Design of a Low Power Physically Un-clonable Function for Generation of Random Sequence for Hardware Security

Jyotirmoy Pathak, Konsam Jemson Meitei

Abstract


Physical Un-clonable Function (PUF) is a physical entity that provides secret key or fingerprints in silicon circuits by exploiting the uncontrollable randomness during its manufacturing randomness.  It provides a hardware unique signature or identification. Its property of uniqueness comes from its   unpredictable way of mapping challenges to responses, even if it was manufactured with the same process. Previous work has mainly focused on novel structures for non-FPGA reconfigurable silicon PUFs which does not need any special fabrication method and which can overcome the limitations of FPGA-based simulations. Their performance was quantified by the inter-chip variations, intra-chip variations and re-configurability tests to meet practical application needs. This paper presents a novel approach of designing a low power non-FPGA feed-forward PUF using double gate MOSFET and also to analyze its parameters such as intra-chip variation, reliability and power.

Keywords: Physical Un-clonable Function (PUF); Intra-chip Variation; Reliability; Uniqueness; Standard feed forward; Double gate MOSFET, Modified feed forward.


Full Text: PDF
Download the IISTE publication guideline!

To list your conference here. Please contact the administrator of this platform.

Paper submission email: ISDE@iiste.org

ISSN (Paper)2222-1727 ISSN (Online)2222-2871

1Please add our address "contact@iiste.org" into your email contact list.

This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.

Copyright © www.iiste.org