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Abstract 

This paper presents a method of designing the Controller for large scale discrete time systems. The Controller is 

designed via a reduced order model for a given high order system. In the proposed reduction method, the numerator 

coefficients are obtained using Interpolation criteria while the denominator polynomial is obtained by using, one 

of the stability preserving methods, the Dominant pole method. An optimised reduced order model is derived with 

minimum ISE. It has been shown that the control designed for the reduced order model, when applied to the higher 

order system, improves the performance of the controlled system. The method has been tested by considering 

typical numerical examples, available in the literature, and the results are found to be satisfactory.  
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I. INTRODUCTION: 

In discrete time control, the control input is calculated once in every sampling interval and is held constant during 

this period. Due to the finite sampling frequency, it may happen in discrete time controller that the system state 

trajectory is unable to move along the surface. Controller for any system has a complexity proportional to the 

number of states in the system. Hence, the simulation and design of controller for higher order system is a difficult 

problem. The exact analysis of high order models is both complex and costly. Hence, it is always desirable to 

reduce high order system to lower order system. 

Several order reduction techniques for linear dynamic systems in the frequency domain are available the 

literature [1-4]. Further, some methods have also been suggested by combining the features of two different 

methods [5-7]. To overcome these problems model order reduction techniques are implemented. It is desirable to 

reduce higher order transfer function to low order model which are expected to approximate the performance of 

original high order system. 

A mixed method is proposed for the reduction of high order continuous systems. This method is developed 

from the method [1, 8] available in literature and it overcomes the limitations and drawbacks of some existing 

methods. In the present paper, Interpolation method is used for obtaining the numerator and dominant pole method 

is used for obtaining the denominator of the reduced order model. Then an optimum model (with minimum ISE) 

is obtained by varying the interpolation points. Using the proposed method a controller is designed for the high 

order original systems. The purpose of this paper is to show that control design can also be done via reduced order 

model. It will be also shown that if a sliding mode control is designed from the reduced order model and if applied 

to the higher order system by aggregation, it results in controller designed for the high order system. 

 

II. REDUCTIONPROCEDURES 

Consider an nth order linear time invariant discrete system represented by 
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Where di, i=0, 1… n-1and ei, i=0, 1… n are constants. 

For the high order system a reduced kTh order model is proposed as given below, 
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Where the ai, i=0, 1… k-1 and bi, i=0, 1…. k are constants.  

Reduced order denominator: 

Step 1: The denominator b k (s) of reduced model can be obtained from the Dominant pole method of the 

denominator of the original system. 

Reduced order numerator: 

Step 1: Choose 2k point’s z0, z1… z2k-1, z2k C(they can be multiple) from the location of the poles of the original 

systems and obtain g(z) as given below: 
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Step 2: Compute qp
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Step 3:(1)Divide qpˆ  by g(z) to get f(z): 
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Thus get the recursive relation 
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When k <0, let go=0. In the above the recursive relations, the superscript n in 
)(n

ic represent the coefficients 

which are obtained after carrying out the algorithm n steps. And the subscript i in 
)(n

ic represents the corresponding 

degree about the variable z. 

(2) Divide pqˆ by g(z) to get h(z), [10] 

Step 4: According to ),()( zhzf   get a linear system with (2m+1) unknowns and 2m equations. Let 
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III.DESIGN OF CONTROLLER 

In general, series controllers are preferred over feedback controllers because of the higher order systems require a 

large number of state variables i.e., large number of transducers to sense during feedback. The parameters of the 

controller are tuned to get a response, meeting the desired specifications. The tuned parameters are introduced into 

the higher order system for stabilization processes. 

PROCEDURAL STEPS FOR DESIGINING A CONTROLLER: 

1. Assume the transfer function of the controller as [ ] 

 

 

 

 

2. The overall closed loop transfer function of the controller and original system is derived as, 
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NUMERICAL EXAMPLES 

Example 1:   consider the Fifth order system as given  
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A Second order reduced model is obtained for the above higher order system, in following steps, using the 

proposed method given in section-3.
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Step 1: Reduced Order denominator is obtained by using Dominant pole method as below: 

2173.04856.1037.447.57.3)(
2345

 zzzzzzq
 

Hence, the reduced order denominator is:
 

8754.0863.1)(ˆ 2
 zzzq

 
Step 2: The numerator of reduced order model is obtained by the interpolation method as given in proposed 

procedure  
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For a 2nd order model the 4 required interpolation points are selected randomly as:  
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Where g(z) is the polynomial obtained by the selected interpolation points.

 

From original order numerator and reduced order denominator, 
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Divide )(ˆ)( zqzp by g (z)to get the quotient e(z) and the remainder f(z).
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From original order numerator and reduced order denominator, 
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Divide )(ˆ)( zpzq by g (z) to get the quotient l (z) and the remainder h(z). 

Thus, 
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From equation (1) &(2), we get
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 Hence, the reduced model is: 
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The corresponding ISE = 0.148 

The procedure is repeated with another set of interpolation points and the process is repeated until optimum value 

of ISE is attained. 

The optimum reduced order model is obtained as, [11] 
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Fig.1. Step response of original and reduced order model 

 

CONCLUSION 

A method for order reduction of large scale discrete time system is proposed. The proposed method gives a stable 

model and by optimising the interpolation points yields a better approximation. A method for designing discrete-

time control for higher order system via reduced order model is presented. This method has been tested on two 

numerical examples chosen from the literature and the step responses of the original, reduced and controlled system 

are compared. The results were observed to be satisfactory. 
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