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Abstract 

 

The existing classical plate solution expands the load function in Fourier(trigonometric) series  to be in 

tune with the partial differentials representing loading. In this presentation, constant point-wise values 

of the differentials are sought in conformity with constant rate of loading. Faster exact results are 

demonstrated by this new method  for both lateral loading and buckling. The subject is relevant for 

developing technologies on account of huge constructional works in office and apartment buildings, 

ships, oil pipe-lines, oil reservoirs and platforms ,beams-and-plates bridges and similar events. The 

method is shown to lead to buckling solutions by the constant initial elastic stiffness procedure , 

perhaps, for the first time  .  

Keywords : acceleration; displacement; ratio;  envelops; beam; plate ;buckling ;stiffness matrix . 

 

1.  Introduction: 

Civil, environmental and specialized industrial construction-works are every-day activities and plate 

bending ,buckling of plates and frames in buildings, air-crafts, bridge-works, and many other areas call 

for fast ,accurate and simplified design-analysis. Timoshenko and Woinowsky-Krieger,(1959), studied 

the strength of plates and shells and their publication has continued to serve as reference compendium 

to researchers. The connection of beams and columns to make load-carrying structures carries with it 

the need to continue to study the phenomenon of buckling failure. Wood (1974),Horne(1975), Cheong-

Siat- Moi (1977), Mottram(2008) give relatively recent effective opinions on buckling of frames. What 

is, remarkably, absent in the literature is the study of buckling by the constant elastic stiffness matrix; 

rather in the existing method ,the stiffness matrix is reformed by stability functions adjustments of the 

slope-deflection equations according to the growth of axial forces. Johnarry (2009,2011) showed how 
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the acceleration-displacement transform of partial differentials can successfully lead to a constant 

stiffness solution of buckling problems in bars and frames .All solutions are ,first ,with respect to 

curvatures and moments relative to support values and these resolve  to final solution values when any 

tuning support fixing curvatures/moments have been accounted for. 

The method of matrix analysis of frames and the finite element analysis of continuums are well known. 

In the present computer implementation of acceleration-displacement transform, bending moments are 

interpreted as accelerations (and they are) and where gravity loads appear in the final stiffness 

equation, [K].{ d  }=  {F} , the nodal bending moments are substituted .By successive approximation, 

after some two or three iterations a steady-state situation is achieved and that is the objective. The 

relative acceleration-displacement-ratio must be point-wise constant, as much as feasible; that is 

resonance.  

The method readily computes the fundamental frequencies of structures/frames (not shown here, 

Johnarry ,2009). A new and simpler buckling instability criterion is, by this method, defined. 

 

 

2. Plate Solution by Acceleration-displacement Ratio Transform: 

 

The flexure of the plate is described by the bi-harmonic equation, 

 

D[∂
4
w / ∂x 

4
 + 2 ∂

4
w / ∂x

2
∂y

2
 + ∂

4
w / ∂y

4
]  = q            …..(2.1) 

 

= D(w,xxxx  + 2 w,xxyy  +w,yyyy )  =  q  ;alternate statement of  Eq.2.1 

 

The equation can be solved as,  (D=flexural rigidity of thin plate.)     

                                                                                        

                    D. J. w  = q   ; or   w  = (q/D)/ J                              ….. (2.2)      

                                       

This is a direct opposite of the Fourier series transformation of the load method in that each of the 

differentials in Eq.2.1 is made to have a point-wise constant value over the domain . 

Transform into acceleration-displacement ratio, -‘Rad =Rxx.,Ryy.,Rxy.,’ thus, (χ =∂
2
w/∂x

2
 .) 

 

        ∂
4
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2
)0] /w .  =Jxx .Rxx                       (2.3) 

 

So,  multiply through by ‘w’ and integrate, 

 

∫∫(∂
4
w/ ∂x

4
) w ∂x ∂y  =  Jxx  ∫∫ (χ - χ0) ∂x∂y                            …..(2.4)  
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For the all-round  - ss case of a plate, take  

 

w  =   ∑  ∑   Amn (sin m π x/a)sin n π y/b                              … (2.5) 

           ∞     ∞ 

     =    ∑     ∑     Amn Sx.Sy.                                                              

          m=1  n=1 

Introducing Eq.2.5  for  Eq.2.4, we have 

           Jxx =  Amn m
3
 n π

4
 /16a

2
                                                           …..(2.6) 

Also 

∂
4
w/∂y

4
   = Jyy  (∂

2
w/∂y

2
)  / w 

Jyy  = Amn m n
3
 π 

4
 / 16b

2
        

 
2.1.1 Twist Transform  : 

 

If it were possible, 

            w,xxyy. =  Jxy. (w,xy.)relative  /w             

The twisting curvature (w,xy,rel) integrate to zero and is unsuitable ,vis-à-vis the ‘LHS’.  Twists are 

complements of normal shapes and lack independence and can be related to the normal shapes. Find an 

alternate equivalent twist shape function, G,w,xxyy-eff      

 

G.w,xxyy-eff. =  Kt. [Gw,xxxx. + Gw,yyyy. ]                                                   …………(2.7) 

 

Choose ‘Kt’ so that the maximum relative ordinates on both sides of Eq.2.8 are equal. 

Relative accelerations form the basis of the analysis. 

 

Kt.  =  [ Gw,xxyy]rel,max. /  [Gw,xxxx +  Gw,yyyy, ]rel,max.                                                (2.8)    

 

In the ss-case, ‘Kt’ = 1/2   .More studies are necessary here.  

Gw,xxyy,eff .= Kt .[Gw,xxxx + Gw,yyyy ]     =  Jxy .  ;;(constant contribution);      

               

∫∫ Gw,xxyy,eff. w ∂x∂y =  Jxy.. ∫∫ (1.0) w ∂x∂y        …………………………………   (2.8)   
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2
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Eq.2.1  now becomes 
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D [ Jxx( ∂
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2
) / w +  2 Jxy . +Jyy (∂

2
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2
) / w]   =   q        ………..          (2.9)      

                             

When reduced, we have 

Amn [π
6
/16] m n ( m

2
/a

2
 + n

2
 / b

2
)

2
  = q / D                              ………….          (2.10) 

 

Amn   = ∑  ∑  (16q /D)  (π
6
 m n (m

2
 /a

2
 + n

2
 / b

2
)

2 
. …………………….           .(2.11) 

This is an exact amplitude expression in Timoshenko&Krieger (1959) and so, all results of 

displacements and moments are as in that citation. 

wi = Ac Sx.Sy.  = 0.00416qa
4
 /D, for  m = 1, n = 1; x = a/2; y = b/2 

which is the exact known result , for the fundamental.    

Taking additionally, m=1,n=3;m=3,n=1;m=3,n=3;  wc. =0.00406 qa
4
/D 

 

2.2 The Point Load Case : 

 

From Eq.2.9    multiplied by ‘w’  for integration 

 

D∫∫ [ Jxx ∂
2
w / ∂x

2
 + 2Jxy w + Jyy ∂

2
w/ ∂y

2
] = q* w  = ∫∫ q*∂x∂yAmn.Sx.Sy.   …    (2.12) 

 

‘q*’ only exists at an isolated center area where the total load is ’P’ with maximum  

displacement, wp .=A.*mn      Integrate over area so that,       

                                    

∫∫ (q*) ∂x∂y (wp) =  P (Amn )Sx.Sy                                                  .…………                    (2.13) 

 

This allows potentials to be compared on both sides of Eq.2.9 
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w  =  Σ  Σ  Amn. Sx.Sy.  ;(put in Amn. and complete the solution) 

 

w = [(4P/D/π
4
) (Sx.Sy.)

2
] / [m

4
b /a .  +  2m

2
.n

2
.a/b   + n

4
.a

3
/b

3
] /a

2    
.….     (2.16) 

 

w1,1   =  P a
2
 ./97.4 = 0.0103 P a

2
 /D   ;;(exact as in Ref

 
-1,  for m=n=1); 

w1,3. = 0.00041 = w3,1.  ;w1,6=0.00006075 =w1,6 ;w3,3=0.000127    ;So, 

w1,1;1,3;3,1,1,6;6,1;3,3. =   0.01135 Pa
2
. /D  ;(exact,0.0116-Ref-1))                                        
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(χx )  = D ∂
2
w/ ∂

2
x                                                              …………….    (2.17) 

Alternatively find curvatures/moments  from the eventual displacement relation, 

w  =  wc. Sin πx/a .Sin πy/b.   (wc.= final central displacement=known)   … 

( χc)x. =   0.01135(π
2
) P = 0.112 

Allowing for poison’s ratio of ‘0.3’ then ‘mc’= 0.1456 P   = P/6.87; almost final but no comparable 

exact result source. The present method finds exact results of displacements and credible results for 

bending moments, if the point load does not cause immediate collapse. 

 

2.3 The All-round Clamped Plate Under Uniform Loading 

 

The deflection  function,  side lengths ,a,b ,in X and Y 

 

wi =Amn. Σ   Σ (cos mπx/a -1) (cos nπy/b  -1 )                                               (2.18) 

 

meets all boundary conditions,Fig.1f             

               put ,  (cos mπ x/a  ) = Cx ;  (cos nπ y/b )= Cy . 

Transform, employing relative curvature for tuning, 

 (∂w
4
 / ∂ x

4
)  = Jxx. [(∂w

2
 /∂x

2
)-(∂

2
w/∂x

2
.) 0.]  / w  =(Jxx)(Rad)xx 

The acceleration-displacement ratio,(Rad)  must have a point-wise constant ratio ,hence employ relative 

curvatures (χr)=(χi)-(χ0) to achieve it. Tuning, forces the moment diagram to emulate deflection 

diagram, presenting a point-wise constant ratio, (Rad), between the two. Tuning, produces buckling-

compliant curvatures.  

 

(∂
2
w/∂x

2
 )relative .  =  (χ) - (χ0) =  (Rxx ) w                                    ……………        (2.19) 

 

This transformation, in effect, compares the envelops of the acceleration and the deflection, Fig.1d,c 

.To find  (Rad.=Rxx) multiply both sides by ‘w’ and integrate over domain. 

 

(∂
4
w/∂x

4
  )  =  Jxx. Rxx .                                                        …………              (2.20 ) 

 

Multiply through by ‘w’ and integrate to find, Jxx , for the domain ,  

 

∫∫( ∂
4
w/∂x

4
 ) w ∂x ∂y   = ∫∫ Jxx Rxx  w ∂x∂y                                                       (2.21) 

For the function given,  

Rxx = (m
2
)(π

2
) /a

2
.                                         ………………….                      (2.22 )     

and, 
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Jxx. =(3/4) m
2
(π

2
)/(a

2
)                                                                

Jyy. = (3/4)n
2
(π

2
 )/b

2
)       

        

2.3.1 Twist Transform 

 

         From    ∂
4
w/∂x

2
.∂y

2
 .  =  (Jxy)   ,           

                         

  [(m
2
)(n

2
)(π

2
)/(a

2
.b

2
)]Cx.Cy . = (Jxy);;(Q4xy.Cx.Cy.=Jxy )                          (2.23) 

 

 

 

Invoke Eqs.2.7 & 2.8 

               Kt. =1/4   

Coming from,  [Cx.Cy]rel,max =2.0 ;    [2Cx.Cy. – 2Cx – 2Cy +2]rel,max= 8.0  

In this way the twist capacity, w,xxyy, is mixed with, and carried by the tuned values of 

‘w,xxxx’ and ‘w,yyyy’. The twist is not independently tuned.  So, 

∫∫Q4xy. Kt.(2Cx.Cy.-Cx-Cy).w  =  Jxy.∫∫ w                                                                 

Jxy = 0.375 Q4xy. 

∂
4
w/∂x

2
.∂y

2
.  = (Jxy)  =  (0.375)(m

2
 .n

2
) π

4
/(a

2
 .b

2
) .  

Solving  Equation-1, 

D [Jxx(∂
2
w/∂x

2
)/w + 2Jxy. + Jyy(∂

2
w/∂y

2
)/w   ] =  q   

Amn =   (q/D) / [ Jxx Rxx . +2Jxy .   +  Jyy Ryy ] 

 

 = [q/(Dπ
4
)]/[0.75m

4
/a

4
.+0.75m

2
.n

2
./a

2
.b

2
+0.75n

4
./b

4
 ]  ……                 (2.24) 

 

For m=n=2;x=a/2,y=b/2;   (wi,)c  = wmax= 0.001151 q a
4
 /D     

Adding ,m=2,n=6;m=6,m=n=2;m=2,n=10 ; wc = 0.001243 ;(Ref-1,0.00126;Ref-8,0.001265); ‘w’ tends 

to exact because the tuning support moments in clamped plates do not add to central displacements. 

 

2.3.2 Curvatures/Moments:    

                                                                                                                                                                                           

Fig.1b has so far been treated and only partial curvatures are expected to be available thus far; the 

tuning support curvatures ,(Rad wmax)/2 ,must be applied, reversed, as in Fig.1-c for completion. The 

effect of clamping makes the effects of any input support-moments  negligible; for example zero 

central plate displacements. 

[(χx)0,1/2]mn,2,2;4,2;2,6;6,2 .=(π
2
)[-2(4/3462.76)+(-2(16/24370) )+(-2(40/105968))]=-0.0506           . 
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Taking more terms the exact maximum clamping moment of ‘-0.0513’ (1) will be reached . 

[(χx)1/2,1/2]mn,2,2;4,2;2;6;6,2.=(π
2
)[2(4/3462.76)+(-2(16/24370))+(2(40/105960))]=0.01727  

Allowing for poisson’s ratio of ‘0.3’ the central X-moment =0.01727(1+0.3) =0.0225 qa
2
. More terms 

may be tried here to move the ‘0.0225’ towards the exact result of ‘0.0231’(0.0229-Taylor,etal,2002). 

 

3. Application to Plate Buckling  

 

Plate buckling may be studied by the differential equation, 

 

D(w,xxxx  +  2w,xx,yy +w,yyyy . ) +  Nx..∂
2
w/∂x

2
   = 0                             (3.1) 

 

 L4w    +   Nx  L2w   =  0   …………………….    (3.2) 

 

  Where Nx. is the axial compressive force in the X-direction only 

Examine a simply supported plate; by Eq.2.9, 

  L4w = Amn (π
6
 /16)(mn(m

2
/a

2
+n

2
/b

2
)

2
 .)     ……….   (3.3) 

We can find (L2w) as 

   L2w  = J2x. (∂
2
w /∂x

2
) / w   ……….   (3.4) 

 

Multiply through by ‘w’ and integrate over plate and we have, 

   J2x  = Amn.  (m n π
2
/16)         …………..    (3.5)                                                                                                                                                                                                                                                                                                                                   

and, 

                          Nx. L2w . = Nx .(J2x)(m
2
.π

2
/a

2
)   …………………………     (3.6 ) 

 

                                      = (Nx)(Amn (m n π
2
 /16) (m

2
 π

2
/a

2
)  ..                         (3.7) 

From Eqs. 3.3-3.7            

                    Nx  = (Dπ
2
/b

2
 ) (mb/a + n

2
 a/m b)

2
. = (C) (f(m,n,b,a)) 

For minimum -Nx- keep n=1 

  a=b   , N= 4C  ; a=2 b , N= 4C for m=2 ; and so on. These are exact, Timoshenko&Kreiger(1)   

 

4. Application to Stiffness Matrix Analysis of Buckling of Bars/Frames. 

 

The main objective of the present transform method was to develop a constant stiffness analysis of 

buckling, and this is now briefly explained. 

The basic beam stiffness can be stated as: {Flocal .}= [Klocal .]{Vector}local .; (a*=EA/L ;r=EI/L) 
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       !   N   !         !  -a*      0               0                  a*        0       0            !  u1 

       !  V1  !         !  0    -12r/L
2
.         -6r/L            0      12r/L

2
 .  -6r/L     !  v1 

       !  M1 !   =    !  0     6r/L              4r                0      -6r/L        2r        !   θ1  ..  (4.1) 

       !  V2 !          !  0    12r/L
2
.           6r/L            0      -12r/L

2
.    6r/L    !   v2 

       !  M2 !         !  0      6r/L             2r               0        -6r/L       4r       !   θ2 

So, find  for (N=axial force, M=moment,V=shear-force; member from point-1 to 2 

 

                       [  Kglobal . ] = [ T
T
 ] [Klocal .] [T .]      ,………………           .       (4.2) 

 

 

 

 

The acceleration-displacement ratio means relative-bending-moment – displacement ratio at nodal 

points. When the ratio becomes point-wise constant then a solution has been found and that ‘ratio’ is 

the buckling load.In final implementation the computed bending moments(accelerations) are  

interpreted as gravity loads and analysis progresses by successive approximation using only the same 

initial elastic stiffness.  Convergence is found within five iterations. In the plate analysis demonstrated 

above, the ratio , (Rad ), can be seen to be buckling load factors in the X,Y- directions. Eqs.4.1,4.2 lead 

to the computer program.The analysis starts by applying a uniform loading  but in iterations the 

bending moments are the nodal gravity loads. 

 

4.1 Buckling of column pinned at both ends. 

 

The column (AB),Fig-2 is divided into 20 elements and 21-nodes ; the results are found in  Table-

1,below after only three iterations. Note that in this case, Table-1 , the relative moments are the actual 

moments (columns2 and 3 ) ; ‘mi is the normal nodal slope-deflection moment .  As shown in Table-1 

for the pin-pin column the result of ‘1.002’ compares with exact,1.0 ; it must be recalled that the 

stiffness solution did not assume a sinusoidal variation which, in a manual solution, would have led to 

the same correct result. The result confirms that a column buckles into a sine-curve. 

 

4.2 Buckling of Sway Frame with Fixed Bases / Pinned Bases 

 

This is output in Table-2 ;Fig.3a,b, for a beam-column stiffness ratio of 1.0. Many 

more results were output in Johnarry(2009). The intention, here, is to demonstrate the power of the 

present method; errors are very small(less than one-percent).                                                                                                                  
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Table-3 give results for pinned base portal frame with Ibeam./Icol .= 100. Any Ib./Ic.-ratio can be analysed 

. The high ratio of 100 may be taken as beam of infinite stiffness relative to the adjoining columns ; in 

the Table,Pcr/PEuler.= 0.249(Exact,0.25 for infinite value of the stiffness ratio). Fig.3c gives the pinned-

bases frame-diagram.                                                            

                                                          

 
Conclusion 

 

The acceleration-displacement ratio transforms method, here, has been shown to, more simply, and 

exactly, solve the thin plate problem in transverse bending for displacements, bending moments and 

buckling. The plate under central point load is solved more exactly in convergent displacements and  

 

 

bending moments. All solutions are, in the first instance, with respect to curvatures relative to 

boundary values; this allows for possible corrections if support tuning moments have any additional 

effects.  The employment of a constant initial elastic stiffness for buckling by stiffness matrix is most  

desirable and the new method of acceleration- displacement ratio transform has been shown to achieve 

it; additional applications may be published. Results for bars and portal building frames are 

demonstrated for buckling tests. Even for the limited number of discrete elements the results are exact 

to within 1.0-percent. Three iterations are, usually, sufficient in the successive approximation analysis. 
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Table-1 

pin-pin-col; iteration =3, bars = 20; nodes=21 ; 

E=200,I=1E+08,L=10000,PE=1974  ;Fig.2 

 

  Node       mi                 rel-mom,m  y;  moyope;  weight 

   1      0.033      0.000    -0.000  0.000     0.000 

   2    -3178.815   -3178.815   -1.607  1.002     5.107 

   3  -6279.420   -6279.420   -3.173  1.002     19.927 

   4  -9225.088   -9225.088   -4.662  1.002     43.009 

   5  -11943.527   -11943.527   -6.036  1.002     72.093 

   6  -14366.936   -14366.936   -7.261  1.002     104.323 

   7  -16436.387   -16436.387   -8.308     1.002     136.549 

   8  -18100.791   -18100.791   -9.150     1.002     165.614 

   9  -19318.322   -19318.322   -9.766  1.002     188.662 

   10      -20059.930   -20059.930 -10.142    1.002     203.447 

   11      -20308.916   -20308.916 -10.268  1.002     208.536                                                        

   12       -20057.795   -20057.795 -10.142  1.002     203.418 

   13       -19312.686   -19312.686 -9.765  1.002    188.595 

   14       -18092.527   -18092.527 -9.149  1.002    165.522 

   15       -16427.439   -16427.439   -8.307  1.002    136.458 

   16       -14357.994   -14357.994   -7.260  1.002    104.244 

   17       -11936.252   -11936.252   -6.035  1.002     72.037 

   18       -9219.818 -9219.818    -4.661  1.002     42.977 

   19       -6276.302 -6276.302   -3.173  1.002     19.914 

   20       -3177.169 -3177.169   -1.606  1.002     5.103 

   21       -0.019   -3177.169   -0.000  1.002     5.103 

ratio,Pc/PE-weighted=1.002017,analysis:K Y.=Mi= gravity force;  

mi=slope-defl-mom;moyope=(m/y)/PE=(critical-load)/Euler-load ;Error=0.2% ;weighting factor = 

mrel.yi. 
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 Table-2 (Fig.3a,b). 

 Fixed-base portal+mirror;iteration=3,bars=34;(Ibeam)/(Icol)=1 

  node  Mi   mrelative.=m  y;  moyope;     weight 

   1  4050.175  0.000  -0.000  0.000  0.000 

   2  3197.095   -853.044 -0.091  0.759  0.078 

   3  1979.468   -2070.655 -0.221  0.758  0.458 

   4  539.338    -3510.767 -0.376  0.757  1.320 

   5  -957.547    -5007.634 -0.537  0.756  2.689 

   6  -2341.093   -6391.163 -0.686  0.755  4.388 

   7  -3455.925   -7505.977 -0.807  0.754  6.059 

   8  -4178.111   -8228.146 -0.886  0.753  7.287 

   9  -4427.671   -8477.688 -0.913  0.753  7.738                                                       

   10  -4177.179   -8227.179 -0.886  0.753       7.285 

   11  -3454.260   -7504.242 -0.807  0.754  6.057 

   12       -2338.832   -6388.796 -0.686  0.755       4.385 

   13  -955.033    -5004.980 -0.537  0.756       2.687 

   14  -541.753    -3508.177 -0.376  0.757       1.318 

   15  1981.568   -2068.344 -0.221  0.758       0.457 

   16  3198.630   -851.264 -0.091  0.758       0.077 

   17  4050.921   -851.264  0.000  0.758       0.077 

   18  -4048.568   -851.264  0.000  0.758       0.077 

   19  3196.140   -853.702 -0.091  0.761       0.078 

   20  1979.168   -2070.656 -0.221  0.759       0.458 

   21  539.675     -3510.132 -0.376  0.757       1.318 

   22  -956.450    -5006.239 -0.537  0.756       2.687 

   23  -2339.314   -6389.086 -0.686  0.755       4.383 

   24  -3453.683   -7503.438 -0.807  0.754  6.053 

   25  -4175.589   -8225.326 -0.885  0.753  7.279 

   26  -4425.183   -8474.902 -0.912  0.753  7.730 

   27  -4175.013   -8224.715 -0.885  0.753  7.278 

   28  -3452.514   -7502.198 -0.807  0.754  6.051 

   29  -2337.696   -6387.362 -0.686  0.755  4.381 

   30  -954.511    -5004.161 -0.537  0.756  2.685 

   31  541.716    -3507.916 -0.375  0.757  1.317 

   32  1981.006   -2068.608 -0.221  0.759  0.457 

   33  3197.648   -851.948 -0.091  0.760  0.077 

   34  4049.579   -851.948  0.000  0.760  0.077   

                                                                                                              

Pcr/PEuler = 0.7541421 analysis: [K]{Y}={Fi}=Mi=gravity-force 
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Table-3;pinned-base,1-cell-Portal-Fram; direct;iteration=20 (3,will do);bars=34;Ibeam/Icol.=100 

 

  node    mi  mrelative=m    y;        moyope;    weight; 

   1  -0.202   0.000    0.000  0.000     0.000 

   2  2628.370  2628.370 0.864  0.247     0.009 

   3  5233.774  5233.774 1.720  0.247    0.037 

   4  7790.714  7790.714 2.560  0.247     0.082 

   5  10278.283  10278.283 3.375  0.247     0.142 

   6  12670.287  12670.287      4.158  0.247     0.216 

   7  14947.424  14947.424 4.902  0.247     0.300 

   8  17089.115  17089.115 5.599  0.247     0.392 

   9  19073.607  19073.607 6.243  0.248     0.487 

   10  20885.162  20885.162 6.827  0.248     0.583 

   11  22507.680  22507.680 7.346  0.248     0.677 

   12  23932.301  23932.301 7.795  0.249     0.763 

   13  25135.898  25135.898 8.169  0.249     0.840 

   14  26112.773  26112.773 8.465  0.250     0.904 

   15  26850.174  26850.174 8.679  0.251     0.954 

   16  27350.355  27350.355 8.809  0.252     0.986 

   17  27601.090  27601.090 8.854  0.253     1.000 

   18      -0.208   27601.090 0.000  0.253     0.000 

   19  2628.365  2628.365 0.864  0.247     0.009 

   20  5233.539  5233.539 1.720  0.247     0.037 

   21  7790.900  7790.900 2.560  0.247     0.082 

   22  10278.357  10278.357 3.375  0.247     0.142 

   23  12671.202  12671.202 4.158       0.240     0.216 

   24  14946.470  14946.470 4.902  0.247     0.300 

   25  17089.078  17089.078 5.599  0.247     0.392 

   26  19073.756  19073.756 6.243  0.248     0.487 

   27  20884.490  20884.490 6.827  0.248     0.583 

   28  22507.979  22507.979 7.346  0.248     0.677 

   29  23932.600  23932.600 7.795  0.249     0.763 

   30  25136.121  25136.121 8.169  0.249     0.840 

   31  26112.969  26112.969 8.465  0.250     0.904 

   32  26850.254  26850.254 8.679  0.251     0.954 

   33  27352.088  27352.088 8.809  0.252     0.986 

   34  27351.789  27351.789 8.854  0.250     0.991 

 

Pcr/PEuler.,weighted=0.2494865;analysis:Fi=Mi=gravity-force;Three iterations give almost same 

results(not shown here) 
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          Final moment-form expection                                                     Relative curvature form 

 

 

 

 

 

 

 

 

 

 

                       Possible moment variation from (χadd)                           Moment envelop(emulating ,w) 

 

 

 

 

 

 

 

                            Deflection envelop -w 

 

 

 

 

 

 

 

                                                                                                                                   Plate with X-Y axes 

       Fig.1:Clamped rectangular plate solution. 
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        Fig.-2 Pin-ended Column divided into 20-elements,21-nodes       
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  Fig.3, Portal Frame (a) Fixed bases; (b) Analyse (a) with its mirror;  

(c)Pinned Base;Analyse direct. 
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