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Abstract 

With rapid and flexible resource provisioning of virtualization in data centers, problems of determining optimal 

virtual machine (VM) placements and dealing with virtualization overheads have emerged due to workload 

fluctuations and changing needs. These challenges have impacts on system performance.In this work, a 

performance model based on queuing theory, statistical methods and basic theories on system performance is 

proposed in which the researcher models the response time distribution of an application performance metric 

conditioned on variables that can be measured or controlled, such as system resource utilization and allocation 

metrics. The research also examined the relationships between virtualized CPU allocation, CPU contention, and 

application response time to identify the influence of CPU allocation and how it affects system 

performance.Comparing estimated values with measured values, empirical result shows that the proposed model 

validated for all the CPU allocations in the experiments conducted. The response time increases as workload 

increases; it is also observed from the analysis that the response time increases with low CPU. Thus by varying 

the CPU allocation base on business needs, am optimal point can be reached such that the CPU can be efficiently 

managed. 

 

1. Background of Study 

As application portfolios expands to meet up with the target of making virtually all processes information 

technology (IT) based; budgets have tightened as well. The best approach is to increase server utilization and 

reduce costs using virtualization strategies that consolidate servers and pool IT resources allowing better control 

while increasing the flexibility of the IT infrastructure (Krishnamurthy et al., 2006).  

A recent focus on reducing the economic costs of IT motivates increased resource sharing and on-demand 

computing. Towards this, virtualization technologies enable IT resources to be dynamically allocated among 

multiple applications. Such a model empowers organizations to flex their computing resources based on workloads 

and business needs, and hence improve the efficiency of IT operations (Kephart et al., 2007).  

Resource contention is intensified in virtualized environments due to the consolidation nature of 

virtualization. Hence, the problem is how to minimize the allocation of CPU server resource to an IT service (or 

application), while satisfying service level objectives. It is therefore necessary to formally understand the factors 

that meddle with application performance and virtualized resource allocation in order to avoid over-provisioning 

or over-loading of physical IT resources.  

 

1.1 Research Motivation 

The primary goal of the service level objectives in virtualized data center is to ensure appropriate performance of 

the corresponding IT service. Hence, the responsibility is to monitor user experience and the technical environment 

to determine if performance in terms of application response time begins to deteriorate in order to respond to issues 

which negatively impacts the users’ experience. This condition prompts questions like; how can we efficiently 

manage server resources despite highly varying application workloads? This research attempts to provide solution 

to these issue. 

According to (Zhikui et al., 2009), application performance in virtual machine can be modelled using the 

equation below 

� = 1
λ� C�e	 − C�

�

��

								 

Where T is the response time, λ is the workload, Cm is the consumption in tier m, em is the allocated CPU 

resource in tier m.  

The model predicts resource demand to meet application-level performance requirement based on 

workload transaction-mix history. However, the following problems were identified.  

i. Approach failed to maximize server resources through consolidation  

ii. Approach failed to consider other hypervisors (VMware) where CPU cores available can be 

shared among virtual machines.  

iii. The design architecture in Zhikui et al does not mimic a typical datacenter. 

iv. Approach failed to consider hidden request/transaction been process by the CPU especially 
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on windows guest operating system where Antivirus and other services are running. 

v. Zhikui et al model was not experimented online on the production server to accommodate real 

user experience. 

vi. The model assumed that request is held only at one tier. 

vii. Measurement of response time on the client is associated with too many factors that affects 

performance (network availability and speed, client system and its configuration, geographical 

location).  

Hence, this research focuses on improving Zhikui’s model that optimizes performance of applications in 

virtualized data center. This research intends to solve these challenges mentioned above. 

 

2.0 Overview of VMware Hypervisors 

Virtualization became more eminent as a result of its aim in improving resource utilization through server 

consolidation. VMware’s ESX platform is a full virtualization technique that provides a “bare-metal” hypervisor 

that manages a set of virtual machines running unmodified operating systems. It serves as a cornerstone for their 

vSphere cloud computing platform, provides a host of capabilities not currently available with any other 

hypervisors. E.g High Availability, Distributed Resource Scheduling Distributed Power Management, Fault 

Tolerance, and Site Recovery Manager VMmark (2012). 

 

2.1 Evaluating Performance in Virtualized Environment 

Apte et al. (2007) carried out a research on how CPU allocation and system response time can be balanced in a 

virtualized data center. In this research, a Control-theoretic approach was used to tune the CPU resource allocated 

to a virtual machine in order to optimize the application performance metrics while using minimal CPU resource. 

The prototype and validation of the methodology was done on a small virtualized testbed via the use of Xen 

virtualization environment.  

Wang et al (2009) presented a coordinated power and performance control mechanism which again uses 

two control loops. The “outer” control loop maintains a specified power budget by manipulating the CPU 

frequency levels, while an “inner” control loop adjusts the CPU resource allocated to a VM to maintain application 

performance at a high level.  

In handling the problem of dynamisms of workloads in real applications, Chen et al (2009), proposed a 

practical approach that combined fine grained performance models with regression analysis to translate service 

level objectives into design and operational policies for multi-tier applications. 

Zhikui et al (2009) presented a performance model based on workload transaction history using Xen 

hypervisor and RUBiS. The model can predict performance of multi-tier applications running on virtualized 

servers with variable CPU entitlements. The modelling approach is non-intrusive in the sense that the process of 

model parameter identification requires no additional instrumentation and the data used in this approach is readily 

available from standard system and application monitoring. 

 

3.0 Experimental Method  

To model the performance of virtual machines, the researcher deploys a typical virtualized datacenter setup using 

VMware EXSI 5.1 Hypervisor on HP SL170s, with 32GB RAM, 2.93GHz 2 4-core Intel Xeon Processor, 2x1TB 

HDD internal storage with 12TB SAN storage to mimic an average datacenter solution. The CPU controlled 

approach is adopted such that CPU allocation to the virtual machine is varied as workload varies. All virtual 

machines were assigned the same number of CPU cores available on the physical host.   

The methodology requires three different applications as workload generator setup on three testbeds with 

the same configuration. These workloads include a PHP and Java controller based RUBiS as standard workload 

generator for offline estimation of parameters and two custom application exMaster and AppSton based on 

ASP.net and PHP respectively for online parameter estimation on the production server.  
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Fig 3.1:  Experiment setup in virtualized Environment 

Five (5) points of variation for CPU allocation to the virtual machines were considered as follows: 20%, 

40%, 60%, 80% and 100%. At intervals of 60 seconds, the performance metrics were recorded. 50 measurements 

were taken for the different CPU allocations for the two core virtual machines (web and database server). 

The PHP based RUBiS is a standard workload generator for offline parameter estimation. RUBiS is an 

open source benchmark application designed for several platforms (PHP, JAVA, etc) with MySQL as the database 

server and java client workload generator. Measurements were taken while varying the number of threads 

(100,200,300, 400 and 500) running on the client generating workload.  

The exMaster is based on ASP.Net designed using C# and MySQL.  exMaster is an online administrative 

result processing system designed to manage student academics records. 

The AppSton is based on PHP/Apache and MySQL. AppSton is a comprehensive student portal designed 

to manage student records from admission, screening,  payment of fees and registration of courses. 

At peak periods when the various users of the custom applications (exMaster & AppSton) are busy, CPU 

allocations are varied and performance metrics are recorded. Workload estimation is based on the number of 

request available to the webserver when metrics are recorded. Although this approach records high level of 

workload fluctuation based on user activity; this is to capture real user experience in a production environment. 

The IIS worker process logs and Apache server logs records the values for the ASP.Net and PHP based applications 

respectively. 

This model is then demonstrated to ascertain the validity of the methodology through experiments in 

virtualized environments across a range of resource allocation and contention states to show that this methodology 

can model the probability distribution of response time with a mean absolute error of less than 5% when compared 

with the measured response time distribution.  

 

3.1 Assumptions 

The accuracy of internal measurements of application response time is affected by the virtualization environment. 

In VMware, a virtual machine is transparent to the guest Operating System. Hence, measurements taken from 

inside the virtual machine guest are unaware of any delays introduced due to resource sharing. These delays are 

negligible due to the hypervisor design and non CPU resources are assumed to be adequately provisioned.  The 

contention problem is reduced in VMware; this is handled by the dynamic resource scheduler (DRS) to load 

balance shared resources.  

These issues were considered hidden factors and the following assumptions were also made. 

i. CPU is the only resource to be dynamically allocated among virtual machines.  

ii. Virtual Machine scheduler employs a capped mode, such that a virtual machine cannot use more than the 

CPU time allocated to it. This assures a straightforward guarantee on resource allocation and provides 

good performance differentiation between applications sharing physical resources.  

iii. The virtual machines will always have the same CPU allocation.  

iv. Applications are monitored by their response time and CPU consumption. 

v. Poisson process is a good approximation of request arrivals 

vi. All virtual machine data are stored in a LUNs on the SAN (storage server). 
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3.2 Notations 

Here are the notations and basic definitions used:  

i. Resource allocation α to refer to the percentage of a physical resource capacity (e.g., CPU) that is 

allocated to a virtual machine. α=c/u 

ii. Resource consumption c is the actual percentage of the physical resource consumed by a virtual machine 

during a given time interval.  

iii. Resource utilization u=c/α.   

iv. Ω Number of CPU cores available to virtual machine 

v. n, N Number of virtual machines running separate tiers. 

vi. i , I transactions types 

vii. T mean Response time for CPU resource 

viii. β is the request from known applications running on the server 

ix. δ is the request from unknown applications running on the server 

x. λin  average CPU demand of transaction i in tier n 

xi. γ is the workload 

 

3.3 Model Generation 

The approach employed here is to characterize response time as a probability distribution conditioned on CPU 

allocation and workload fluctuation while focusing on the dependency of CPU allocation and response time as 

well as the contention rate of the allocated resources. 

Recall that each tier (web, database) in the experiment runs on separate virtual machine. This can be 

assumed as a general setup for a typical consolidated datacenter solution. Hence we have virtual machines Vn 

(n=1,2, 3...N ). 

According to Zhikui et al, the intensity of the workload can be defined as a vector (β1, . . . , βi), where βi 

is the average request rate of transaction type i during one time period for known applications.  

Hence the aggregate rate of the known transaction/request type i can be defined as 

�� = �β��																																																																															(3.1)
�

��

 

Similarly, following Zhikui’s expression as stated above, workload for unknown can be defined as a vector (δ1, . . . , 

δi), where δi is the average request rate of transaction type i during one time period for unknown applications. This 

unknown application request could be from underground services that has impact on the residence time. Since 

poison is a good approximation of request arrival rate, δ can be estimated using poison. 

In the same vein the aggregate rate of the unknown transaction can be defined as 

�� = �δ��																																																																													(3.2)
�

��

 

Let the total workload from known and unknown transactions on tier n be defined as γn  �� =	�� +	��																																																																							(3.3) 
Our earlier assumption is that non-CPU resources are adequately provisioned and hence the effect of contention 

for these resources on the response time (i. e., the queuing delay) is negligible. 

According to Zhikui et al utilization is defined as the ratio of resource consumption and resource entitlement as  

� =  !																																																																																																(3.4) 

From queuing theory according to Virtamo (2003), the total CPU resident time by all the requests served in tier n 

is represented   by  
#$
%&'			 where �n is the CPU utilization of tier n. 

According to Ricardo Lent (2011), Transaction type i may proceed to core j for processing with 

probability Ω (i, j) or leave the system. Assume single CPU core was allocated to the virtual machine, all server 

request would be handled by the same physical core. The routing probability from transaction of type i in VM n 

to the aggregated core subsystem can be represented as 0.9 < ∑ 	Ω(i, j)	-  < 1 to model the higher CPU utilization 

that is observed when running virtualized applications. 

Given that T is the reference service time (when using a single physical core), thus it can be established 

that the use of Ω (n) cores by VM n produces: 
.
Ω  as workload shared among cores in tier n 

Since it is assumed that all virtual machines have the same number of CPU core and allocations, then the CPU 

resident time of all the transactions in tier n with aggregate β and δ is 

T� 	= 	 ��Ω 	� U�1 − U� 																																																												(3.5	) 
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Cape mode is employed in our assumption; hence we can replace utilization u for response time Ʈ. From equations 

(3.4) and (3.5) we have  

T� 	= 	 ��Ω 	� C�α� − C� 																																																												(3.6	) 

According to Zhikui et al (2009), the resource demands of different transaction types are usually different, but the 

resource demand of a single transaction type is relatively fixed irrespective of the transaction mix of the workload 

and CPU entitlement of the virtual machines, since each transaction type usually has a relatively fixed code 

execution path and hence a stable resource demand. 

Hence, the number of request that is generated at each tier is relative to the request rate of transaction issued by 

the user such that given a workload with transaction mix β1, . . . , βi, the CPU consumption can be estimated as a 

linear function of the transaction mix. 

4� = �λ��(β� + δ�)																																																																	(3.7)
6

��

 

Thus equation (3.6) is the response time for CPU resource. Equation (3.7) is the utilization model.  

In order to finalize the performance model, the target is to determine response time with respect to CPU allocation. 

Since response time for non-CPU service time is not affected by the allocated CPU or entitlement, we conclude 

that equation (3.6) is the performance model. 

Since the transaction mix changes over time in a non-stationary way, and the relationship between Cn and βi are 

linear, λin can be estimated through linear regression using (3.7)   

 

4.0 Results and Discussions 

To evaluate the model, data collected from the performance statistics of CPU allocation and consumptions as well 

as the number of transactions β in the application been considered are used. The focus is to compare the estimated 

values and the measured values of the response time for the different CPU allocations. 

 

4.1 Analyses based on RUBIS standard workload 

To evaluate the performance model, we compare the values of the observed response time and the estimated 

response time as shown in the figures 4.1 to 4.5 

 

Fig 4.2:  Performance prediction of VM Mean 

Response Time (MRT) for CPU allocation at 

80%  

Fig 4.1:  Performance prediction of VM Mean 

Response Time (MRT) for CPU allocation at 

100%  
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Fig 4.3:  Performance prediction of VM 

Mean Response Time (MRT) for CPU 

allocation at 60%  

Fig 4.4:  Performance prediction of VM 

Mean Response Time (MRT) for CPU 

allocation at 40%  

 

 

 Fig 4.5:  Performance prediction of VM Mean 

Response Time (MRT) for CPU allocation at 

20%  

 

From the figures above (fig 4.1 - 4.5), it is observed that our performance model estimated value fits the 

observed/measured value as CPU allocation increases. The values are closely related at CPU allocations of 20 %, 

40%, 60%, 80% and 100%.  

To ascertain the validity of the model, we consider the mean response time % error in the model as shown 

in the Table 4.1 

Table 4.1 MRT Estimation error for RUBiS Application based on PHP and java controller 

% CPU Allocation Avg Observed(s) Avg Estimated (s) % Error 

20 84.34 85.66 1.565094 

40 59.48 59.14 -0.57162 

60 38.26 39.12 2.247778 

80 5.84 6.06 3.767123 

100 5.4 5.31 -1.66667 

From the table 4.1, the estimated response time for allocations at 20%, 40%, 60%, 80%, and 100% are 

considerable close to the observed values for corresponding allocations with higher values recorded at 80% 

allocation since it is assumed that the workload for the unknown applications is zero. Workload from unknown 

applications cannot be readily observed due to background processes. It therefore infers that the model fits at the 

various CPU allocations of 20%, 40%, 60%, 80%, and 100%. 
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4.2 Model Evaluation Based On ASP.Net and IIS 
Using sample data of the CPU allocation at 100% in the virtualized environment running exMaster application 

based on ASP.Net C# on IIS 7. The relationship was established using SPSS data analysis tool as shown in Table 

4.2 

To evaluate the performance model, comparison of values of the observed response time and the 

estimated response time as shown in the figures 4.6 to figure 10. 

 
 

 

 
From the figures above (fig 4.6 - 4.10), in ASP.Net, IIS and MySQL platform test, it is observed that the 
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performance model estimated value fits the observed/measured value at all CPU allocation. At CPU allocations of 

60%, 80% and 100% the consumption tends to stabilize with lowering response time at varying request. To 

ascertain the validity of our model, we consider the mean response time % error in our model as shown in the 

Table 4.3 

Table 4.3 MRT Estimation error for exMaster application on ASP.Net 

% CPU Allocation Avg Observed(s) Avg Estimated (s) %Error 

20 16.86 16.08 -4.6 

40 9.54 9.19 -3.6 

60 3.78 3.62 -4.2 

80 2.66 2.64 -1.12 

100 2.66 2.54 -4.5 

From table 4.3, it is observed that at all CPU allocations, the percentage error is less than the 5% 

acceptable benchmark set initially in our experimental design. Besides the improvement in response time as CPU 

allocation increases, no observable trace of contention for resources in the experiment. As noted earlier, workload 

from unknown applications cannot be readily observed due to background processes but it can be estimated using 

poison as a good estimation of request arrival rate. It therefore infers that the model fits at the various CPU 

allocations of 20%, 40%, 60%, 80%, and 100%. 

 

4.3 Model Evaluation Based on PHP/Apache Server 

Consider sample data of the CPU allocation at 100% in the virtualized environment running PHP on APACHE as 

attached in Appendix C, the linear relationship was established using SPSS data analysis tool as shown in Table 

4.4 

Similarly, comparison of observed and estimated mean response time as shown in figure 4.11 to 4.15 
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Fig 4.15:  Performance prediction of VM 

Mean Response Time (MRT) for CPU 

allocation at 20% (PHP, Apache & MySQL) 

 

From the figures above (fig 4.11 - 4.15), in the experiment for AppSton application based on  PHP/Apache 

and MySQL platform, it is observed that the performance model also estimated values that fits the 

observed/measured value as CPU allocation increases. The values are closely related at all CPU allocations of 

20%, 40%, 60%, 80% and 100%.  

To ascertain the validity of our model, consider the mean response time % error in the model as shown 

in the Table 4.5 

Table 4.5 MRT Estimation error for Apache/PHP application 

% CPU Allocation Avg Observed(s) Avg Estimated (s) % Error 

20 6.24 6.32 1.2 

40 4.18 4.30 2.8 

60 3.52 3.50 -0.56 

80 1 1.02 2.0 

100 1 0.99 -1.0 

The estimated values are higher when compared to the observed value at all CPU allocation. This is 

contrary to the case of exMaster where the estimated values are lower. However, in this experiment also, there is 

observable level of stability in the measured values at all CPU allocations.  
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5.0 Summary 

In this work, the researcher presented a performance model based on queuing theory and statistical methods to 

model the performance of consolidated virtual machines hosted on VMware Hypervisors 5.0.  

Although this model is an improvement on Zhikui’s model which was based on Xen Hypervisor and 

Linux guest OS with transaction mix, the researcher took into consideration the following to address the problems 

identified in the base model. 

i. The researcher concentrated on measuring performance both offline (on testbed) and online (on the 

production server) base on VMware Hypervisors with Linux Ubuntu 12.1 server and windows server 

2008 as guest operating system with three (3) different applications as workload generator (RUBiS as 

standard workload, and exMaster & AppSton as custom workload for online production environment) 

ii. The researcher considered the number of CPU cores available to the virtual machines in modeling 

application performance.  

iii. The researcher also considered a consolidated approach in the experimental design by deploying all the 

tier on a single host. This is the core target of virtualization technology. 

iv. The researcher considered the number of threads/request concurrently running as a measure of workload 

on the server. 

v. Although the researcher aggregated request rate from tested application, the request from other hidden 

applications (Antivirus, firewall, etc) and consumptions from background applications or unknown 

processes has been taken into consideration. 

vi. The researcher took into consideration a typical datacenter design practice. 

vii. The researcher concentrated on measuring response time on the server to reduce uncertainty of 

challenges that affects performance like network availability and bandwidth, speed and configuration of 

client system, underlying technology of client system.  

Considering the RUBiS experiment, it is observed that as the number of threads increases, the response 

time also increases with CPU utilization. This observation shows that there is usually contention with low CPU 

allocation at 20% and high request rate from 300 to 500.  

On the other hand, the experiment using custom workload generator exMaster and AppSton on the 

production server, it is observed that although response time increases with lower CPU allocations, as the CPU 

allocation is increased, the CPU consumption tends to stabilize even with increased workload and reducing 

response time. 

Comparison of the results with Zhikui et al (2009) with 2,400 transactions on the average per minute 

using the RUBiS workload shows that at all CPU allocations (20%, 40%, 60%, 80% and 100%), Zhikui’s response 

time is considerably higher (doubled) when workload is lower. Zhikui’s response time tends to reduce when the 

workload increases at same CPU allocation. This may be due to underlying hypervisor and the average number of 

transactions assumed during the time interval of measurement. The number of transactions is expected to increase 

as workload increases. Hence the base model is valid at low workload at all CPU allocations since at high workload 

it observed values differed significantly from the estimated values using the model.  

Similarly, the linearity relationship between CPU consumption and workload as proposed by Zhikui et al 

has not been ascertained in the experiments since the significant difference in the estimation of parameters is 

greater than 0.05 in all the three experiments conducted. These result shows that CPU consumption does not 

depend only on workload but perhaps on other factors that cannot easily be measured in a virtualized environment. 

 

5.1 Conclusion 

Consequently, the proposed model was validated for the different CPU allocation all the experiments conducted. 

The response time increases as workload increases and it is also observed from the analysis of both results that the 

response time increases with low CPU allocation especially at 20% and 40% CPU allocations.  Thus by varying 

the CPU allocation base on business needs, am optimal point can be reached such that the CPU can be efficiently 

managed while satisfying service level objective. Contention arises from low CPU allocation and increases the 

response time for the end users.  

The table below shows the comparison of the base model and the proposed model as well as the 

improvement. 
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Table 5.1 Comparison of base model and proposed model. 

S/No Item Zhikui’s Model Proposed Model 

1 Consolidation of server resources Not consolidated Consolidated 

2 Measurement of model parameters Offline Offline and Online(production server) 

3 Number of Application experiment 

as workload generator 

One (1) Three (3) 

4 Experiment testbed Simple 

architecture 

Typical datacenter design 

5 Hypervisor Xen  Vmware 

6 CPU allocation Controlled 

allocation 

Controlled allocation and Number of CPU 

cores available to VM 

7 Hidden Transactions Assumed to be 

implicit 

Considered as unknown transaction to be 

estimated using poison as an approximation 

of request arrival 

8 Measurement of response On client On the VM 

9 Measure of workload Transaction Aggregate transaction/request 

It is worthy of note that there are other factors from the experiments that can affect the results of the 

model like the number of virtual machines or tiers,  number of measurements considered, type of applications, 

hypervisor, guest OS as well as the interval for the collection of values, number of CPU cores available to virtual 

machine.  

 

5.2 Recommendations 

The researcher will continue to study the performance of virtual machines to ascertain the variation in the linearity 

relationship between CPU consumption and workload which has proven otherwise from the analysis. Research 

will focus on complexities and other hidden factors associated with virtual machine performance. 
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