Influence of Potassium Humate on Am Contamination and Rhizospheric Mycoflora of Rice (Oryza sativa L)

MUHAMMAD ALI* MEHRA AZAM MUHAMMAD ADNAN
Institute of Agricultural Sciences, University of the Punjab, Lahore-54590, Pakistan
Corresponding Author: muhammadali.mycologist@gmail.com

Abstract
An experiment was conducted in Institute of Plant Pathology, University of the Punjab, Lahore, to assess the effect of different concentrations of Potassium humate (0, 250, 500, 750 and 1000 mg per Kg) on rhizospheric mycoflora of Basmati Rice (Oryza sativa L.) in field experiment. In this regard different parameters of Arbuscular Mycorrhizal infection (%age infection, number of arbuscules, number and size of vesicles, length of mycelium), number of mycorrhizal spores and percentage occurrence of soil borne pathogenic and antagonistic fungi was recorded in the rhizospheric soil of rice. The data calculated for the study of mycoflora did not exhibit any significant different in the AM colonization in roots, number of rhizospheric mycorrhizal spores and percentage occurrence of many fungi. Only Aspergillus terreus, Rhizopus spp. and Aspergillus petrakii show significant difference in their percentage occurrence in different treatments. Rhizopus spp. decreases with the increase in the concentration of potassium humate while Aspergillus petrakii and Aspergillus terreus increased with the increase in potassium humate concentration.

Keywords: Oryza sativa L., rice, Potassium humate, Humic acid concentrations, Arbuscular mycorrhiza, fungi.

Introduction
Humin substances (HS) are natural organic poly electrolytes present in the soil humus and stabilized soil organic matter. These molecules have ecological importance, as they intervene in the regulation of a large number of chemical and biological processes that occur in natural ecosystems (Chen et al., 2004). Humic acid enhances plant growth, nutrient uptake and improves stress tolerance in plants (Serenella et al., 2002) Moreover it acts as disease suppressant by enhancing beneficial soil microbe activity (Manuela et al., 1996), Humic acid enhances nutrient uptake like 89Rb, 133Cs, 54Mn, 65Zn, 88Y, 102Rh, and 75Se by rice plants and enhances its growth rate (Ozaki T. et al., 2003). Potassium humate is a good source of humic acid. Its stimulation to plant growth is a function of nutrients supply to the plant. A clear significantly positive trend was seen in increasing plant height, stem diameter and root length by increasing the concentration of potassium humate (Sahar et al., 2009).

Arbuscular Mycorrhizae (AM) is mutually beneficial relationship between fungi and plant roots. Colonization of roots by mycorrhizal fungi has been shown to improve growth and productivity of several field crops including legumes, cereals, vegetables and oil crops (Kapoor et al., 2004; Subramanian et al., 2006 & Wang et al., 2006). Mycorrhizal associations increase plant growth and productivity by increasing nutrient element uptake, (Al- Karaki, 2002), and improving resistance to abiotic, (Chen et al., 2006) and biotic, (Arnaud et al., 1994), stress factors. Plants are benefited by the presence of mycorrhizal associates via a variety of mechanisms including improvement of soil structure, mobilization of essential minerals, enhancement of desiccation resistance, and protection from pathogens and herbivores, Smith et al., (1997). It is also reported that AM also increase the crop tolerance against allelopathy and enhance crop growth under this stress (Bajwa et al., 1999). Arbuscular Mycorrhizal root colonization is slightly affected by the humic acid as by increasing the concentration of humic acid in soil, the hyphal growth of Glomus mosseae reduces while the production of extraradical mycelium by the mycorrhizal fungus is also increased (Gryndler et al., 2005). Humic acid also increases the growth and dry mass production of ectomycorrhizal basidiomycetes (Hrselova et al., 2007).

This study was designed to check the effect of different concentrations of potassium humate on AM infection in roots and Mycoflora of rhizospheric soil for evaluation of humic acid whether it supports plant associated mycoflora or not.

Materials and Methods
The seeds of Basmati rice were arranged from “Punjab seed corporation”, Lahore and were grown in field conditions at 25-38 ± 2°C under different concentrations of potassium humate (0 (control), 250 (T1), 500 (T2), 750 (T3) and 1000 (T4)) for the study of rhizospheric mycoflora in mature plants at the time of inflorescence. Each treatment and control had three replicates with five pots per replicate. Every pot had single plant and size of pots was 8/12” with 2 Kg soil capacity. Pots were filled with clean silt free of pebbles and stones. At the time of harvest three plants from each treatment were carefully uprooted along with rhizospheric soil and taken in laboratory in sampling bags, where rhizospheric soil and roots were separated and processed for the study of different parameters. Percentage mycorrhizal infection, no. of arbuscules and vesicles, size of vesicles and mycelium length was recorded in roots after staining while percentage occurrence of different fungi and
mycorrhizal spores was studied in soil.

The adhering soil from roots was removed with the help of camel hair brush while washing gently under the tap water. The root system of all samples was cut into 1 cm² pieces and fixed in F.A.A. (Formalin: Acetic Acid : Alcohol in 5:5:90 ratio by volume) in properly labeled McCartney bottles separately. The samples were cleared and stained for analysis of colonization of AM fungi using Phillips and Hayman (1970) procedure. Roots were cleared in 10% KOH solution in an autoclave at 121°C, placed in 0.1N HCl for 2-3 minutes for neutralization and then stained with trypan blue solution (0.05% trypan blue powder in 100ml lactophenol). The sample pieces were mounted on the glass slides in a drop of lactic acid and were observed under low power (40X) of the light microscope. Extent of AM infection was recorded with the help of an already calibrated ocular micrometer. This was done by randomly focusing the plant material under the microscope and by measuring the hyphae. The number of vesicles and other structures were also recorded in the same way. Photography was performed at every step.

Rhizospheric soil was screened for the associated AM spores and soil borne fungi. Spore extraction was done following wet sieving and decanting method of Gerdeman and Nicolson (1967). Density and diversity of spores was recorded. Spores were identified using synoptic key by Morton (1988) and Schenck and Perez (1990). Different fungi were isolated from soil at 2% Malt extract agar medium (MEA) (Gallowey et al., 1952). Different techniques were used for the isolation of the fungi, including sprinkle method (a pinch of soil (definite quantity) was sprinkled over the prepared plate of 9 cm diameter), (Agnihothrudu, 1962), and serial dilution technique for inoculation (Bishop et al., 2008). Dilution 10^{-2} was inoculated (0.5ml) on the 2% MEA plate. The inoculated plates were incubated at 25±2°C temperature for 5 days and the data for the percentage occurrence and total number of each fungal colony was recorded. Isolated fungi were purified and identified with the help of Fungal Culture Bank of Pakistan, University of the Punjab, Lahore. All the data was statistically analyzed by computing Standard Error, Least Significant Difference; (LSD) and Duncan’s New Multiple Range Test.

Results and Discussion

AM infection in roots

The data regarding the number of vesicles and arbuscules with different concentrations of potassium humate is shown in table 1. No significant effect of potassium humate concentrations on (arbuscular mycorrhizal) AM infection in rice was recorded. All the treatments and control showed 100% AM infection. However greater numbers of arbuscules per cm root piece were found in control (340.6) while minimum were recorded in T4 (64.4). A decrease in number of arbuscules was recorded with increase in concentration of potassium humate. While the number of vesicles tend to increase with the increase in the concentration of potassium humate as maximum number of vesicles (6.9) were found in T4 whereas minimum were found in control (0.2). The size of vesicle was found maximum in T2 and least value was found in control. The length of mycelium was observed to decrease with increase in the concentration of potassium humate. Vallini et al., (1993) and Gryndler et al., (2005) also reported the same results they depicted that Arbuscular Mycorrhizal root colonization is slightly affected by the humic acid as by increasing the concentration of humic acid in soil, the hyphal growth of Glomus mosseae reduces while the production of extraradical mycelium by the mycorrhizal fungus is also increased.

Percentage occurrence of spores in soil

Mycorrhizal spores/10g soil

The data regarding number of mycorrhizal spores is shown in Table 2. Number of spores in rice plant does not show any significant difference by introduction of potassium humate. AM spores separated from rice soil by wet sieving method and spores were identified by the synoptic key developed by Gerdman and Trappe. Species of *Glomus, Gigaspora* and *Acuulospora* were found. The difference among treatments means remained statistically nonsignificant however maximum spores of were found in T4 while minimum were recorded in T3. No significant difference was recorded in total number of spores isolated from the rhizospheric soil of the different treatments and control (Vallini et al., 1993 & Gryndler et al., 2005).

Soil borne fungal spores

The data obtained from the percentage occurrence of different soil fungi indicated that most of the fungi did not affected by humic acid while few show significant difference (Siddiqui Y. et al., 2009). *Aspergillus niger, Aspergillus flavus, Aspergillus aculeatus, Aspergillus terreus, Alterneria alteranata, Rhizopus spp., Aspergillus petrakii, Aspergillus tamarrii and Fusarium soldai* were isolated from the soil. *Aspergillus terreus, Rhizopus spp.* and *Aspergillus petrakii* show significant difference in their percentage occurrence in different treatments. *Rhizopus spp.* decreases with the increase in the concentration of potassium humate while *Aspergillus petrakii* and *Aspergillus terreus* increased with the increase in potassium humate concentration (Table 2).
Table 1: Effect of Potassium humate on AM infection in root and rhizospheric soil of rice (size taken at 40X)

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage infection (%)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Number of arbuscules</td>
<td>340.6a</td>
<td>226.7a</td>
<td>112.8a</td>
<td>90.1a</td>
<td>67.4a</td>
</tr>
<tr>
<td>Number of vesicles</td>
<td>0.2a</td>
<td>2.7a</td>
<td>5.3a</td>
<td>6.1a</td>
<td>6.9a</td>
</tr>
<tr>
<td>Size of vesicle (µm)</td>
<td>4.55X8.75a</td>
<td>8.23X13.27a</td>
<td>15.77X23.55a</td>
<td>13.97X22a</td>
<td>12.16X20.44a</td>
</tr>
<tr>
<td>Number of spores per gram soil</td>
<td>6.98</td>
<td>8.75</td>
<td>9</td>
<td>7.85</td>
<td>9.03</td>
</tr>
<tr>
<td>Glomus fasiculatum</td>
<td>-</td>
<td>7.55</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acaulospora sp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gigaspora spp.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glomus mossease</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total number of mycorrhizal spores</td>
<td>17.63a</td>
<td>8.75a</td>
<td>11.56a</td>
<td>7.85a</td>
<td>16.91a</td>
</tr>
</tbody>
</table>

Table 2: Effect of Potassium humate on percentage occurrence of different soil borne fungi in rhizospheric soil of rice

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Control</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus niger</td>
<td>4.18a</td>
<td>1.84a</td>
<td>1.31a</td>
<td>1.16a</td>
<td>0.29a</td>
</tr>
<tr>
<td>Aspergillus flavus</td>
<td>1.33a</td>
<td>0.79a</td>
<td>0.66a</td>
<td>1.29a</td>
<td>1.73a</td>
</tr>
<tr>
<td>Aspergillus aculeatus</td>
<td>11.28a</td>
<td>6.07a</td>
<td>4.55a</td>
<td>4.9a</td>
<td>5.51a</td>
</tr>
<tr>
<td>Aspergillus terrus</td>
<td>63.35b</td>
<td>77.35ab</td>
<td>81.26a</td>
<td>79.51a</td>
<td>77.53a</td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>5.36a</td>
<td>3.15a</td>
<td>1.77a</td>
<td>1.06a</td>
<td>0.29a</td>
</tr>
<tr>
<td>Rhizopus spp.</td>
<td>4.96a</td>
<td>1.83ab</td>
<td>0b</td>
<td>0b</td>
<td>0b</td>
</tr>
<tr>
<td>Aspergillus petrakii</td>
<td>1.34c</td>
<td>1.83c</td>
<td>2.15c</td>
<td>6.55b</td>
<td>11.01a</td>
</tr>
<tr>
<td>Aspergillus tamarrii</td>
<td>2.09a</td>
<td>2.92a</td>
<td>4.41a</td>
<td>2.52a</td>
<td>0.86a</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>6.09a</td>
<td>4.20a</td>
<td>3.87a</td>
<td>3.32a</td>
<td>2.74a</td>
</tr>
</tbody>
</table>

References

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: http://www.iiste.org

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: http://www.iiste.org/journals/ All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: http://www.iiste.org/book/

Academic conference: http://www.iiste.org/conference/upcoming-conferences-call-for-paper/

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich’s Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digital Library, NewJour, Google Scholar