A New Area and Power Efficient Single Edge Triggered Flip-Flop Structure for Low Data Activity and High Frequency Applications
Abstract
In this work, a new area and power efficient single edge triggered flip-flop has been proposed. The proposed design is compared with six existing flip-flop designs. In the proposed design, the number of transistors is reduced to decrease the area. The number of clocked transistors of the devised flip-flop is also reduced to minimize the power consumption. As compared to the other state of the art single edge triggered flip-flop designs, the newly proposed design is the best energy efficient with the comparable power delay product (PDP) having an improvement of up to 61.53% in view of power consumption. The proposed flip-flop also has the lowest transistor count and the lowest area. The simulation results show that the proposed flip-flop is best suited for low power and low area systems especially for low data activity and high frequency applications.
Keywords: PDP, reliability, delay, process node, clock frequency
To list your conference here. Please contact the administrator of this platform.
Paper submission email: ISDE@iiste.org
ISSN (Paper)2222-1727 ISSN (Online)2222-2871
1Please add our address "contact@iiste.org" into your email contact list.
This journal follows ISO 9001 management standard and licensed under a Creative Commons Attribution 3.0 License.
Copyright © www.iiste.org