
Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

19

Performance Modelling of Consolidated Virtual Machines

Egbunu I. Banya1 Egbunu O. Charity2 John T. Ogbiti3

1.Directorate of Info and Comm. Tech, University of Agriculture, Makurdi, Benue State, Nigeria

2.Department of Mathematics/Computer Science, University of Agriculture, Makurdi, Benue State, Nigeria

3.Department of Mathematical Sciences, Kaduna State University, Kaduna State Nigeria

Abstract

With rapid and flexible resource provisioning of virtualization in data centers, problems of determining optimal

virtual machine (VM) placements and dealing with virtualization overheads have emerged due to workload

fluctuations and changing needs. These challenges have impacts on system performance.In this work, a

performance model based on queuing theory, statistical methods and basic theories on system performance is

proposed in which the researcher models the response time distribution of an application performance metric

conditioned on variables that can be measured or controlled, such as system resource utilization and allocation

metrics. The research also examined the relationships between virtualized CPU allocation, CPU contention, and

application response time to identify the influence of CPU allocation and how it affects system

performance.Comparing estimated values with measured values, empirical result shows that the proposed model

validated for all the CPU allocations in the experiments conducted. The response time increases as workload

increases; it is also observed from the analysis that the response time increases with low CPU. Thus by varying

the CPU allocation base on business needs, am optimal point can be reached such that the CPU can be efficiently

managed.

1. Background of Study

As application portfolios expands to meet up with the target of making virtually all processes information

technology (IT) based; budgets have tightened as well. The best approach is to increase server utilization and

reduce costs using virtualization strategies that consolidate servers and pool IT resources allowing better control

while increasing the flexibility of the IT infrastructure (Krishnamurthy et al., 2006).

A recent focus on reducing the economic costs of IT motivates increased resource sharing and on-demand

computing. Towards this, virtualization technologies enable IT resources to be dynamically allocated among

multiple applications. Such a model empowers organizations to flex their computing resources based on workloads

and business needs, and hence improve the efficiency of IT operations (Kephart et al., 2007).

Resource contention is intensified in virtualized environments due to the consolidation nature of

virtualization. Hence, the problem is how to minimize the allocation of CPU server resource to an IT service (or

application), while satisfying service level objectives. It is therefore necessary to formally understand the factors

that meddle with application performance and virtualized resource allocation in order to avoid over-provisioning

or over-loading of physical IT resources.

1.1 Research Motivation

The primary goal of the service level objectives in virtualized data center is to ensure appropriate performance of

the corresponding IT service. Hence, the responsibility is to monitor user experience and the technical environment

to determine if performance in terms of application response time begins to deteriorate in order to respond to issues

which negatively impacts the users’ experience. This condition prompts questions like; how can we efficiently

manage server resources despite highly varying application workloads? This research attempts to provide solution

to these issue.

According to (Zhikui et al., 2009), application performance in virtual machine can be modelled using the

equation below

� = 1
λ� C�e	 − C�

�

��

								

Where T is the response time, λ is the workload, Cm is the consumption in tier m, em is the allocated CPU

resource in tier m.

The model predicts resource demand to meet application-level performance requirement based on

workload transaction-mix history. However, the following problems were identified.

i. Approach failed to maximize server resources through consolidation

ii. Approach failed to consider other hypervisors (VMware) where CPU cores available can be

shared among virtual machines.

iii. The design architecture in Zhikui et al does not mimic a typical datacenter.

iv. Approach failed to consider hidden request/transaction been process by the CPU especially

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

20

on windows guest operating system where Antivirus and other services are running.

v. Zhikui et al model was not experimented online on the production server to accommodate real

user experience.

vi. The model assumed that request is held only at one tier.

vii. Measurement of response time on the client is associated with too many factors that affects

performance (network availability and speed, client system and its configuration, geographical

location).

Hence, this research focuses on improving Zhikui’s model that optimizes performance of applications in

virtualized data center. This research intends to solve these challenges mentioned above.

2.0 Overview of VMware Hypervisors

Virtualization became more eminent as a result of its aim in improving resource utilization through server

consolidation. VMware’s ESX platform is a full virtualization technique that provides a “bare-metal” hypervisor

that manages a set of virtual machines running unmodified operating systems. It serves as a cornerstone for their

vSphere cloud computing platform, provides a host of capabilities not currently available with any other

hypervisors. E.g High Availability, Distributed Resource Scheduling Distributed Power Management, Fault

Tolerance, and Site Recovery Manager VMmark (2012).

2.1 Evaluating Performance in Virtualized Environment

Apte et al. (2007) carried out a research on how CPU allocation and system response time can be balanced in a

virtualized data center. In this research, a Control-theoretic approach was used to tune the CPU resource allocated

to a virtual machine in order to optimize the application performance metrics while using minimal CPU resource.

The prototype and validation of the methodology was done on a small virtualized testbed via the use of Xen

virtualization environment.

Wang et al (2009) presented a coordinated power and performance control mechanism which again uses

two control loops. The “outer” control loop maintains a specified power budget by manipulating the CPU

frequency levels, while an “inner” control loop adjusts the CPU resource allocated to a VM to maintain application

performance at a high level.

In handling the problem of dynamisms of workloads in real applications, Chen et al (2009), proposed a

practical approach that combined fine grained performance models with regression analysis to translate service

level objectives into design and operational policies for multi-tier applications.

Zhikui et al (2009) presented a performance model based on workload transaction history using Xen

hypervisor and RUBiS. The model can predict performance of multi-tier applications running on virtualized

servers with variable CPU entitlements. The modelling approach is non-intrusive in the sense that the process of

model parameter identification requires no additional instrumentation and the data used in this approach is readily

available from standard system and application monitoring.

3.0 Experimental Method

To model the performance of virtual machines, the researcher deploys a typical virtualized datacenter setup using

VMware EXSI 5.1 Hypervisor on HP SL170s, with 32GB RAM, 2.93GHz 2 4-core Intel Xeon Processor, 2x1TB

HDD internal storage with 12TB SAN storage to mimic an average datacenter solution. The CPU controlled

approach is adopted such that CPU allocation to the virtual machine is varied as workload varies. All virtual

machines were assigned the same number of CPU cores available on the physical host.

The methodology requires three different applications as workload generator setup on three testbeds with

the same configuration. These workloads include a PHP and Java controller based RUBiS as standard workload

generator for offline estimation of parameters and two custom application exMaster and AppSton based on

ASP.net and PHP respectively for online parameter estimation on the production server.

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

21

Fig 3.1: Experiment setup in virtualized Environment

Five (5) points of variation for CPU allocation to the virtual machines were considered as follows: 20%,

40%, 60%, 80% and 100%. At intervals of 60 seconds, the performance metrics were recorded. 50 measurements

were taken for the different CPU allocations for the two core virtual machines (web and database server).

The PHP based RUBiS is a standard workload generator for offline parameter estimation. RUBiS is an

open source benchmark application designed for several platforms (PHP, JAVA, etc) with MySQL as the database

server and java client workload generator. Measurements were taken while varying the number of threads

(100,200,300, 400 and 500) running on the client generating workload.

The exMaster is based on ASP.Net designed using C# and MySQL. exMaster is an online administrative

result processing system designed to manage student academics records.

The AppSton is based on PHP/Apache and MySQL. AppSton is a comprehensive student portal designed

to manage student records from admission, screening, payment of fees and registration of courses.

At peak periods when the various users of the custom applications (exMaster & AppSton) are busy, CPU

allocations are varied and performance metrics are recorded. Workload estimation is based on the number of

request available to the webserver when metrics are recorded. Although this approach records high level of

workload fluctuation based on user activity; this is to capture real user experience in a production environment.

The IIS worker process logs and Apache server logs records the values for the ASP.Net and PHP based applications

respectively.

This model is then demonstrated to ascertain the validity of the methodology through experiments in

virtualized environments across a range of resource allocation and contention states to show that this methodology

can model the probability distribution of response time with a mean absolute error of less than 5% when compared

with the measured response time distribution.

3.1 Assumptions

The accuracy of internal measurements of application response time is affected by the virtualization environment.

In VMware, a virtual machine is transparent to the guest Operating System. Hence, measurements taken from

inside the virtual machine guest are unaware of any delays introduced due to resource sharing. These delays are

negligible due to the hypervisor design and non CPU resources are assumed to be adequately provisioned. The

contention problem is reduced in VMware; this is handled by the dynamic resource scheduler (DRS) to load

balance shared resources.

These issues were considered hidden factors and the following assumptions were also made.

i. CPU is the only resource to be dynamically allocated among virtual machines.

ii. Virtual Machine scheduler employs a capped mode, such that a virtual machine cannot use more than the

CPU time allocated to it. This assures a straightforward guarantee on resource allocation and provides

good performance differentiation between applications sharing physical resources.

iii. The virtual machines will always have the same CPU allocation.

iv. Applications are monitored by their response time and CPU consumption.

v. Poisson process is a good approximation of request arrivals

vi. All virtual machine data are stored in a LUNs on the SAN (storage server).

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

22

3.2 Notations

Here are the notations and basic definitions used:

i. Resource allocation α to refer to the percentage of a physical resource capacity (e.g., CPU) that is

allocated to a virtual machine. α=c/u

ii. Resource consumption c is the actual percentage of the physical resource consumed by a virtual machine

during a given time interval.

iii. Resource utilization u=c/α.

iv. Ω Number of CPU cores available to virtual machine

v. n, N Number of virtual machines running separate tiers.

vi. i , I transactions types

vii. T mean Response time for CPU resource

viii. β is the request from known applications running on the server

ix. δ is the request from unknown applications running on the server

x. λin average CPU demand of transaction i in tier n

xi. γ is the workload

3.3 Model Generation

The approach employed here is to characterize response time as a probability distribution conditioned on CPU

allocation and workload fluctuation while focusing on the dependency of CPU allocation and response time as

well as the contention rate of the allocated resources.

Recall that each tier (web, database) in the experiment runs on separate virtual machine. This can be

assumed as a general setup for a typical consolidated datacenter solution. Hence we have virtual machines Vn

(n=1,2, 3...N).

According to Zhikui et al, the intensity of the workload can be defined as a vector (β1, . . . , βi), where βi

is the average request rate of transaction type i during one time period for known applications.

Hence the aggregate rate of the known transaction/request type i can be defined as

�� = �β��																																																																															(3.1)
�

��

Similarly, following Zhikui’s expression as stated above, workload for unknown can be defined as a vector (δ1, . . . ,

δi), where δi is the average request rate of transaction type i during one time period for unknown applications. This

unknown application request could be from underground services that has impact on the residence time. Since

poison is a good approximation of request arrival rate, δ can be estimated using poison.

In the same vein the aggregate rate of the unknown transaction can be defined as

�� = �δ��																																																																													(3.2)
�

��

Let the total workload from known and unknown transactions on tier n be defined as γn �� =	�� +	��																																																																							(3.3)
Our earlier assumption is that non-CPU resources are adequately provisioned and hence the effect of contention

for these resources on the response time (i. e., the queuing delay) is negligible.

According to Zhikui et al utilization is defined as the ratio of resource consumption and resource entitlement as

� = !																																																																																																(3.4)

From queuing theory according to Virtamo (2003), the total CPU resident time by all the requests served in tier n

is represented by
#$
%&'			 where �n is the CPU utilization of tier n.

According to Ricardo Lent (2011), Transaction type i may proceed to core j for processing with

probability Ω (i, j) or leave the system. Assume single CPU core was allocated to the virtual machine, all server

request would be handled by the same physical core. The routing probability from transaction of type i in VM n

to the aggregated core subsystem can be represented as 0.9 < ∑ 	Ω(i, j)	- < 1 to model the higher CPU utilization

that is observed when running virtualized applications.

Given that T is the reference service time (when using a single physical core), thus it can be established

that the use of Ω (n) cores by VM n produces:
.
Ω as workload shared among cores in tier n

Since it is assumed that all virtual machines have the same number of CPU core and allocations, then the CPU

resident time of all the transactions in tier n with aggregate β and δ is

T� 	= 	 ��Ω 	� U�1 − U� 																																																												(3.5)

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

23

Cape mode is employed in our assumption; hence we can replace utilization u for response time Ʈ. From equations

(3.4) and (3.5) we have

T� 	= 	 ��Ω 	� C�α� − C� 																																																												(3.6)

According to Zhikui et al (2009), the resource demands of different transaction types are usually different, but the

resource demand of a single transaction type is relatively fixed irrespective of the transaction mix of the workload

and CPU entitlement of the virtual machines, since each transaction type usually has a relatively fixed code

execution path and hence a stable resource demand.

Hence, the number of request that is generated at each tier is relative to the request rate of transaction issued by

the user such that given a workload with transaction mix β1, . . . , βi, the CPU consumption can be estimated as a

linear function of the transaction mix.

4� = �λ��(β� + δ�)																																																																	(3.7)
6

��

Thus equation (3.6) is the response time for CPU resource. Equation (3.7) is the utilization model.

In order to finalize the performance model, the target is to determine response time with respect to CPU allocation.

Since response time for non-CPU service time is not affected by the allocated CPU or entitlement, we conclude

that equation (3.6) is the performance model.

Since the transaction mix changes over time in a non-stationary way, and the relationship between Cn and βi are

linear, λin can be estimated through linear regression using (3.7)

4.0 Results and Discussions

To evaluate the model, data collected from the performance statistics of CPU allocation and consumptions as well

as the number of transactions β in the application been considered are used. The focus is to compare the estimated

values and the measured values of the response time for the different CPU allocations.

4.1 Analyses based on RUBIS standard workload

To evaluate the performance model, we compare the values of the observed response time and the estimated

response time as shown in the figures 4.1 to 4.5

Fig 4.2: Performance prediction of VM Mean

Response Time (MRT) for CPU allocation at

80%

Fig 4.1: Performance prediction of VM Mean

Response Time (MRT) for CPU allocation at

100%

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

24

Fig 4.3: Performance prediction of VM

Mean Response Time (MRT) for CPU

allocation at 60%

Fig 4.4: Performance prediction of VM

Mean Response Time (MRT) for CPU

allocation at 40%

 Fig 4.5: Performance prediction of VM Mean

Response Time (MRT) for CPU allocation at

20%

From the figures above (fig 4.1 - 4.5), it is observed that our performance model estimated value fits the

observed/measured value as CPU allocation increases. The values are closely related at CPU allocations of 20 %,

40%, 60%, 80% and 100%.

To ascertain the validity of the model, we consider the mean response time % error in the model as shown

in the Table 4.1

Table 4.1 MRT Estimation error for RUBiS Application based on PHP and java controller

% CPU Allocation Avg Observed(s) Avg Estimated (s) % Error

20 84.34 85.66 1.565094

40 59.48 59.14 -0.57162

60 38.26 39.12 2.247778

80 5.84 6.06 3.767123

100 5.4 5.31 -1.66667

From the table 4.1, the estimated response time for allocations at 20%, 40%, 60%, 80%, and 100% are

considerable close to the observed values for corresponding allocations with higher values recorded at 80%

allocation since it is assumed that the workload for the unknown applications is zero. Workload from unknown

applications cannot be readily observed due to background processes. It therefore infers that the model fits at the

various CPU allocations of 20%, 40%, 60%, 80%, and 100%.

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

25

4.2 Model Evaluation Based On ASP.Net and IIS
Using sample data of the CPU allocation at 100% in the virtualized environment running exMaster application

based on ASP.Net C# on IIS 7. The relationship was established using SPSS data analysis tool as shown in Table

4.2

To evaluate the performance model, comparison of values of the observed response time and the

estimated response time as shown in the figures 4.6 to figure 10.

From the figures above (fig 4.6 - 4.10), in ASP.Net, IIS and MySQL platform test, it is observed that the

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

26

performance model estimated value fits the observed/measured value at all CPU allocation. At CPU allocations of

60%, 80% and 100% the consumption tends to stabilize with lowering response time at varying request. To

ascertain the validity of our model, we consider the mean response time % error in our model as shown in the

Table 4.3

Table 4.3 MRT Estimation error for exMaster application on ASP.Net

% CPU Allocation Avg Observed(s) Avg Estimated (s) %Error

20 16.86 16.08 -4.6

40 9.54 9.19 -3.6

60 3.78 3.62 -4.2

80 2.66 2.64 -1.12

100 2.66 2.54 -4.5

From table 4.3, it is observed that at all CPU allocations, the percentage error is less than the 5%

acceptable benchmark set initially in our experimental design. Besides the improvement in response time as CPU

allocation increases, no observable trace of contention for resources in the experiment. As noted earlier, workload

from unknown applications cannot be readily observed due to background processes but it can be estimated using

poison as a good estimation of request arrival rate. It therefore infers that the model fits at the various CPU

allocations of 20%, 40%, 60%, 80%, and 100%.

4.3 Model Evaluation Based on PHP/Apache Server

Consider sample data of the CPU allocation at 100% in the virtualized environment running PHP on APACHE as

attached in Appendix C, the linear relationship was established using SPSS data analysis tool as shown in Table

4.4

Similarly, comparison of observed and estimated mean response time as shown in figure 4.11 to 4.15

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

27

Fig 4.15: Performance prediction of VM

Mean Response Time (MRT) for CPU

allocation at 20% (PHP, Apache & MySQL)

From the figures above (fig 4.11 - 4.15), in the experiment for AppSton application based on PHP/Apache

and MySQL platform, it is observed that the performance model also estimated values that fits the

observed/measured value as CPU allocation increases. The values are closely related at all CPU allocations of

20%, 40%, 60%, 80% and 100%.

To ascertain the validity of our model, consider the mean response time % error in the model as shown

in the Table 4.5

Table 4.5 MRT Estimation error for Apache/PHP application

% CPU Allocation Avg Observed(s) Avg Estimated (s) % Error

20 6.24 6.32 1.2

40 4.18 4.30 2.8

60 3.52 3.50 -0.56

80 1 1.02 2.0

100 1 0.99 -1.0

The estimated values are higher when compared to the observed value at all CPU allocation. This is

contrary to the case of exMaster where the estimated values are lower. However, in this experiment also, there is

observable level of stability in the measured values at all CPU allocations.

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

28

5.0 Summary

In this work, the researcher presented a performance model based on queuing theory and statistical methods to

model the performance of consolidated virtual machines hosted on VMware Hypervisors 5.0.

Although this model is an improvement on Zhikui’s model which was based on Xen Hypervisor and

Linux guest OS with transaction mix, the researcher took into consideration the following to address the problems

identified in the base model.

i. The researcher concentrated on measuring performance both offline (on testbed) and online (on the

production server) base on VMware Hypervisors with Linux Ubuntu 12.1 server and windows server

2008 as guest operating system with three (3) different applications as workload generator (RUBiS as

standard workload, and exMaster & AppSton as custom workload for online production environment)

ii. The researcher considered the number of CPU cores available to the virtual machines in modeling

application performance.

iii. The researcher also considered a consolidated approach in the experimental design by deploying all the

tier on a single host. This is the core target of virtualization technology.

iv. The researcher considered the number of threads/request concurrently running as a measure of workload

on the server.

v. Although the researcher aggregated request rate from tested application, the request from other hidden

applications (Antivirus, firewall, etc) and consumptions from background applications or unknown

processes has been taken into consideration.

vi. The researcher took into consideration a typical datacenter design practice.

vii. The researcher concentrated on measuring response time on the server to reduce uncertainty of

challenges that affects performance like network availability and bandwidth, speed and configuration of

client system, underlying technology of client system.

Considering the RUBiS experiment, it is observed that as the number of threads increases, the response

time also increases with CPU utilization. This observation shows that there is usually contention with low CPU

allocation at 20% and high request rate from 300 to 500.

On the other hand, the experiment using custom workload generator exMaster and AppSton on the

production server, it is observed that although response time increases with lower CPU allocations, as the CPU

allocation is increased, the CPU consumption tends to stabilize even with increased workload and reducing

response time.

Comparison of the results with Zhikui et al (2009) with 2,400 transactions on the average per minute

using the RUBiS workload shows that at all CPU allocations (20%, 40%, 60%, 80% and 100%), Zhikui’s response

time is considerably higher (doubled) when workload is lower. Zhikui’s response time tends to reduce when the

workload increases at same CPU allocation. This may be due to underlying hypervisor and the average number of

transactions assumed during the time interval of measurement. The number of transactions is expected to increase

as workload increases. Hence the base model is valid at low workload at all CPU allocations since at high workload

it observed values differed significantly from the estimated values using the model.

Similarly, the linearity relationship between CPU consumption and workload as proposed by Zhikui et al

has not been ascertained in the experiments since the significant difference in the estimation of parameters is

greater than 0.05 in all the three experiments conducted. These result shows that CPU consumption does not

depend only on workload but perhaps on other factors that cannot easily be measured in a virtualized environment.

5.1 Conclusion

Consequently, the proposed model was validated for the different CPU allocation all the experiments conducted.

The response time increases as workload increases and it is also observed from the analysis of both results that the

response time increases with low CPU allocation especially at 20% and 40% CPU allocations. Thus by varying

the CPU allocation base on business needs, am optimal point can be reached such that the CPU can be efficiently

managed while satisfying service level objective. Contention arises from low CPU allocation and increases the

response time for the end users.

The table below shows the comparison of the base model and the proposed model as well as the

improvement.

Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol.7, No.8, 2016

29

Table 5.1 Comparison of base model and proposed model.

S/No Item Zhikui’s Model Proposed Model

1 Consolidation of server resources Not consolidated Consolidated

2 Measurement of model parameters Offline Offline and Online(production server)

3 Number of Application experiment

as workload generator

One (1) Three (3)

4 Experiment testbed Simple

architecture

Typical datacenter design

5 Hypervisor Xen Vmware

6 CPU allocation Controlled

allocation

Controlled allocation and Number of CPU

cores available to VM

7 Hidden Transactions Assumed to be

implicit

Considered as unknown transaction to be

estimated using poison as an approximation

of request arrival

8 Measurement of response On client On the VM

9 Measure of workload Transaction Aggregate transaction/request

It is worthy of note that there are other factors from the experiments that can affect the results of the

model like the number of virtual machines or tiers, number of measurements considered, type of applications,

hypervisor, guest OS as well as the interval for the collection of values, number of CPU cores available to virtual

machine.

5.2 Recommendations

The researcher will continue to study the performance of virtual machines to ascertain the variation in the linearity

relationship between CPU consumption and workload which has proven otherwise from the analysis. Research

will focus on complexities and other hidden factors associated with virtual machine performance.

References
Apte Varsha, Rukma P. Verlekar, Bhavish Aggarwal and Prakhar Goyal (2007) A Methodology and Tool for

Performance Analysis of Application Hosting Centers , in MASCOTS'07, the 15th Annual Meeting of

the IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, Istanbul. pp 207

Krishnamurthy D., Rolia J. A., and Majumdar S.(2006), A synthetic workload generation technique for stress

testing session-based systems. IEEE Trans. Software Engineering, 32(11), pp 868–882

Mark B. Friedman; (2012) Measuring Processor Utilization in Windows and Windows applications

http://demandtech.com/wp-content/uploads/2012/04/Measuring-Processor-Utilization-in-Windows.pdf

Pradeep Padala, Kai-Yuan Hou, Kang G. Shin, Xiaoyun Zhu, Mustafa Uysal, Zhikui Wang, Sharad Singhal, and

Arif Merchant (2009): Automated control of multiple virtualized resources. EuroSys’09, April 1–3, 2009,

Nuremberg, Germany

Rao J., Bu X.,Xu Z., Wang L., and Yin G.Vconf:(2009) A reinforcement learning approach to virtual machines

auto-configuration, ICAC ’09:Proceedings of the 6th international conference on Autonomic computing.

Ricado Lent (2011), Evaluating the Performance and Power Consumption of Systems with Virtual Machines. 3rd

IEEE International Conference on cloud computing and technological science.

Virtamo J (2003) Processor sharing Queue, 38 3141 Teletrafic theory, pp 1-11

VMmark, Features of VMmark, Virtualization Benchmark,

http://www.vmware.com/products/vmmark/features.html

Wang X and Wang Y. (2009) Co-con: Coordinated control of power and application performance for virtualized

server clusters. IWQOS ’09: Proceedings of the 17th Int’l Workshop on Quality of Service, Charleston,

SC, USA, 2009.

Zhikui Wang, and Yuan Chen, Daniel Gmach, Sharad Singhal, Brian J. Watson, Wilson Rivera, Xiaoyun Zhu, and

Chris D. Hyser (2009), Application level performance in virtualized server environment, IEEE

Transaction on Network and service management, Vol 6, No 4.

