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Abstract:  

Our object in this paper to discuss about fixed point theory in 2-Banach space also we established a fixed point 

theorem in 2- Banach space which generalized the result of many mathematician.  
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1  Introduction 

The concept of two banach space firstly introduced by (Gahler1964) This space was subsequently been studied by 

mathematician (Kirk1981) and (Kirk1983)  in last years. (Badshah and Gupta2005) also proved some result in 2-

Banach space.(Yadav et al 2007 ) prove the result in 2-Banach space for non contraction mapping. (Lal and Singh 

1978)the analogue og Banach Contraction principle in 2-metric space for selfmap and in the present we prove a fixed 

point theorem in 2-Banach Spaces by taking nanexpansive mapping.  

 

2  Preliminaries 

 2.1 Definition:  

Let X be a real linear space and .,.  be a nongative real valued function defined on X satisfying the fallowing 

condition: 

  

(i) , = 0x y  iff x and y are linearly dependent.  

(ii) , = ,x y y x  for all x,y   X.  

(iii) , = ,x ay a x y  , a being real, for all x,y   X.  

(iv) , = , ,x y z x y y z   for all x,y,z   X. 
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 then .,.  is called a 2-norm and the pair ( , .,. )X  is called a linear 2-normed space. 

So a 2-norm ,x y  always satisfies , = ,x y ax x y  for all x,y  X and all scalars a. 

 

2.2 Definition: 

A Sequence  nx  in a 2-norned space ( , .,. )X  is said to be a Cauchy sequence if          

, , = 0limm n m nx x a   for all a in X.  

 

2.3 Definition:  

A Sequence  nx  in a 2-norned space ( , .,. )X  is said to be convergent if there is a point x in X such that 

, = 0n nlim x x y   for all y in X. If nx  converges to x , we write nx x  as n  .  

 

2.4 Definition:  

A linear 2-normed space is said to be complete if every Cauchy sequence is convergent to an  element of X. A 

complete 2-normed space X is called 2-Banach spaces.  

 

2.5 Definition:  

Let X be a 2- Banach space and T be a self mapping of X.T is said to continuous at x  if for every sequence 

   ,n nx inX x x  as n  implies      .nT x T x as n    

 

2.6 Definition:  

A function :f R R  is said to be upper semi continuous at a point x R  if given > 0  there exist a 

neighourhood N of 0x  in which    0<f x f x  for all x N .  

 

2.7 Definition:  

Let X be a 2-Banach space and C be non empty bounded closed and convex subset of X. A mapping :T C X  is 

said to be nonexpensive if  

                        ayxayTxT ,),()(   where x,yC 

  

3  Main Result 

3.1 Theorem  

Let F and G be two non expansive mapping of a 2-Banach space X into itself . F and G satisfy the fallowing 

condition   

(1)   

FG = G = I where I is identity map. 

 

(2) 

           , , , , , ,F x G y a x F x a y G y a x G y a y F x a x y a              
 

where , , , , , 0         ,x y X  where 2 2 3 2          then F and G have common fixed point 

.  

Proof : 

Taking 
1

= ( ) , = ( ) = 2
2

y F I x z G y u y z   , then 
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, = ( ) ( ),z x a G y FG x a    

Now using (1) and (2) we get  

 

 

  , = ( ) , ( ), ( ) ( ( )), ( ( )), ( ) ( ), ( ),z x a G y G F x a y G y a F x G F x a y G F x a F x G y a y F x a               

 

axFyayGyayxFaxxFaxxFayGy ),(
2

1
),(,)(,)(

2

1
,)(),(  

 

1 1 1
( ) ( ) | ( ) ( )

2 2 2
y G y F x x            P  

 

Now , = 2 , = ( ) ( ),u x a y z a G y F x a    

 

( ), ( ), ( ), ( ), ,y G y a x F x a y F x a x G y a y x a               

 

1 1 1
( ), ( ), ( ), ( ), ( ), ( ),

2 2 2
y G y a x F x a x F x a x F x a y G y a x F x a                

 

1 1 1
( ) ( ) | ( ) ( )

2 2 2
y G y F x x            P  

 

     
, , ,z u a z x a x u a      

 

(2 2 ) ( ), (2 ) ( ),y G y a x F x a              

 

Now , = ( ) 2 ( ), = 2 ( ),z u a G y y G y a y G y a     

 

      
(2 2 ) ( ), (2 ) ( ),y G y a x F x a              

 

  


 
2(1 ) ( ), (2 ) ( ),y G y a x F x a              

 

  


2

( ), ( ),
2(1 )

y G y a x F x a
   

 

  
  

 
 

 

        
 ( ), ( ),y G y a S x F x a    

 

where,
 

2
= 1

2 1
S

   

 

  


 
 

 

and 2 2 3 2          
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Let  
1

= ,
2

T F I  then for any x X   

 
2( ) ( ), = ( ( )) ( ),T x T x a T T x T x a   

 


1

( ) , = ( ),
2

T y y a y F y a   

 


1 1

( ) ( ), ( ) ,
2 2

FG y F y a G y y a   , because F is nonexpensive function . 

 

So, 
2 ( ) ( ), ( ),

2

S
T x T x a x F x a    , by definition of S . We claim that ( )nT x  is a Cauchy sequence in X. 

Also by completness ( )nT x  converges to ( )T x  , 

 

i.e 
0( ) =lim

n
n T x x   0 0( ) =F x x  therefore 0x  is fixed point of F. 

 

Again 
2 ( ) ( ), ( ), = ( ) ( ), ( ),

2 2 2

S S S
T x T x a x F x a FG x F x a x G x a       

 

we can conclude that 0 0( ) =G x x  that is 0x  is fixed point of G. 

 

Therefore 0 0 0( ) = ( ) =F x G x x  , so 0x  is common fixed point of F and G. 

 

The uniqueness part is obvious. 
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