iβr, vαs, vβs, ω,θ, ias, iar, ibs, ibr, 

ics, icr , e.t.c. 

Read the initial values of the unknown 

variables in the D. Equations 

For tspan=[0 0.5]; %time step ‘h’ 

N=100;           %No of time steps 

For n=1:N 

 

Compute: (αβ)-Reference Voltages using eqn-(6) 

 

Solve the differential equations 

(20) – (25) using 4
th

 Order Runge-Kutta 

Is 

n<=N? 

Evaluate the three-phase instantaneous values v and i for 

the stator and rotor using eqn-(5b) 

tn=tn-1+h 

Yes 

No 

End 

Fig. 3: The Flow-Chart for the Dynamic Model of the Three-Phase Induction Motor 
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Fig.4: Stator currents in stationary reference frame (iαs and iβs) 
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Fig. 5: Rotor currents in stationary reference frame (iαr and iβr) 
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Fig. 6: Stator voltages in stationary reference frame (Vαs and Vβs) 
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Fig. 7: Rotor voltages in stationary reference frame (Vαr and Vβr) 
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Fig. 8: Stator phase currents IAs, IBs and ICs respectively. 
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Fig. 9: Rotor phase currents IAr, IBr and ICr respectively. 

 

 
Fig.10: Rotor Angular Speed ω (rpm)-Time t (s) Profile 
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Fig.11: Rotor Angular Displacement θ (Deg.)-Time t (s) Profile  

 

Figure 4 - 9 shows the electrical profiles of the three-phase induction motor model based on Faraday laws and 

Fig. 10&11 shows the mechanical behavior of the machine based of Newton’s equation. 

 

Conclusion 

The paper gives a comprehensive mathematical dynamic model of a three-phase induction motor using a 

reference frame (α-β transformation) fixed in the stator. The stationary reference frame or α-β axes model 

presents a simpler and clear analysis of the machine such that all internal electrical variables is accessible for the 

study of dynamic and steady state behaviors of the induction motor. Also, it must be mentioned here that the 4
th

 

Order Runge-Kutta Method has proven suitable for providing a precise numerical solution to differential 

equations with initial conditions. Finally, the mathematical models and MATLAB program code developed gives 

a reliable dynamic behavior of induction motor using a reference frame theory. 
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