
Innovative Systems Design and Engineering www.iiste.org

ISSN 2222-1727 (Paper) ISSN 2222-2871 (Online)

Vol 2, No 4, 2011

350

Refactoring for Multi-Dimensional Reusability

Bashir Ahmad

Institute of Computing and Information Technology

Gomal University, PAKISTAN

bashahmad@gmail.com

Shakeel Ahmad

Institute of Computing and Information Technology

Gomal University, PAKISTAN

Shakeel_1965@yahoo.com

Sheikh Muhammad Saqib

Institute of Computing and Information Technology

Gomal University, PAKISTAN

saqibsheikh4@hotmail.com

Muhammad Zubair Asghar

Institute of Computing and Information Technology

Gomal University, PAKISTAN

Zubair_icit@yahoo.com

Muhammad Ahmad Jan

Institute of Computing and Information Technology

Gomal University, PAKISTAN

mr_ahmadjan@yahoo.com

Abstract

Source code should be simpler, easy to read and easy to understand. This slogan is not only relates to

change the existing code for current service, but also has an association with reusability. Refactoring is a

best idea for above issues i.e. keeping the code simple and support the emergent design practice. Many

refactoring techniques have been produced related to code simplicity and understandability for

maintainability & extensibility. Here author enforced to make the method with the division of three sections

and each section should have an argument as a signal. Such technique will be the pillar of reusability from

many directions.

Keywords: Source Code, Reusability, Refactoring, maintainability and extensibility.

1. Introduction

Different opinion from different dimensions has been explored about refactoring as explained below:

“Changing the structure of a code with changing its function to make easier code”

“A change that alters the functionality of the code is not a Refactoring”

“Greatly reducing the chance of error is relate to Refactoring”

mailto:mr_ahmadjan@yahoo.com

351

One possible definition (Sibylle Peter 2009) about code refactoring is that actually it is technique for

reconstructing an existing code, without changes in external behavior and altering the internal structure. It

is useful for easier to fix bugs and easy to read the source doe. Every bug leads too many new bugs and it

will be very hard to implement new features, here master plan is suggested which explores what should be

refactored. Also definition published in Xp Refactoring Faq, refactoring should not be fixed with only bugs

fixing but it is very close to reusability, at start technical staff may not understand what is to reuse and how

to reuse.

Alexandre Correa (2007) & Raimund Moser (2006) have argued that refactoring is not only supposed to

improve source code understandability & maintainability but has positive effects on reusability’s internal

measures of object oriented programming. It also promotes ad-hoc reuse in development environment.

Different techniques of refactoring can be applied over OCL (object constraint language) specification to

remove problematic constructions by using UML 2.0. Refactoring opportunities for extract method

Nikolaos Tsantalis (2011), where it is defined the different rules for program behavior and extraction of

meaningful refactoring opportunities. This leads to either complete computation of a variable or the

statements affecting the state of an object.

Bill Opdyke (1999) suggest a strategy about replacement of automated system over existing system which is

not just for limited time, but automated systems replace previous one with life time. Software for an

organization completely fulfills the currently running procedures, while organization requires new services

time to time. Due to different approaches related to software models and programming tools & schemes,

such new services can be easily accommodated. When organization requires some amendments in an

existing service, then major issue for such option is Refactoring. Refactoring should be applied more

generally due to different issues like platform selection; product evaluation and software reuse.

Changes in existing services are the common and burning issue from the start of organization automation.

Programmers feel very difficulties by changing the source code of existing service. Article published by

The-Software-Experts (2010), it is claimed that If code writers follow the principles of refactoring from the

beginning of source code, then updating can be easily understandable and changeable. OOP approaches

require a good architecture to integrate millions of lines of code programmed by various programming team

members.

 Soft Goals is very useful for refactoring, due to adding comments or regrouping functions into other

modules. Since refactoring has direct link with reusability so Object Oriented Approaches (OOA) are very

favorable. In OOA, class is a single entity with the combination of different methods (made up of code

refactoring principles) so effects of different coupling suggested by Shakeel Ahmad (2011) about common

coupling , external coupling & control coupling, they can be minimized while content coupling & data

coupling can be easily handled. By using such type of emerge, refactoring make its position in

programming zones.

Class is also the technique for refactoring means: extract class move part of code for an existing class into

new class. Class consists of different methods and refactoring can be easily applied over each method and it

can be reusable for other services or existing code can be changed. As for reusability and refactoring OOP

concept had been generated, because repeated executed code should be written in single piece i.e. method.

This can be easily changed for some other purpose. Method does not consist of single line of code; it is also

built up of many line of code and some other methods. Here author suggest a scheme for source code to

build the method or function with and without signal, where refactoring can be easily applied, if code of

source-code is so long. Then a method can be embedded in other class of same tool or other tool.

2. Refactoring in Class Method with a Signal

It is common known, that each service has different activities and each activity have operational parameters

and procedures. If service treats as a class then activities treat as methods. In broad vision, purpose of each

activity is same. This is solid matter and universal truth for each activity. Every body knows the purpose of

any activity in short words input, processing and out put. It is very clear that each function is the

combination of three sections. By such division changes can be easily made.

http://c2.com/cgi/fullSearch

352

Fig-1: Method of a Class with three Sections and Signal for Refactoring

Water pump service is the good example for mapping the above diagram. Such service consists of electric

machine consider as an input, water tank consider as a processing and tap consider as an out put. At any

time, service consumer can change any item.

User can set any item separately, when there is a fault. If user wants to replace old thing with new one, he

can change any thing with out disturbing other one i.e. if user wants to change the tap, he can easily replace

it without disturbing water tanks or machine. Applying this logic on any method of a class, interface for

each option can be easily fit in frame of user demand.

Fig-2: Change of any Item in Water Pump Service

353

Suppose a method, which is used to add two numbers then it should be divided in to three sections.

Fig-3: Method of a class consists of three Sections

In above diagram, changes can be done separately by disturbing other one. Such changes may type

changing, space setting for variables or some functionality not behavior. Suppose if requirement is changed

from addition of two numbers to three numbers. Then only changes will be done in input section and

procession section as shown in following figure.

Fig-4: Method easily changed According to User Needs

According user requirements, programmer will easily locate the location where changes will be done. Fig-4

shows that only source code of 1st and 2nd method is changed from previous requirements to new

requirements. In 1st method only line-4 is added for input of third number and in 2nd method only line-2 is

changed from addition of two numbers to three numbers.

As different language provide different graphical user interface or command line interface. Adaptation of

such technique, interface can be easily interchanged. User interface depend on input and out put, not on

354

processing. Now here separate identification has assigned to input and out put sections, so changes over

here can be easily done.

Fig-5: Graphical Interface easily changed from GUI to Command Line

From above figure it is clear that only changing the Graphical User Interface GUI-statements from 1st and

3rd methods to command line statements. There is no need to change the processing statements.

Since we have changed input or out put interfaces but in same place some users require graphical interfaces

and some require command line interface. Similarly some require addition of two numbers and some

requires of addition of three numbers. Then make the habit to pass a signal to each method as a parameter

then requirements of everyone can be completed.

Fig-6: Method with Signal for Code Execution

355

By above setting of a method with signal, any type of code can be appended with function. Any user who

want to add to two numbers, he will pass signal as 1 and for addition of three numbers, signal as 2 will be

passed.

Some users use to add two numbers only with the desired inputs, then this class method will be easily

reused with the little bit refactoring. Suppose some users wants to add two numbers which are even then

only input section of a method can include a new method for checking the input constraints.

Fig-7: Adding New Requirements with Previous One

It is clear that by adding the some portion of a new method with previous one, previous method will be

useable for new queries.

It is true that, we have taken simple example, but we are seeing the refactoring of a method from an angle

of reusability by optimizing the code. Where we have suggested that division of each method for an activity

should be in three sections and strongly recommending for passing signal through each section.

3. Conclusion

If a method has long body, then it may have a duplicate code with nearby method. Such problem can be

recognized by refactoring i.e. transforming the routine in to new structure that behaves the same as before.

Besides the maintainability (easy to fix the bugs) and extensibility (easier to expand the capabilities of the

function), refactoring should be useful for reusability. Here author suggest a refactoring scheme for altering

the code of a method of a class. By adopting such technique, a method with signal can be refactored easily

for current facilities as well as future reusability. Here authors take a simple example, but purpose of

proposed research is not relate to such example, but relates to technique adopting in research. Proposed

research enforces each programmer to divide each method in to three sections with a passing argument as a

signal. Then on any time such code can be easily transferred from graphical user interface to command line

interface. And also single method can fulfill the requirements of many users.

356

References

Bill Opdyke , (1999), Refactoring, Reuse & Reality, Lucent Technologies/ Bell Labs. http://st-

www.cs.illinois.edu/users/opdyke/wfo.990201.refac.html

Shakeel Ahmad, (2011), “Reusable Code for CSOA-Services: Handling Data Coupling and Content

Coupling”, (IJCSIS) International Journal of Computer Science and Information Security, Vol. 9, No. 5,

196-199.

Alexandre Correa, (2007) “Refactoring object constraint language specifications”, Software System Model,

Springer, Vol 6:113–138

Principles of Code Refactoring, (2010), The-Software-Experts, http://www.the-software-experts.de/e_dta-

sw-refact-principles.htm

Sibylle Peter, 2009,“Refactoring Large Software Systems”, ISSN1661-402X Methods & Tools , Vol 17, no 4

Raimund Moser, (2006), “Does Refactoring Improve Reusability?”, Springer-Verlag Berlin

Heidelberg.,ICSR, LNCS 4039, pp. 287 – 297

Nikolaos Tsantalis, (2011) “Identification of extract method refactoring opportunities for the

decomposition of methods”, Journal of Systems and Software, ELSEVIER, Volume 84, Issue 10, Pages

1757-1782

http://st-www.cs.illinois.edu/users/opdyke/wfo.990201.refac.html
http://st-www.cs.illinois.edu/users/opdyke/wfo.990201.refac.html
http://www.the-software-experts.de/e_dta-sw-refact-principles.htm
http://www.the-software-experts.de/e_dta-sw-refact-principles.htm
http://www.sciencedirect.com/science/article/pii/S0164121211001191?_alid=1807687794&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=703&_zone=rslt_list_item&md5=660baab93359c9a4ef2812701ce6b5ce
http://www.sciencedirect.com/science/article/pii/S0164121211001191?_alid=1807687794&_rdoc=2&_fmt=high&_origin=search&_docanchor=&_ct=703&_zone=rslt_list_item&md5=660baab93359c9a4ef2812701ce6b5ce

This academic article was published by The International Institute for Science,

Technology and Education (IISTE). The IISTE is a pioneer in the Open Access

Publishing service based in the U.S. and Europe. The aim of the institute is

Accelerating Global Knowledge Sharing.

More information about the publisher can be found in the IISTE’s homepage:

http://www.iiste.org

The IISTE is currently hosting more than 30 peer-reviewed academic journals and

collaborating with academic institutions around the world. Prospective authors of

IISTE journals can find the submission instruction on the following page:

http://www.iiste.org/Journals/

The IISTE editorial team promises to the review and publish all the qualified

submissions in a fast manner. All the journals articles are available online to the

readers all over the world without financial, legal, or technical barriers other than

those inseparable from gaining access to the internet itself. Printed version of the

journals is also available upon request of readers and authors.

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open

Archives Harvester, Bielefeld Academic Search Engine, Elektronische

Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial

Library , NewJour, Google Scholar

http://www.iiste.org/
http://www.iiste.org/Journals/

