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Abstract  

The main purpose of this paper is to investigate the performance analysis of �/�/2 machine repair problem with 

impatient customers. A population size of � operating machines is considered and the failed machines are assumed 

to be repaired under the multiple working vacations and triadic (0, 
, �, �) policy. As soon as the system becomes 

empty, both servers leave for working vacations wherein only one of the two servers provide a service during the 

vacation. Steady state probabilities that describe the number of failed machines in system are derived and taken in 

closed form. Different performance measures of the system are developed and analysed with numerical 

illustrations to investigate the reliability of the model.  
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1. Introduction 

The interaction of human and machine with industrial plants and other dynamic technical systems is nowadays 

essential for the quality and efficiency of the performance. Whenever and wherever machines are there, they ought 

to fail and repairing of such machine is required. In doing so, a scientific study in the interaction of servers and 

customers is mandatory for best performance of the system.  Servers may become practically unavailable for a 

period of time due to a variety of reasons. This period of unavailability in queueing theory aspect is called vacation. 

It is not difficult to observe customers arriving at a non-empty queuing system and leaving without joining 

the system. This behaviour of customers is known as balking. Customers may balk due to various reasons. On the 

other side, even if a customer does not balk and joins a queuing system, it is possible that the customer gets 

impatient and departs from the system without having completed the act of receiving service. Such impatient 

behaviour is known as reneging. In machining system, both balking and reneging are done by the caretaker who 

is responsible for getting the failed machines repaired. 

Ma and Zhao (2016) discussed a machine repair queueing model that involves balking and reneging. Chandra 

et al. (2017) studied a machining system with geometric reneging. Geometric reneging of a machining system is 

also studied by Shekhar (2017). Wang et al. (2015) studied a machine repair problem with balking and reneging 

with general inter-arrival and service time distribution. 

Chen et al. (2016) dealt with the reliability and sensitivity analysis of a machine repair system with warm 

standbys and an unreliable server having multiple-vacation wherein Laplace transform technique is used to derive 

the reliability function and the mean time to system failure. Jain and Meena (2018) applied a vacation model for a 

Markovian machine repair model. He et al. (2019) discussed a machine repair problem with a single working 

vacation. Jain et al. (2016) investigated a machine repair problem under � −policy wherein servers share their 

repair job simultaneously among all the failed machines that have joined the system for repair. Chen and Wang 

(2018) also analysed a reliability of a retrial machine repair problem with warm standbys and a single server with 

N-policy. 

Sharma (2016) deals with machine interference problem with additional repairman and warm standby under 

Bernoulli vacation schedule in which threshold N-policy is considered for controlling the vacation period of 

repairman. Kumar (2018) applied � −policy (which is almost similar to the � − policy) to the machine repair 

problems that has two unreliable servers and the provision of warm standbys. Ojobor and Ogini (2016) studied 

machine interference problem with reliable server under multiple vacations policy is considered. Meena et al. 

(2019) analysed a vacation model for a multi-component machine repair wherein fuzzy and harmony search 

optimization are applied to transform the machine repair model from crisp to fuzzy environment. A machining 

system with multiple vacations and heterogeneous servers is discussed by Ahuja and Jain (2019). 

In this paper, impatient customers of a machine repair system with multiple working vacations and triadic (0, 
, �, �) policy is considered for the first time. The definition of triadic (0, 
, �, �) policy and multiple 

working vacations for the present model are defined in the sequel. 

Whenever there are no failed machines in the system, both servers are turned off temporarily, and may not be 

reactivated until certain conditions are satisfied. Initially, it is supposed that both servers are on working vacation. 
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When the number of failed machines in the system waiting for service reaches a specific quantity �, which is a 

decision variable, one of the two servers will be active instantly. At a later time, when the number of failed 

machines waiting for service increases to another specific quantity �, where (� <  �), then the remaining server 

will also be active immediately. However, when the number of failed machines in the system decreases to 
, where (1 ≤ 
 <  �), while both servers are active simultaneously, the server just finishing a service will be removed 

from the system at that time. Furthermore, when the number of failed machines in the system reaches to zero while 

one server is working, both servers will take a working vacation. 

During working vacation, only one of the two servers will be active and serve the arriving failed machines at 

a different rate, generally lower than the regular service rate. At a working vacation completion epoch, if the system 

size is � or above, then both servers will switch to a regular busy period and start working under the 

triadic(0, 
, �, �) policy; otherwise, they will take another working vacations as often as necessary until the 

system size is � or above at a vacation termination epoch. 

 

2. Description of the model 

A working vacation queue with two removable servers that operate under a triadic (0, 
, �, �) policy is considered. 

The population size and system capacity are assumed to be finite with number �. Each of the operating machines 

fails independently of the state of the other. Whenever an operating machine fails, it immediately joins the system 

for repair. The inter-arrival time for the failed machines is assumed to be exponentially distributed with rate �. 

The arriving failed machines are assumed to form a single queue and the first-come-first-served queue 

discipline is implemented, as a result, the one at the head of the waiting line gets first into a service. The failed 

machines in the queue will get the service in two periods namely regular busy period and working vacation period. 

During the regular busy period, service is provided by two homogeneous servers each with service rate � and 

exponentially distributed service time under the triadic (0, 
, �, �) policy. Whereas only one of the two servers 

will provide a service during working vacation period. Vacation duration and service rate during the vacation are 

assumed to be exponentially distributed with rates ∅ and � (� < �) respectively. 

If the joined failed machine has to wait for service longer than its expectation, it may renege.  The waiting 

time of the failed machine before reneging is assumed to be exponentially distributed with parameter � with the 

assumption that the arrival of a failed machine and renege of an impatient failed machine are independent. The 

average reneging rate when there are � failed machines in the system is given by �(�) = (� − 1)�, 1 ≤ � ≤ �. 
When the newly arrived failed machine finds � failed machines in the system, then it will decide either to 

join the queue with probability � or balk with the probability 1 − ��, where �� =  1,   � = 0                   �,   1 ≤ � ≤ � − 1   
 

3. Analysis of the Model 

In steady state, the following probabilities are defined. 

 !",� ≡ The probability that servers are on working vacation and there are � failed machines in the system, 

where � = 0,1,2, . . . , �. 

 !$,� ≡ The probability that one server is active during the regular busy period and there are � failed 

machines in the system, where � = 1,2, . . . , � − 1. 

 !%,� ≡ The probability that both servers are active during the regular busy period and there are � failed 

machines in the system, where � = 
 + 1, 
 + 2, 
 + 3, . . . , �. 

Referring to Figure 1, the following steady state probabilities are found. 

                              (��)!"," = �!",$ + �!$,$,                                                                                                       (1) 

                               ((� − �)�� + � + (� − 1)�)!",� = ((� − � + 1)��)!",�*$ + (� + ��)!",�+$,                                                                                                                   1 ≤ � ≤ � − 1,             (2) ((� − �)�� + � + (� − 1)� + ∅)!",� = ((� − � + 1)��)!",�*$ + (� + ��)!",�+$,                                                                                                                             � ≤ � ≤ � − 1,     (3)      (� + (� − 1)� + ∅)!",, = (��)!",,*$,                                                                                  (4)     ((� − 1)�� + �)!$,$ = (� + �)!$,%,                                                                                        (5)   ((� − �)�� + � + (� − 1)∅)!$,� = ((� − � + 1)��)!$,�*$ + (� + ��)!$,�+$,                                                                                                                                 2 ≤ � ≤ 
 − 1            (6) 

                           ((� − 
)�� + � + (
 − 1)�)!$,0 = ((� − 
 + 1)��)!$,0*$ + (� + 
�)!$,0+$,       (7) ((� − �)�� + �+(� − 1)�)!$,� = ((� − � + 1)��)!$,�*$ + (� + ��)!$,�+$,                                                                                                                             
 + 1 ≤ � ≤ � − 1      (8) 

                           ((� − �)�� + �+(� − 1)�)!$,� = ((� − � + 1)��)!$,�*$ + (� + ��)!$,�+$ + ∅!",� ,   
                                                                                                   � ≤ � ≤ � − 2,           (9) 
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                           ((� − � + 1)�� + � + (� − 2)�)!$,2*$ = ((� − � + 2)�32*%)!$,2*% + ∅!",2*$,     
                                                                                                                                     (10)   ((� − 
 − 1)�� + 2� + 
�)!%,0+$ = (2� + (
 + 1)�)!%,0+%,                                  (11)  ((� − �)�� + 2� + (� − 1)�)!%,� = ((� − � + 1)��)!%,�*$ + (2� + ��)!%,�+$,          
                                                                                               
 + 2 ≤ � ≤ � − 1,     (12)      ((� − �)�� + 2� + (� − 1)�)!%,2 = (� − � + 1)��(!%,2*$ + !$,2*$)                                                                                      +(2� + ��)!%,2+$ + ∅!",24 ,            (13)    

       ((� − �)�� + 2� + (� − 1)�)!%,� = ((� − � + 1)��)!%,�*$ + ∅!",� + (2� + ��)!%,�+$, 
                                                                                        � + 1 ≤ � ≤ � − 1                    (14)  (2� + (� − 1)�)!%,, = (��,*$)!%,,*$ + 5!",, .                                                                 (15) 

 
Figure 1. State-transition rate diagram for machine repair problem with balking, reneging, multiple working 

vacations and two removable servers operating under the triadic (0, 
, �, �) policy 

The solutions of the previously found steady state probabilities are found and put in neat closed-form by solving 

the system of equations (1) to (15) recursively.         !",,*$ = 6,*$!",, ,                                                                                                                               (16)  
where 

 6,*$ = � + (� − 1)� + ∅�� , 6, = 1.                                                                                                 !",� = 6�!",, ,                                                                                                                                    (17) 

where 

6� = 8(� − n − 1)�� + � + �� + ∅(� − �)�� : 6�+$ − ;� + (� + 1)�(� − �)�� < 6�+%, � = � − 2, . . . , � − 1, 
6� = 8(� − � − 1)�� + � + ��(� − �)�� : 6�+$ − ;� + (� + 1)�(� − �)�� < 6�+%, � = � − 2, . . . , 0.                   

      !$,� = =�!",, , 1 ≤ � ≤ 
,                                                                                                            (18) 

where 

=$ = ;��� < 6" − ;>�< 6$,  =% = 8(� − 1)�� + �� + � : =$,                                                                 
=� = 8(� − � + 1)�� + � + (� − 2)�� + (� − 1)� : =�*$ − 8(� − � + 2)��� + (? − 1)� : =�*%, � = 3, 4, . . . , 
. 

       !$,0+$ = =0+$!",, + ℎ0+$!%,0+$,                                                                                              (19) 

where 

=0+$ = 8(� − 
)�� + � + (
 − 1)�� + 
� : =0 − 8(� − 
 + 1)��� + 
� : =0*$,   ℎ� = 0,   1 ≤ � ≤ 
,   ℎ0+$ = − ;2� + 
�� + 
� <.                                                                                                                               
         !$,� = =�!",, + ℎ�!%,0+$, 
 + 2 ≤ � ≤ �,                                                                            (20) 

where 
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=� = 8(� − � + 1)�� + � + (� − 2)�� + (� − 1)� : =�*$ − 8(� − � + 2)��� + (� − 1)� : =�*%,                                  
ℎ� = 8(� − � + 1)�� + � + (� − 2)�� + (� − 1)� : ℎ�*$ − 8(� − � + 2)��� + (� − 1)� : ℎ�*%.                                  

        !$,� = =�!",, + ℎ�!%,0+$, � + 1 ≤ � ≤ � − 1,                                                                    (21) 

where 

=� = 8(� − � + 1)�� + � + (� − 2)�� + (� − 1)� : =�*$ − 8(� − � + 2)��� + (� − 1)� : =�*%
                                                                                       − ; ∅� + (� − 1)�< 6�*$ ⎭⎪⎬

⎪⎫,                              
                                                                                           

ℎ� = 8(� − � + 1)�� + � + (� − 2)�� + (� − 1)� : ℎ�*$ − 8(� − � + 2)��� + (� − 1)� : ℎ�*%.                               
   !%,� = F�!",, + G�!%,0+$, 
 + 1 ≤ � ≤ �,                                                                                 (22) 

where F� = 0 for 1 ≤ � ≤ � , G0+$ = 1,  

G0+% = 8(� − 
 − 1)�� + 2� + 
�2� + (
 + 1)� :,                                                                                              
G� = 8(� − � + 1)�� + 2� + (� − 2)�2� + (� − 1)� : G�*$ − 8(� − � + 2)��2� + (� − 1)�: G�*%,   
 + 3 ≤ � ≤ �, 

G2+$ = 8(� − �)�� + 2� + (� − 1)�2� + �� : G2 − 8(� − � + 1)��2� + �� : (G2*$ + ℎ2*$),             
 F2+$ = − H8(� − � + 1)��2� + �� : =2*$ + ; ∅2� + ��< 62I,                                                              

for � + 2 ≤ � ≤ �, 

G� = 8(� − � + 1)�� + 2� + (� − 2)�2� + (� − 1)� : G�*$ − 8(� − � + 2)��2� + (� − 1)�: G�*%,                                
F� = 8(� − � + 1)�� + 2� + (� − 2)�2� + (� − 1)� : F�*$ − 8(� − � + 2)��2� + (� − 1)�: F�*%
                                                                                         − ; ∅2� + (� − 1)�< 6�*$⎭⎪⎬

⎪⎫.                          
       !",, = !%.0+$J , where J = ��F,*$ + ∅ − 2�F,2�G, − ��G,*$ , 2�G, − ��G,*$ ≠ 0.                                    (23)        

Finally, from the normalization condition, !%.0+$ is expressed as 

  !%,0+$ = PQ 6R 1J
,

RS"
+ Q (=R 1J

2*$
RS$

+ ℎR) + Q (FR 1J + GR
,

RS0+$
)T*$ .                                                (24) 

 

4. Performance Measures of the Model  

Performance measures are the specific measurements of the quality of service. This is important to assess some 

well-defined parameters, which are designed at striking a good balance between customer satisfaction and 

economic considerations. Problems caused by queuing situations are often related to customer’s dissatisfaction 

with service or may be the root cause of economic losses in a business. Analysis of the relevant performance 

measures of queuing models allows the cause of queuing issues to be identified and the impact of proposed changes 

to be assessed. The following system performance measures have been defined for the present machine repair 

model; 

 U(�) ≡ the expected number of failed machines in the system; 

   U(�) =  Q �!",�
,

�S$
+   Q �!$,�

2*$
�S$

+ Q �!%,�
,

�S0+$
                                                               (25) 

 U(V) ≡ the expected number of operating machines in the system;             U(V) = � − U(�)                                                                                                                    (26) 

 U(W) ≡ the expected number of idle servers in the system; 
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          U(W) = 2!"," + Q !",�
,

RS$
+ Q !$,�

2*$
RS$

                                                                                       (27) 

 U(3") ≡ the expected number of one busy server during the working vacation period; 

           U(3") = Q !",�
,

�S$
                                                                                                                      (28) 

 U(3$) ≡ the expected number of one busy server during the regular busy period; 

         U(3$) = Q !$,�
2*$
�S$

                                                                                                                     (29) 

 U(3%) ≡ the expected number of two busy servers during the regular busy period; 

        U(3%) = Q 2!%,�
,

�S0+$
                                                                                                               (30) 

 U0  ≡ the expected queue length; 

       U0 = Q(� − 1)!",� +,
�S$

Q (� − 1)!$,� + Q (� − 2)!%,�                                       (31),
�S0+$

2*$
�S$

 

 �X ≡ Machine availability (the fraction of total time that the machines are working); 

 �X = U(V)�                                                                                                                               (32) 

 VY ≡ Operative utilization (the fraction of busy servers); 

      VY = U(3") + U(3$) + U(3%)2                                                                                              (33) 

 3Z ≡ the average balking rate; 
      3Z = Q(� − �)�(1 − �)!",� + Q (� − �)�(1 − �)!$,�

2*$
�S$

,
�S$

                                                            + Q (� − �)�(1 − �)!%,�
,

�S0+$ ⎭⎪
⎬
⎪⎫                                    (34) 

 ZZ ≡ the average reneging rate; 
      ZZ = Q(� − 1)�!",� + Q (� − 1)�!$,� +2*$

�S$
,

�S$
Q (� − 1)�!%,�

,
�S0+$

.                            (35) 
 

5. Numerical Illustrations 

This section presents some numerical results in the form of graphs, to validate the theoretical results obtained 

earlier. The parameters of the model are chosen to be 
 = 3, � = 15, � = 23, � = 30, � = 0.5, � = 2.0, � =0.8, ∅ = 1.0, � = 0.4 and � = 0.5, unless they are considered as variables or their values are mentioned in the 

respective figures.   
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Figure 2. Effect of � on ZZ, 3Z and U0                             Figure 3. Effect of � on 3Z and ZZ 

Figure 4. Efect of � on U(W)                                                 Figure 5. Effect of � on U0         

Figure 2 shows that the increment of � results in an increment of balking and reneging rates and expected 

queue length as intuitively expected. The effect of � on average balking and reneging rate is shown in Figure 3. 

High customer intensity of joining the queue leads the queued failed machines to leave without service. 

The impact of � on expected number of idle server with different 
, � & � values are shown in Figure 4. It 

shows that for fixed �, the expected number of idle server increases with increasing threshold values 
, � & �. 

Figure 5 shows the impact of � on the expected queue length wherein for a fixed �, the expected queue length 

decreases with increasing service rate �. 
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Figure 6. � versus U0                                                            Figure 7. � versus U0 

  
Figure 8. Effect of � on U(3$)                                                Figure 9. Effects of � on U(3") 

The impact of � on the expected queue length is illustrated in Figure 6. As it expected in physical sense, the 

expected queue length increases with the increasing �. Furthermore, for a fixed �, the expected queue length 

increases with increasing threshold values 
, � & � . Conversely, the expected queue length decreases with 

increasing � in Figure 7. 

When a regular busy server provides a service with high service rate, failed machines will be repaired and 

depart the queue quickly. This eventually makes the queue empty and the expected number of busy server will 

decrease as server will quit to working vacations period. This fact is shown in Figure 8. The effect of � on U(3") 
with different threshold values 
, � & � is explained in Figure 9. 

 

6. Conclusion 

In this paper, the performance analysis of �/�/2 machine repair system with balking, reneging, multiple working 

vacations and triadic (0, 
, �, �)  policy has been carried out. A recursive method to find the steady state 

probabilities of the system has developed. It is observed that the recursive method is powerful and easy to 

implement. Various performance measures of the model such as expected queue length, expected number of busy 

servers, average balking rate, average reneging rate, etc., have been presented. Numerical illustrations to these 

performance measures have been discussed in figures form to authenticate the theoretical results. As a consequence, 

it is seen that the present model represents a machine repair system which is encountered in the physical world. 

The transient analysis of the present model is left for future research. 
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