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Abstract  
It is well known that complete diallel cross system IV and triangular partially balanced incomplete block designs 
have one to one correspondence. In the present paper,  we have identified some triangular partially balanced 
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1. INTRODUCTION 
Diallel crossing is a very useful method for conducting plant and animal breeding experiments, especially for 
estimating combining ability effects of lines. Suppose there are p inbred lines and it is desired to perform a diallel 
crossing experiments involving p(p-1)/2 crosses of the type (ixj) = (jxi) for i ≠ j = 1, 2, … , p. This is a complete 
diallel cross system IV mating design of Griffing (1956), who studied the detailed analysis of such mating designs 
laid out in a randomized complete block design. Henceforth, we will call it Complete Diallel Crosses (CDC).  

Optimal block designs for CDC have been considered by Gupta and Kageyama (1994), Dey and Midha 
(1996) , Das et.al (1998), Parsadet al(1999) , Sharma (2004), Parsadet al(2005) and Sharma and Fanta (2010) by 
using nested incomplete (NBIB) designs, triangular PBIB design nested balanced  block(NBB) designs circular 
designs and PBIB designs for the cas where the model includes general combining ability(gca) effects apart from  
block effects but  no specific combing ability (sca) effects.  

Chai and Mukerjee(1999) considered the case when sca effects are also present in the model and showed that 
the triangular designs thar=t are proved to be optimal for gcs comparison by  Dey and Midha(1996) and 
Das.et.al(1998) remain optimal for gca comparison even sca effects are presents in the model. Das.et.al (1998) 
stated a condition in theorem 4.1 on page 334 for a block designs for CDC derived from a triangular designs to be 
universally optimal. Chai.et al.(2002) proved that the optimal designs for CDC given by Guota and 
Kegeyama(1994) andDas et.al(1998) , among the others for gca comparisons are also optimal in presence of sca 
effects even though that are not triangular designs.   

The objective of the present paper is to identify triangular designs which can be used to construct optimal 
incomplete block designs for CDC with Minimum number of experimental units   from catalogue of Clatworthy 
(1973) and not listed by Dey and Midha (1996), Parsad and Gupta (2004), Das.et al (1998) and Sharma and Fanta 
(2010). In this investigation we have identified some TPBIB design which can generate optimal incomplete block 
designs for CDC experiments in proper and non proper settings with minimal number of experimental units for 
estimating the general combining ability (gca) effects of lines and also can generate optimal incomplete block 
designs for CDC experiment in proper settings for estimating the gca of lines in presence of specific combing 
ability. Those designs do not obey the condition given by by Das et. al(1998). The block design in proper and non-
proper setting are found universally optimal in sense Kiefer (1975) for estimating the gca effects of lines for CDC 
experiments. In addition, to the block effects and gca, the model also include sca. 
 
2. METHOD OF CONSTRUCTION   
Our method of construction of IBD for CDC experiment is essentially the same as that of Agarwal and Das (1987) 
and Dey and Midha (1996) but with some difference. That is those authors put crosses in original blocks of the 
TPBIB designs but we have taken the crosses in block as block of the mating designs.  

Assume that there are p inbred lines and it is desired to find an IBD design for a mating design involving p(p-
1)/2 crosses. Consider a two associate triangular PBIB design d1 as auxiliary design with parameters v = p(p-1)/2, 

b, r, k = b-1, λ1, λ2, n1, n2, 
i

kjp  for i, j, k = 1,2. The treatments of the design d1 are indexed by a pair (ixj) for i < j, 

i, j, = 1,2,…, p. 
Two treatments, say (α, β ) and (γ, δ ), are first associates if ether α =γ, β≠δ, or α≠δ, β =γ; they are second 
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associates  or α≠δ,β =γ ; they are second associates otherwise. from the design d1  , we derived a block design, say 
d2  by replacing  a treatment in d1  by cross(ixj) for  I <j , I,j = 1,2,…,p. Clearly d2 involves p (p-1)/2 crosses, b 
blocks each of size k-1. Each cross is replicated r times. Now in d2 we interchange the position of the blocks and 
block size, that is, now we have a design d3 with parameters v = p (p-1)/2, b΄ = k-1, k΄ = b, r.  When p is odd, 
design d3 can be divided into two same IBD d with parameters v = p (p-1)/2, b΄΄ = (k-1)/2, k΄΄ = b, r = 1. Similarly 
when p is even, design d3 can be divided into two same IBD design d* with parameters v = p (p-1)/2, b΄΄΄ = (k-
1)/2, k΄΄΄ = (b, b, …, b/2), r = 1 The method of construction is illustrated below for both cases when p is odd (even). 
Example 2.1: Let p = 5, we take the following ordered 10 crosses indexed as given below. 

1 2 3 4 5 6 7 8 9 10 
1x2 1x3 1x4 1x5 2x3 2x4 2x5 3x4 3x5 4x5 

Now we consider a triangular PBIB design d1 (T28, Clatworthy, 1973) with parameters v = 10, b =5, k =4, r =2, 
λ1 =1, λ2 = 0. From design d1, a mating design d2 for diallel crossing can be obtained by replacing each treatment 
with the cross corresponding to ith treatment, we get the required mating design for CDC. 
                     d1                                                           d2 
B1   1    2  3 4                        B1    1x2   1x3   1x4     1x5    
B2   5    6          7          1                          B2      2x3   2x4   2x5     1x2 
B3   8        9           2         5                          B3       3x4   3x5   1x3     2x3 
B4  10       3           6         8                          B4    4x5   1x4   2x4     3x4 
B5   4        7           9        10                          B5       1x5   2x5   3x5     4x5  
Now consider columns of d2 as blocks, we get design d3 for CDC experiment system 
                d3                                                       d                    d 
B1     B2      B3       B4                                        B1     B2      B3       B4                                                                
1x2   1x3   1x4     1x5                                     1x2   1x3   1x4     1x5 
2x3   2x4   2x5     1x2                                     2x3   2x4   2x5     1x2                                                       
3x4   3x5   1x3     2x3                                     3x4   3x5   1x3     2x3 
4x5   1x4   2x4     3x4                                     4x5   1x4   2x4     3x4 
1x5   2x5   3x5     4x5                                    1x5   2x5   3x5     4x5 
Thus we get IBD for CDC experiment with parameters v =10, b΄ =4, k΄ =5, r =2. By observing the above design 
we find that it can be divided into two same IBD designs d where  blocks have been designated in italic and bold 
letters, for CDC experiment having parameters v = 10, b΄΄ = 2, k ΄΄ = 5, and r =1. 
Example 2.2: Let p = 6, we take the following ordered 15 crosses 

1x2 1x3 1x4 1x5 1x6 2x3 2x4 2x5 2x6 3x4 3x5 3x6 4x5 4x6 5x6 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

 
Now we take triangular design d1 (T48, Clatworthy, 1973) with parameters v =15, b =6, r=2, k =5, λ1 =1, λ2 = 0. 
From this design, a mating design d2 for CDC can be obtained by replacing each ith treatment corresponding ith 
cross. We get the required mating design for CDC. Now consider columns of mating design as blocks, we get 
design d3 for CDC experiment.  
                                   
                         d1                                                                  d2 
B1  1  2 3         4         5                  B1   1x2    1x3     1x4      1x5      1x6 
B2  6       7           8         9           1                 B2  2x3    2x4      2x5       2x6     1x2 
B3  10    11         12       2            6                 B3  3x4    3x5      3x6       1x3     2x3 
B4  13    14         3         7           10                B4  4x5    4x6      1x4       2x4     3x4 
B5  15    4           8        11        13                  B5  5x6   1x5       2x5      3x5      4x5 
B6   5     9          12       14        15                  B6   1x6   2x6       3x6      4x6      5x6 
Now consider columns of design d2 as blocks, we get design d3 for CDC experiment. 
                         d3 
  B1        B2         B3         B4        B5 
1x2 1x3 1x4  1x5 1x6 
2x3       2x4      2x5       2x6     1x2 
3x4       3x5      3x6       1x3     2x3 
4x5       4x6      1x4       2x4     3x4 
1x6      2x6       3x6       4x6     5x6 
5x6      1x5       2x5       3x5     4x5  
Thus we get IBD for CDC experiment with parameters v =15, b΄ =6, k΄ =5, r =2. By observing the above design 
we find that it can be divided into two same IBD designs in non proper setting for CDC experiment having 
parameters v = 15, b΄΄΄ =3, k΄΄΄ =(6,6,3), and r =1 as given below. We will denote both designs by d*. 
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                d*.                                                                           d*. 
B1             B2           B3                                          B1             B2           B3 
1x2          1x3         1x4                                         1x4           1x5         1x6 
2x3          2x4         2x5                                         2x5           2x6         1x2 
3x4          3x5         3x6                                         3x6           1x3         2x3 
4x5          4x6                                                                         2x4         3x4 
5x6          1x5                                                                         3x5         4x5 
1x6          2x6                                                                         4x6         5x6   
So we get three types of design for CDC experiments (i) with equal block size and having 2 replications for each 
cross.(ii) with equal block size  and having one replication for each cross.(iii) with unequal block size and having 
one replication for each cross.  The first two are proper setting and the third is non proper setting.  
Now we give below the theorem of Choi et.al (2002) which establishes that the design d3 and d are optimal for 
the estimation of gca comparison in presence of sca effects in the model. It is important to note that the design d 
is balanced for gca comparisons but not balanced for sca comparison because each cross is replicated only once in 
each design d that is rc   =1. It means that all sca comparisons are not steamtable.  
Theorem 2.1:   considering a binary diallel cross design D with parameters  v =p(p-1)/2 , rc ,b, k such that it is 
orthogonally blocked with respect to lines, that is each lines occirs in every block r/b times, that is r = rc(p-1) is 
the constant number of replication of each the lines. Theb=n D is optimal for the estimation of gca comparisons 
even in the presence of sca effects in the model.  According to the above theorem, the design d3 and d are 
orthogonally blocked with respect to the lines, hence optimal for gca comparison in the presence of sca effects in 
the model.  Now we state the following theorem.  
Theorem 2.2:  for a positive prime p>3, if there exists a two associates triangular PBIB design with parameters 
v= p(p-1)/2, b, r, k = b-1, λ1, λ2, n1, n2 for i j, = 12, then there is always exist binary CDC design d3 with the 
parameters   v = p(p-1)/2, b- p-1, k = p and r= 2. Then d3 is universally optimal for the estimation of gca 
comparisons even in the presence of sca effects in the model.  
Note: Sharma and Fanta (2010) envisaged 85 PBIB designs (Clatworthy ,1973) to construct optimal block designs 
for CDC experiments. Out of which 20 and 29 PBIB design gave optimal block design for CDC experiments in 
which cross is replicated once and twice, respectively. The 29 blocks designs are optimal for gca comparison in 
the presence of sca effects according to theorem 2.1 
In net section we give the method of analysis of the design d3 

 

3. ANALYSIS OF DESIGN D3 

For the analysis of data obtained from d3 , we will follow Sing and(Hinklemann’s(1998) two stage procedure for 
estimating gca and sca effects. The first stage is to consider the proposed design for estimation of the effects say 
= (𝝉, …. , 𝝉p (p-1)/2)'  for design d3 by the following model     
                                    Y = μ 1n + X𝝉+Dβ+ e                                                                (3.1) 
Where Y is the nx1 vector observations,  1 is the nx1 vectors of ones,  X is the nxv design matrix  for treatments 
and D is an nxb design matrix for blocks, that is,  the(h, u)th ((h,i )th elements of X(respectively, of D) is 1 if the hth 
observations  pertains to  the uth   cross (to ith block) ,and is zero otherwise( h= 1,…,n; u = 1, ….,v; and 1,…,b), μ 
is a general mean, 𝛕 is a v × 1 vector of treatment parameters, β is a b × 1 vector of block parameters and e is an n 
× 1 vector of residuals. It is assumed that vector β is fixed and e is normally distributed with E (e) = 0, V (e) = δ2I, 
where I is the identity matrix of conformable order.  
Following Tocher (1952), Raghava Rao(1971), Dey(1986), the least square method for the analysis of a proposed 
design leads to the following reduced normal equations for the crosses for model (3.1). 
Cd 𝝉 = Qd                                                                                                                         (3.2) 
Where Cd  =  R-NK-1N՜ and  Qd =( Q1d,…, Qvd) = T-NK-1B 
In the above expressions above, R and K are diagonal matrices of order v × v and b × b with common diagonal 
elements 2 and p in the diagonal, respectively.  N = X՜D is  
the v × b incidence matrix of the designs d; T = X՜ Y and B = D՜Y are vector of cross totals and block totals of 
order v × 1 and b × 1 respectively for design d. ` 
Hence a solution to (3.2) is given by    𝝉ො  =   𝑪𝒅

ି Qd                                                       (3.3) 
Where 𝐂𝐝

ି is the generalized inverse of Cd   with the property that  𝑪𝑪ି𝟏C = C. The sum of squares due to crosses 
are  𝑸𝒅

՜ 𝑪𝒅
ି𝑸𝒅 with degree of freedom (d.f) = rank (Cd) for design d with expectation and variance of Qd being  

E(Qd) = Cd𝜏      Var(Qd) = 𝝈𝟐𝑪𝒅                                                                                      (3.4) 
Now, we will utilize the above equation to estimate the genetics parameters in the proposed design. The second 
stage is to utilize the fact that the cross effects can be expressed in terms of gca and sca. So we can write effects 
as follow.  
        𝝉𝒊𝒋 = gi+gj+sij                                                                                                                                                                 (3.5)                               
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Where gi(gj) is the gca for the ith(jth)parent , sij (sij =sji)  is the sca for cross between the ith and the jth  parent (i< j = 
0,1,….,p-1) and we also assume that, ∑ 𝑔௜ ௜  = 0 , and ∑ 𝑠௜௝௝  = o . for all i.  
In matrix notation equation (3.5) can be written as = 𝛕 ൌ 𝐙𝐠 ൅ 𝐬                                 (3.6) 
Where Z (zui)(u = 1,2,….,v: i =0.1,….,p-1)is the cross and gca relation matrix  
 Zui     = 2 if the uth cross has both parents 
         = 1 if the uth cross has only on parent 
         = 0, otherwise  
Following the approached used in Kepthorne and Curnow (1961) ,equation (3.2)can be written as   Cd𝝉    = Cd Zg 
Cds  
That is,  E(Qd) = Cd Zg Cds                                                                                           (3.7) 
Since the matrix C is singular, we use unified theory of least square due to Rao(1973, page ,300). So estimator of 
g is  
𝐠ො = ሺ 𝒁՜𝑪𝒅   𝑪𝒅

ି𝑪𝒅 𝒁ሻି𝒁՜ 𝑸𝒅 =  ሺ 𝒁՜𝑪𝒅𝒁ሻି𝒁՜ 𝑸𝒅                                                            (3.8) 

Here the matrix ( Z՜CdZ) = ½(p-2)[ Ip - 
𝟏௣𝟏՜௣

௉
 ]  

Hence trace ( Z՜CdZ)   = 2(p-1)(p-2)                                                                              (3.9) 
So 𝒈ෝ = ½ (p-2)Z՜ Cd𝝉   
Hence  𝒈ෝ = H1𝝉  , where H1  = ½ (p-2)Z՜ Cd                                                               (3.10) 
Now,  var ሺ𝒈ෝ ሻ = H1𝑪ି H1𝛔𝟐  = ½ (p-2)Ip 𝜎𝟐                                                                                               (3.11) 
Since the covariance matrix of  𝐠ො is a constant times the identity matrix, the design d is variance balanced for the 
general combining ability. We thus have the following result. 
Theorem 3.1: for positive prime p> 3m if there exists a two associates triangular PBIB  with parameters v = p(p-
1)/2,b r,k =b-1, λ1, λ2, n1, n2,𝑃௝௞

௜     for k =1, 2, then there always exists variance-balanced CDC design with the 
parameters, v = p(p-1)/2, b=p-1 , k = p ,and r =2 for the estimation of gca comparisons.  
Now, substituting the estimate of g in equation (3.6), we obtain the estimator of s, namely insertion of solution of 
equation (3.10). 
  𝒔ො = ሺ𝑪𝒅

ି െ 𝟏/𝟐ሺ𝒑 െ 𝟐ሻ𝒁Z̓՜)Qd = ሺ𝑪𝒅
ି െ 𝟏/𝟐ሺ𝒑 െ 𝟐ሻ𝒁҆Z՜)Cd𝝉  = H2𝝉                          (3.12) 

Where H2 = ሺ𝑪𝒅
ି െ 𝟏/𝟐ሺ𝒑 െ 𝟐ሻ𝒁҆Z՜)Cd  

Var (𝒔ො)  = 𝑯𝟐ሖ 𝑪ି𝑯𝟐 𝜹𝟐                                                                                                 (3.13) 
Since H11v = 0, H21v = 0 , H1𝑯𝟐ሖ  =0,we have rank (H1) = p-1 and rank (H2) = v-p. 
It follows that g and s are represented by treatment contrasts which carry p-1 and v-p degree of freedom, 
respectively and the contrasts representing g are orthogonal to those representing s. This means that the proposed 
design d3 allows for gca and sca effects to be estimated independently. The sum of squares due to gca and sca for 
design d are given by  
SS(gca) = 𝑸՜ 𝐙ሺ𝐙՜𝐂𝐝𝐙ሻି 𝒁՜ 𝑸𝒅 
                                                                                                                                        (3.14) 
 SS(sca) =  𝐐𝐝 ሖ ሺ𝐂𝐝

ି െ 𝟏 ሺ𝐩 െ 𝟐ሻ𝐙𝐙՜⁄ Qd                                                                          (3.15) 
                     
ANOVA is then given in Table 1 
Table 1: Analysis of variance for design d 

Source of variation  Degrees of Freedom Sum of squares 
Block  p-2 B՜𝑩 ሺ𝒑 െ 𝟏ሻ െ  𝑮𝟐 𝒑ሺ𝒑 െ 𝟏ሻ⁄⁄  
Crosses (adjusted for blocks) Rank(Cd ) 𝑸𝒅

՜ 𝑪𝒅
ି𝑸𝒅 

gca rank (H1) 𝑸𝒅
՜  𝐙ሺ𝐙՜𝐂𝐝𝐙ሻି 𝒁՜ 𝑸𝒅 

sca rank (H2) 𝑄՜ 𝐙ሺ𝐙՜𝐂𝐝𝐙ሻି 𝒁՜ 𝑸𝒅 
Residual by subtraction by subtraction 
Total  n-1 yy՜ - 𝐺ଶ 𝑝ሺ𝑝 െ 1ሻ⁄  

Where G = grand total of all n observations 
Now we discuss about analysis and optimality of design d* 

 

4. ANALYSIS AND OPTIMALITY OF DESIGN d* 

The data obtained from design d*,   we consider the same model as given in equation (3.1) 
                                    Y = μ 1n + X𝝉+Dβ+ e                                                                (4.1)          

 Where Y is the nx1 vector observations,  1 is the nx1 vectors of ones,  X is the nxv design matrix  for treatments 
and D is an nxb design matrix for blocks, that is,  the(h, u)th ((h,I )th elements of X(respectively, of D) is 1 if the hth 
observations  pertains to  the uth   cross (to ith block) ,and is zero otherwise( h= 1,…,n; u = 1, ….,v; and 1,…,b), μ 
is a general mean, 𝛕 is a v × 1 vector of treatment parameters, β is a b × 1 vector of block parameters and e is an n 
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× 1 vector of residuals. It is assumed that vector β is fixed and e is normally distributed with E (e) = 0, V (e) = δ2I, 
where I is the identity matrix of conformable order.  
 
5. Efficiency Factor    
Now we will show that the design d and d* are optimal in the sense of Kempthorne (1956). If instead of the designs 
d and d* , one adopts a randomized complete block design with r blocks, each block having all the p (p-1)/2 crosses, 
the C matrix of the randomized block design i.e. can easily be shown to be , see Dey and Midha(1996). 

       CR  = r (p-2) ( Ip – p-1 1p 1΄p)                                                                (4.2) 
Hence the variance of the best linear unbiased estimator of any elementary contrast among gca effects in the case 
of randomized block experiment is 2σ 

2/ r (p-2), σ 
2
 is the per observation variance. Thus the efficiency factors e1 

and e2, respectively of the design d and d*, relative to randomized block designs under the assumption of equal 
intrablock variances are given by  
       e1  =  θ / r(p-2) =  r(p-2)/ r (p-2) = 1,                                                            (4.3) 
     Similarly e2  =   θ / r(p-2) =   r(p-2)/ r (p-2)  = 1                                             (4.4) 
      where   θ = ( p-2) and r =1 
Furthermore, on the lines of Sharma and Fanta (2010), it can be easily proved that the design d* are optimal. 
Now, we are giving the list of practicable useful designs for 5 ൑ 𝑃 ൑ 11 in Table 2 
                             Table 2 

No. Ref. No of lines 
Number of experimental 

units 
Efficiency factor Optimality status 

1 5 10 1 Universally Optimal 
2 6 15 1 Universally Optimal 
3 7 21 1 Universally Optimal 
4 8 28 1 Universally Optimal 
5 9 36 1 Universally Optimal 
6 10 45 1 Universally Optimal 
7 11 55 1 Universally Optimal 

Remarks 1: Designs T33, T34, T77, T84, T94 and T95 were reported by Dey and Midha(1996) as efficient designs. 
These designs are also optimal in sense of Kempthorne(1956) by our method.  
Remarks 2:  The design reported in Table 2 belong to series v =p (p-1)/2, b = p, r=2, k = p-1, , λ1 = 1, λ2 = 0, 
Shrikhande(1952) and Bose and Shimamoto(1952). Their duals are reduced BIB designs with parameters v* = p, 
b* = p(p-1)/2, r* = p-1, k* = 2, 𝜆 ଵ∗  = 1 . These designs are easy to construct Das and Giri(1986). Hence further 
optimal design for CDC experiment for 12, 13, 14 and 15 inbred lines can be obtained by the duals design. 
 
6. Conclusion 
We have searched some more triangular designs to obtain optimal designs for CDC experiment for comparisons 
of gca in the presence of sca effects in the model and also in the absence of sca. 
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