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Abstract 

This paper examined the effect of NEEDS on inflation in Nigeria using intervention Analysis. The data used for 

this study were secondary data on inflation rates which were collected from the Central bank of Nigeria Bulletin, 

2012 for the period 2003 to 2013. Our results revealed that NEEDS has abrupt temporary effect on inflation. We 

therefore recommended that more efforts be made to ensure continuous implementation of policies needed to 

combat inflation. 
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1.0 Introduction 

 Inflation is a term used to describe the persistent increase in the level of consumer prices or persistent decrease 

in the purchasing power of money. A situation where the demand for goods and services exceed their supply 

often gives rise to inflation. The negative effects of inflation cannot be overemphasized. Fixed income earners 

suffer most when prices of commodities rise as they cannot buy as much as they could buy when the prices of 

goods were relatively cheaper (Aidoo, 2010). Inflation also affects savings, efficient allocation of resources and 

economic growth (Osuala et al. 2013).  

Inflation targeting is one of the monetary policies adopted by the central bank of Nigeria(CBN) to 

control inflation in Nigeria (O’Cornell,2008, Ihezuchukwu, 2008, Migap, 2011, Tolupe and Ajilore, 2013).  

Authors for example Onyeiwu (2012), and Onye et al. (2012) have illustrated through empirical research the 

efficacy of the monetary policy in controlling inflation. However, Nigeria is described as facing the challenge of 

instability in its monetary policy (Onye et al., 2012). 

The National Economic and Empowerment Strategy was introduced in Nigeria during president 

Olusegun Obasanjo regime for the purpose of addressing economic problems facing Nigeria. One of the key 

policy thrusts of NEEDS is to adopt policies to raise domestic savings, reduce the inflation rate and sustain a 

rapid broad based GDP growth rate outside of the oil sector that is consistent with poverty reduction (National 

Planning Commission, 2004). An effective way of achieving these goals is to adopt measures that reduce the 

inflation rates in Nigeria (Soludo,  2009)   

A lot of studies involving inflation rates have been done since the inception of NEEDS. For example, 

Otu et al. (2013) analyzed Nigeria inflation rates using Box Jenkins methodology. Their findings revealed a 

decreasing pattern of inflation rates in the first quarter of 2014 and a turning point in the beginning of second 

quarter of 2014. They affirmed that inflation rates in Nigeria were seasonal over the period 201 to 2013. As a 

result, they fitted ARIMA(1,1,1)(0,0,1)12 model to the data. In their own research, Olajide et al. (2012) found 

inflation rates for the period 1961-2010, to be a non stationary time series which became stationary after first 

order differencing. Their study considered ARIMA (1,1,1) to be the most appropriate model for the inflation 

rates during the period under review.  

Despite the rich literature on inflation, no research work has addressed the impact of special 

interventions on inflation rates. Therefore, the purpose of this study is to perform an ARIMA intervention 

analysis of inflation rates in Nigeria from 2003 to 2013 using NEEDS policy as an intervention.   

 

2.0 Methodology 

The data used in this study, are secondary data on inflation rates in Nigeria over the period January 2003 to 

December 2013. The data can be retrieved from the website www.cenbank.org. In analyzing the data, we employ 

intervention analysis. This method of analyzing is aimed at fitting a time series model to time series data 

influenced by an intervention. An intervention model is generally given by 

 )( ttt IfNX +=             (2.1) 

Where = observed value of the time series at time t 

) is the intervention function and  is the ARIMA noise model 

In fitting an intervention model to time series data we first determine the point of intervention on the 

series. Next we fit an ARIMA model to the pre intervention series based on Box Jenkins approach. Stationarity 

is a basic requirement for the application of Box Jenkins methodology. The mean function and variance function 

of a stationary time series are constant over time. It then follows that a time series is non stationary if at least one 

of its mean and variance depends on time. Through differencing, a stationary time series with time varying mean 
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can be converted into a stationary time series when the time series has stochastic trend. The mth order difference 

of the time series takes the form  

mttt

m XXX −−=∇                                       (2.2) 

For seasonal differences, we have 

                                                                 

 Sttt

S XXX −−=∇                                      (2.3) 

Where S is the seasonal length. The seasonal length for monthly data is S = 12. 

The order of differencing can be determined by visual inspection of the time series plot, Continuous inspection 

of the time series plot of the differenced series and plot of the ACF after each stage of differencing until there is 

evidence of stationarity.  

 Stationary time series are expected to have constant variance over time. When the variance is not stable, 

an appropriate transformation can be applied to stabilize the variance. A formal procedure for determining what 

transformation to apply to a time series was introduced by Akpanta and Iwueze (2009). This method requires the 

estimation of the regression model of the annual standard deviation on the annual means. The regression model 

given for k no of years is 

 ieie Xloglog
^^^

βασ +=                     (2.4)   

Various values of   and their corresponding transformation are shown in Table 2.1. 

Table 2.1: Various values of  and their corresponding Transformations 

S/NO 1 2 3 4 5 6 7 
^

β  
0 0.5 1 1.5 2 3 -1 

Transformation None 
tX  te Xlog  

tX

1
 

tX

1
 

2

1

tX
 

2

tX  

Source: Akpanta and Iwueze (2009) 

 The ARIMA (p,d,q) model is a well known class of time series models which can be fitted using the 

Box-Jenkins approach. This model has the following representation 

 ( )( ) ( ) tt

d
eX Β=Β−Β θφ 1                 (2.5) 

In the model (2.5), B is the backshift operator such that mtt

m XX −=Β , 

( ) ( )p

pΒ−Β−Β−=Β φφφφ ..1 2

21 and ( ) ( )q

qΒ−Β−Β−=Β φθθθ ..1 2

21  are polynomials of degrees p 

and q respectively, d is the order of non seasonal(regular) differencing and  is a white noise process.  

 The autocorrelation function and partial autocorrelation function play important roles in the 

identification of the ARIMA (p,d,q) model. To fit a time series model to a time series data we need to estimate 

the parameter(s) of the model. This can be done by method of moments, method of non linear least squares and 

method of maximum likelihood.( Aidoo,2010). Programs for estimation of parameters of such models are 

available in the statistical package MINITAB. If the fitted model is adequate, the plots of the associated residual 

ACF and PACF are expected to have the properties of a white noise process. 

 

Intervention Functions 

The step and pulse functions are the two commonly used functions for investigating the effects of interventions 

on the mean functions of time series.(Cryer and Chan,2008) 

Let t be the time an intervention takes place in a given time series. For a step function, we have  

            

( )



 >

=
otherwise,0

if,1 Tt
S

T

t

                                                                                                      

(2.6)  

Obviously, the step function assumes the value 0 during the intervention period and 1 throughout the post 

intervention period. 

Again, the pulse function is given by 

         

( )( ) ( )



 =

=−
−=

otherwise,0

if,1
1

TtT
t SSP

T

t

T

t
                                                                                  

(2.7)

 
It shall be noted that  is the indicator or dummy variable assuming the values 1 when there is an intervention 

in the series and zero otherwise. More details on the functional forms of step and pulse functions as well as their 
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graphical representations are given by Cryer and Chan (2008) among others. Available statistical software for 

estimation of Intervention models  include Statistica and R. Accordingly, R is used in this study. 

Intervention analysis requires that the point of occurrence of the event (intervention) is known and 

specific functional form be specified for the effect that the event has on the time series (Glamour et al. 2006). 

 

3.0 Results and Discussion 

In this section the intervention time series analysis is performed on inflation rates in Nigeria, for the period under 

consideration. Figure 4.1 shows time plot of the series. 
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Figure 3.1: Time plot of Nigeria Monthly Inflation Rate 

There appears to be structural breaks in the time series as shown in Figure 3.1. Notably, the largest 

inflation rate occurred in August, 2005. This has been chosen as the intervention point in this study because of 

the because of the behavior of the series after this point. Visual inspection of Figure 3.1 indicates that the 

concerned series may have no constant variance. In what follows, we seek a variance stabilizing transformation 

for the series. 

 

3.1 Choice of appropriate transformation for the inflation rate data 

The annual means and annual standard deviation of the series are shown in Table 3.1 

Table 3.1: Natural logs of annual means and annual standard deviations 

Year 
iX  

i

^

σ  iXln  
i

^

lnσ  

2003 13.93 6.38 2.63404 1.85317 

2004 15.38 5.73 2.73307 1.74572 

2005 17.84 5.87 2.88144 1.76985 

2006 8.375 3.124 2.12525 1.13911 

2007 5.417 1.293 1.68954 0.25697 

2008 11.525 2.894 2.44452 1.06264 

2009 12.592 1.489 2.53306 0.39810 

2010 13.758 1.077 2.62162 0.07418 

2011 10.85 1.12 2.38417 0.11333 

2012 12.242 0.538 2.50487 -0.61990 

2013 8.517 0.552 2.14206 -0.59421 
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The estimates of the parameters of the fitted regression model as well as their corresponding standard 

errors are contained in Table 3.2 

Table 3.2: Estimates of the parameters based on the  Regression of the natural log of annual standard 

deviation on natural log of annual mean 

Parameter Estimate Standard Error 
α  -2.351 1.983 

β  1.2385 0.8103 

R Squared= 20.6%, R-Squared Adjusted=11.8% 

From Table 3.2, we have   = 1.24 which  lies between 1 and 1.5 but closer to one (1) indicating that a 

natural logarithmic transformation might be suitable for the data. We then examine the suitability of the 

logarithm transformation by testing the hypothesis   

 Ho: β = 1 ( i.e logarithmic appropriate transformation is appropriate) against the alternative Ha: β≠ 1 

(i.e logarithmic appropriate transformation is not appropriate). When the calculated t-value (0.296) is compared 

with the tabulated value (2.26) at α = 0.05 level of significance and 9 degrees of freedom, the null hypothesis is 

not rejected indicating that the logarithmic transformation may be the appropriate transformation. 

This transformation is then applied to the original data and subsequent analysis is based on the 

transformed data. It can easily be verified using the procedure for determining the appropriate transformation 

that log inflation rates no longer require transformation. 

 

3.2 Modeling the pre-intervention series  

Here, we fit an ARIMA model to the pre-intervention series (i.e the observed values of the time series before 

August, 2005) with the help of plots of the ACF and PACF shown in Figures 3.2 and 3.3 respectively. 
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Fig. 3.2: ACF of Log Transformed Pre-Intervention series 

The ACF of the pre-intervention series is characterized by an exponential decay. 
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Figure 3.3 : PACF of the Transformed Pre-Intervention Series 

It can be deduced from Figure 3.3 that there is a cut off after lag 1 in the PACF of the pre-intervention 

series, indicating that the pre-intervention series may have been generated by the first order autoregressive model 

(AR (1) model).  

 

3.3  Estimation of parameters of log transformed pre-intervention series 

The parameters of the fitted ARIMA (1,0,0) model to the pre-intervention series is shown in Table 4.7 below 

Table 3.3: Final estimates of parameters of the pre-intervention model 

Model Coefficient Standard Error P 

AR(1) 0.9864 0.0152 0.000 

The time plot of the residuals of the pre-intervention series is shown in Figure 3.4. We can observe that 

the time plot of the residuals clearly shows that the residuals appear to be randomly scattered. This suggests that 

the residuals are purely random. To substantiate this claim, we plot the ACF and PACF of the residuals. The 

ACF of the residual series shown in Figure 3.5 has no significant autocorrelation coefficient. The PACF of the 

residuals in Figure 3.6 has no spike. From the foregoing, it is evident that the residuals constitute a white noise 

process. This confirms the suitability of the fitted AR (1) model.    
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Figure 3.4: Time plot of the residuals of the pre-intervention model 
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Figure 3.5: ACF of Residuals of the fitted ARIMA (1,0,0) Model 
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Figure 3.6 : PACF of Residuals of the fitted ARIMA (1,0,0) model 

 

3.4 Estimation of full intervention model 
In this Section, the R software package is used to estimate the parameters of the full intervention model for the 

Nigeria inflation rates data. The parameter estimates are shown in table 4.10 

Table 3.4  Parameters estimates of the full intervention model 

 

Parameter 

Estimate 

 

Asympt. 

Std.Err. 
p 

Lower  95% 

Conf 

Upper 95% 

Conf 

Interv.  Case 

No. 

AR(1) 0.986 0.0153 0.000 0.956 1.017  

Omega ( )ω  4.521 1.978 0.024 0.608 8.435 32 

Delta ( )δ  0.508 0.262 0.055 -0.011 1.027 32 

Table 3.4 reports the parameter estimates of the full intervention model. The estimate of the  parameter 

for the AR(1) model is significantly differ from zero since its associated P-value of  0.000 is less than 0.05. It 

also conforms to the bounds of stationarity since it lies between -1 and 1.  
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Using the information in Table 3.4 and the dummy variable tI , we obtain the full intervention model  

 1986.0
508.01

521.4
−+

−
= ttt XI

B
X          (3.1) 

Since the P-value (0.024) corresponding to the parameter estimate of ω (4.521) is less than 0.05, we 

conclude that ω is significantly different from zero at 5% level of significance. At 5% level of significance, the 

estimate of δ (0.508) is not significantly different from zero because the corresponding P-value of 0.055 

exceeds 0.05.  

 

3.5  Diagnostic check for the full intervention model. 

Using Figure 3.7 and the associated p-value of 0.036, we can conclude that the residuals are normally distributed 

at 1% significance level. 

Normal Probability Plot: inflation
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Figure 3.7: Normal probability plot of the residuals from AR (1) intervention model 

It is also clear from Figure 3.8 that there is no cut off in the ACF of the residuals from the full 

intervention model. This confirms the adequacy of the fitted intervention model. 
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Autocorrelation Function

inflation: ARIMA (1,0,0) residuals (Intervention analysis);

(Standard errors are white-noise estimates)

 Conf. Limit

-1.0 -0.5 0.0 0.5 1.0
0

 11 -.005 .0827

 10 -.161 .0831

  9 -.052 .0834

  8 +.122 .0837

  7 -.105 .0841

  6 -.114 .0844

  5 +.122 .0847

  4 -.040 .0851

  3 +.113 .0854

  2 +.019 .0857

  1 -.005 .0861

Lag Corr. S.E.

0

13.79 .2449

13.79 .1830

10.03 .3484

 9.64 .2916

 7.50 .3785

 5.95 .4292

 4.11 .5341

 2.02 .7321

 1.80 .6143

  .05 .9733

  .00 .9501

  Q p

 
 

6.0 Conclusion 

The purpose of the study was to investigate the impact of NEEDS on inflation rates in Nigeria using the 

intervention analysis. Our findings showed that the inflation rates in Nigeria over the period 2003 to 2013 have 

none constant variance and required logarithmic transformation to achieve variance stationarity. Following the 

patterns exhibited by the autocorrelation function and partial autocorrelation function of the pre-intervention 

series, AR (1) model was tentatively fitted to the pre intervention series. Careful examination of the residual 

from the fitted model confirmed the adequacy of the fitted model. Using the R package an intervention model 

involving a first order decay rate was fitted to the data. Based on the model, we observed that the NEEDS has 

significant negative effect on inflation rates in Nigeria. However, the already established effect of the NEEDS is 

temporary. Hence, there is an abrupt temporary effect of NEEDS on inflation in Nigeria.   
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