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Abstract 

Seed is a small embryonic plant which is an efficient means of introducing plant pathogens into a new area as 

well as providing a means of their survival from one cropping season to another. Seed health is a well recognized 

factor in the modern agricultural science for desired plant population and good harvest. Seed-borne fungi are one 

of the most important biotic constrains in seed production worldwide. Seed health testing to detect seed-borne 

pathogens is an important step in the management of crop diseases. Seed health is a measure of freedom of seeds 

from pathogens. ISTA, ISHI and NSHS are three primary organizations that publish standardized seed health test 

methods. Specificity, sensitivity, speed, simplicity, cost effectiveness and reliability are main requirements for 

selection of seed health tests methods. PCR has many beneficial characteristics that make it highly applicable for 

detecting seedborne pathogens. Since seed serve as means of dispersal and survival of plant pathogens, it is 

critical to  test its health before using it as planting material. Seed health testing and detection is a first line 

approach in managing seedborn diseases of plants.          
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1.  INTRODUCTION  

Seed is a small embryonic plant enclosed in a covering called seed coat. It is the product of the 

ripened ovule of gymnosperm and angiosperm plants which occurs after fertilization and some growth within the 

mother plant (Wikipidia, Undated) . Seed is the basic unit of production for the world’s food crop. In recent 

years seed has become an international commodity used to exchange germplasm around the world. Seed is, 

however, also an efficient means of introducing plant pathogens into a new area as well as providing a means of 

their survival from one cropping season to another (Walcott et al., 2006). Seed health testing is thus routinely 

carried out in most countries for domestic seed certification, quality assessment and plant quarantine (FAO, 

2010). Seed health testing is an integral for all seed companies in disease risk management (ISF, 2010). 

Seed health is a well recognized factor in the modern agricultural science for desired plant population 

and good harvest (Rahman et al., 2008). Seedborne pathogens are a continuing problem and may even be 

responsible for the re-emergence of diseases of the past as well as the introduction of diseases into new areas 

(Gitaitis and Walcott, 2007). Seedborne pathogens present a serious threat to seedling establishment (Walcott, 

2003). In today’s global economy, seed accounts more than ever for the movement of plant pathogens across 

vast distances, natural barriers, and political borders (Gitaitis and Walcott, 2007). The quality of planted seeds 

has a critical influence on the ability of crops to become established and to realize their full potential of yield and 

value (McGee, 1995).  

Seed-borne fungi are one of the most important biotic constrains in seed production worldwide. They 

are responsible for both pre and post-emergence death of grains, affect seedling vigor, and thus cause some 

reduction in germination and also variation in plant morphology (Van Du et al., 2001; Rajput et al., 2005; Niaz 

and Dawar, 2009). The seedborne pathogens may result in loss in germination, discolouralion and shrivelling, 

development of plant diseases, distribution of pathogen to new areas, introduction of new strains or physiologic 

races of the pathogen along with new germplasm from other countries and  toxin production in infected seed 

(Agarwal and Gaur, Undated). Fungi outnumber all other types of pathogens that attack plants and cause a very 

serious economic impact on agricultural production due to their ability to induce diseases of cultivated crops that 

result in important yield losses (Paplomatas, 2006) . 

There are three primary organizations that publish standardized seed health test methods for use in 

international trade. These are International Seed Testing Association (ISTA), International Seed Health Initiative 

(ISHI), and in the United States, the National Seed Health System (NSHS) (Munkvold, 2009). Two of the most 

important concepts in seed health testing are sensitivity and selectivity, which are inextricably linked. For 

example, increasing the selectivity of semiselective media may decrease the recovery efficiency of all or some 

strains of the target organism. In contrast, increasing selectivity may reduce the number of nontarget organisms 

that act as competitors and/or inhibitors that interfere with the assay, and thus increase the detection sensitivity 

(Roumagnace et al., 2000; Toussaint et al., 2001; Wydra et al., 2004). A semiselective medium may have a 

higher mean plating efficiency than a standard growth medium because standard media are complex and often 

become toxic, perhaps due to the accumulation of peroxides or other secondary metabolites (Block et al., 1998; 

Pataky et al., 1995).  
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Infection rate of seeds depending on some environmental conditions such as high relative humidity, 

suitable temperature and also high level of moisture content in seed is variable. The study of seed-borne 

pathogens is necessary to determine seed health and to improve germination potential of seed which finally leads 

to increase of the crop production. Seed health testing to detect seed-borne pathogens is an important step in the 

management of crop diseases (Hajihasani et al., 2012). In relation with those importance of seed health tests and 

detection of seedborne pathogens: the present review has the following objectives: to review the basic 

requirements of health testing and detection methods of seedborne pathogens. 

 

2. SEED HEALTH TESTING AND DETECTION 

2.1. Seed Health Testing 

Seed health is a measure of freedom of seeds from pathogens. The presence or absence of seed-borne pathogens 

can be confirmed through the use of seed health testing (Agrawal, 1995). The term “seed health” includes the 

incidence in the seed lot of fungi, bacteria, viruses, and animal pests such as nematodes and insects. The test 

used depends on the organism being tested for and the purpose of the test quality assurance or phytosanitary 

purposes when seed is exported (ISTA, 2009b). It includes visual examination of seeds externally or internally, 

macro or microscopically for the presence of pathogens as well as incubating seeds on agar or moist blotter 

papers and identifying the pathogens microscopically (Warham et al., 1990). Many detection assays exist for 

different seedborne pathogens, however, few satisfy the minimum requirements for adequate seed tests. Ideally, 

seed assays should be sensitive, specific, rapid, robust, inexpensive and simple to implement and interpret 

(Walcott, 2003). 

Seed testing is necessary for a number of reasons: to determine the quality of the seed based on a 

number of seed quality attributes; to provide a basis for price and consumer discrimination among seed lots and 

seed sources; to determine the source of a seed problem, thereby facilitating any corrective measure(s) that may 

be required; and  to fulfil legal and regulatory requirements for certified seed classes and allow for seed 

movement across international boundaries (FAO, 2010). There are six main requirements for selection of seed 

health tests methods (Amare, 2007/8). These are:  

� Specificity: the ability to distinguish the target pathogen from all organisms likely to occur on seeds from 

field or store, i.e. to avoid false positives. 

� Sensitivity: the ability to detect target organisms, which are potentially significant in field crops at a low 

incidence in seed stocks.  

� Speed: in some cases, small concession to accuracy may be necessary to ensure rapid results, but such 

results should be followed by more definite testing. 

� Simplicity: the methodology should minimize the number of stages to reduce room for error and to enable 

tests to be performed by not necessarily highly qualified staff. 

� Cost effectiveness: test costs should form part of acceptable production margins for each crop. 

� Reliability: test methods must be sufficiently robust so that results are repeatable within and between 

samples of the same stock regardless of who performs the test (within the bounds of statistical probability 

and sample variation).  

 Historically seed health tests have been classified into the following four distinct groups based on the 

general techniques used to observe the target pathogen. Such as Direct Inspection, Incubation Tests, Examination 

of the embryo (embryo count method), Immunoassays and Molecular Methods. 

2.1.1.  Direct  examination (inspection) 

Direct examination or inspection of dry seed is a qualitative and semi-quantitative seed health testing method 

where either the fruiting structures of fungi are detected under stereomicroscope or effects of fungal pathogens 

on the physical appearance of the seed are seen (Mathur and Jorgensen, 1998). By this method, it is possible to 

detect sclerotia, smut balls, fupgal spores and other fructifications such as pycnidia, perithecia, etc (Rao and 

Bramel, 2000).  If seeds are severely infected by some organisms they may be reduced in size or discoloured. 

For example maize seeds infected with Nigrospora have white streaks with black spore masses near the tips and 

sorghum seeds infected with acremonium wilt are completely deformed (Agarwal and Sinclair, 1997). 

2.1.2. Incubation tests 

The seeds are incubated for a certain period in the agar plate or blotter test under specific environmental 

conditions in order to allow pathogens on the seed to grow. Different fungi are identified by features such as the 

form, length and arrangement of conidiophores, size, septation and chain formation of conidia (Warham et al., 

1990). 

2.1.3. Blotter tests/Seedling symptom tests 
In seed health testing for seed-borne fungal pathogens the blotter test is no doubt one of the most important 

methods available (Limonard, 1966). Blotter tests are similar to germination tests in that seeds are placed on 

moistened layers of blotter paper and incubated under conditions that promote fungal growth. The seed may then 

be allowed to germinate and fungal seed-borne infections may manifest themselves by any pertinent signs or 
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symptoms. The manifestations of the pathogen are influenced by the environmental conditions during incubation. 

The blotter test gives an indication of the infection of the seed, as shown by the presence of mycelium and 

fruiting bodies, and, in some tests, infection of the germinated seedlings as demonstrated by symptoms on the 

young plants. In some tests seeds are incubated during which they are allowed to germinate and symptoms are 

observed (e.g. dark spots on the cotyledons of bean seeds infected by the anthracnose pathogen). In other tests 

the germination of seeds is deliberately suppressed to allow seed-borne infection to develop (e.g. to allow the 

pycnidia of seedborne Phoma lingam to develop on Brassica seeds, the herbicide 2,4 –D is applied before 

incubation, allowing greater numbers of seeds to be tested) (Limonard, 1966).  

2.1.4.  Agar plate 
Agar plate is the most common method used for identification of seedbome fungi (Rao and Bramel, 2000). 

Incubation methods allow the detection of viable fungus material even at the preliminary phase of development 

of the fungus. This is done generally by placing seeds onto sterile agar media  (potato dextrose or malt agars are 

most commonly used) to encourage the growth of seedborne fungi. Agar plate methods may be employed to 

quantitatively determine the fungal load such as CFU/gm of seed (dilution plate methods) or to qualitatively 

determine the species composition (direct plate method). The most common way to estimate quantity of fungal 

tissue in kernels is the dilution plate method. There are two variations of this method: the pour plate method 

which is used more frequently, and the spread plate method which is preferred at low sample contamination. On 

the other hand, the direct plating method is one of the best methods to determine the composition of the grain 

fungi as to genera and species. In this method whole kernels are placed on the surface of the culture medium 

after having the kernels surface disinfected. The direct plating technique can be recommended as a very effective 

procedure for determining internal colonization of kernels by fungi and consequently is a very useful tool for 

evaluating the quality of bulk grain. There are considerable variations in the application of the agar test primarily 

with regard to preparation of samples, choice of media, and temperature and duration of incubation. Acidic agar 

media may be used to reduce bacterial contaminants (Trojanowska, 1991). Sometimes bacterial colonies develop 

on the agar and inhibit fungal growth making identification difficult. This can be overcome by adding an 

antibiotic such as streptomycin to the autoclaved agar medium after it cools to 50-55°C (Rao and Bramel, 2000). 

2.1.5. Examination of the embryo (Embryo count method) 

 Examination of dry seeds with the naked eye and at magnifications of 10 to 30 times reveals a number of plant 

pathogens that occur mixed with the seeds as fungus bodies (for example, sclerotic) or have converted the seed 

into fungus structures (e.g., ergots). Sclerotic of the fungi Sclerotinia and Typhula may be mixed with seeds of 

clovers, crucifers, grasses, and other crop seeds. The fungus Claviceps Purpurea, the cause of ergot of grasses, 

often is mixed with seed as ergots (Andersen and Leach, 2010). Staining methods are used for seedborne 

pathogens which cannot be detected by direct inspection or incubation methods. The standard method used in 

seed health testing is that of staining of barley embryos for the presence of loose smut (Ustilago segetum var. 

tritici) mycelium. 

2.1.6. Immunoassays 

Immunoassays present a more sophisticated approach to testing, with Enzyme Linked Immunosorbent Assays 

(ELISA) and immunofluorescence being most common. In ELISA tests, an antibody to a specific protein 

(antigen) in the pathogen is added to a sample and the reaction between them reflected in a color change which 

indicates infection. For example, soybean mosaic virus, bean pod mottle and other viruses can be detected using 

ELISA (ISTA, 2009b). 

2.1.7.  Molecular methods 

Molecular biology methods for agricultural diagnostics have become an area of increasing interest recently. A 

significant flaw in the majority of the assays published to date is that they stop short of being of practical 

application in a routine plant-health context (McEwan and Mulholland, Undated). There are DNA-based 

molecular techniques, the most common being the polymerase chain reaction (PCR), which selectively increases 

pathogen DNA. Electrophoresis is then used to separate the DNA into different sizes, followed by staining. The 

incidence of pathogen DNA can be identified by comparisons with known samples (ISTA, 2009b).  

 

2.2. Seed Health Detection Methods 

Detection deals with establishing the presence of a particular target organism within a sample, with special 

emphasis on symptomless individuals (Lopez et al., 2003). In general seed health detection can be classified in 

to two major assays, such as  the conventional seed detection assays and polymerase chain reaction-based seed 

detection assays. 

2.2.1. Conventional seed detection assays 

Testing seeds for plant pathogens can be a difficult task. Unlike infected vegetative plant tissues, infested seeds 

can be asymptomatic, making visual detection impossible. Additionally, pathogen populations on seeds may be 

low, and infested seeds may be nonuniformly distributed within a lot. Many detection assays exist for different 

seedborne pathogens, however, few satisfy the minimum requirements for adequate seed tests. Ideally, seed 
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assays should be sensitive, specific, rapid, robust, inexpensive and simple to implement and interpret. Seed 

assays have been developed based on different technologies including visual examination; selective media; 

seedling grow-out tests and serological techniques (Walcott, 2003).  

2.2.1.1.Bioassays 
Perhaps the oldest seed health assay is the grow-out. This procedure is highly selective as it relies on the 

specificity of the host pathogen interaction. Its sensitivity is less assured, as inoculation thresholds may vary 

depending on the plant cultivar being tested, fluctuations in environmental conditions, fertility, and other factors. 

Additionally, the ability of plant inspectors to reliably detect low incidences of disease is a critical factor, as it is 

often necessary to visually recognize single lesions in thousands of plants. Nonetheless, grow-outs are widely 

used and accepted as definitive in determining the infection status of a seedlot. Because grow-outs rely on 

symptom expression, a positive result usually is irrefutable evidence that the bacterium was present, viable, and 

pathogenic (Gitaitis and Walcott, 2007). 

Testing for Aac, the bacterial fruit blotch pathogen, provides a good example of a routinely used grow-

out test. Optimum environmental conditions for disease development are needed to ensure that the assay is 

effective and reliable, as well as to prevent cross contamination from other inoculum sources. Other factors 

include frequent disinfesting of planting trays, greenhouse floors, walls, and benches; using a commercial 

greenhouse potting mixture or steam-sterilized soil; creating conditions that are optimal for seed germination and 

seedling emergence; and choosing an appropriate sample size of a minimum of 30,000 seeds or 10% seedlot. 

Throughout the duration of the test, a minimum relative humidity of 70% should be maintained continuously and 

should not be allowed to fall below 50% for more than 12 h. Temperatures during the grow-out should ideally 

range between 30
o
C –32◦C, never falling below 25◦C or exceeding 38◦C for more than 12 h. To further verify 

that conditions are favorable for symptom expression, an Aac-infested seed sample should be included as a 

check in an isolated area of the greenhouse. To eliminate the risk of cross contamination from this inoculum 

sources, an Aac strain with an antibiotic resistance marker or a unique DNA fingerprint should be used to infest 

the control seedlot. Potential problems associated with splash dissemination of the bacterium during irrigation 

should be avoided by adequate spacing and the erection of plastic barriers 60–90 cm high between seedlots. Also 

necessary are good management strategies to limit the passive dissemination of pathogens by insects, mites, or 

other vectors. These precautions are necessary to prevent contamination between seedlots, but secondary spread 

within a seedlot is desirable because it results in the development of infection foci that improve the chances of 

visual detection (Gitaitis and Walcott, 2007). After germination, there should be daily inspections of cotyledons 

and true leaves until termination of the assay. Each seedling should be examined for symptoms in areas well 

illuminated with natural light. Natural water congestion is common with certain plants and should not be 

mistaken for water soaking associated with disease development. All contact with seedlings should be avoided 

until the final inspection, except for removal of symptomatic seedlings for isolation and testing. When it is 

necessary to handle seedlings, workers’ hands should be sanitized or disposable gloves should be worn and 

changed between seedlots. A seedling grow-out assay can be terminated after 3 weeks with no visisble 

symptoms; however, if symptoms are observed, bacteria should be isolated and subsequent diagnostic tests (e.g., 

immuno-strips, PCR and/or pathogenicity) should be used to confirm the identity of the pathogen (Gitaitis and 

Walcott, 2007).  

2.2.1.2. Serological methods (Immunoassays) 
Serological seed assays rely on antibodies (polyclonal or monoclonal) generated against unique antigens on the 

surfaces of plant pathogens (Hampton et al., 1990). Antibodies bind strongly and specifically to their antigens 

and can subsequently be detected by the enzymatic digestion of substrates or fluorescent tags. Serological assays 

do not require pure isolations of the pathogen and, hence, are applicable to biotrophic and necrotrophic 

seedborne pathogens.  (Walcott, 2003). In the past  serology was the most widely used detection assay for 

seedborne viruses and it has proven to be sensitive and robust (Barba, 1986; Bossennec and Maury, 1978; 

Delecolle et al., 1985; Falk and Purcifull, 1983; Pasquini et al., 1998). Serology based seed tests have several 

formats including the widely applied enzyme linked immunosorbent assay (ELISA) (McLaughlin and Chen, 

1990) and immunofluorescence microscopy (Franken, 1992). Serological methods used to detect and identify 

bacterial pathogens include agglutination tests, immunofluorescence microscopy (IF), immunofluorescence 

colony-staining (IFC), enzyme-linked immunosorbent assays (ELISA), Western blot, lateral flow devices (e.g., 

immunostrips), flow cytometry, and immunocapture techniques such as immunomagnetic separation (IMS) 

(Munkvold, 2009).  

The difficulty in establishing a threshold of positive fluorescent cells that can lead to disease 

development in the crop discouraged use of IF in the black rot seed certification program in Georgia. Both 

researchers and regulatory personnel concluded that IF resulted in too many false positives, perhaps due to 

binding of the bacteria to nonviable cells or naked antigenic determinants (Munkvold, 2009). Techniques such as 

IFC were developed to overcome the problem of potential false positives (Glynn et al., 2008). IFC seed health 

assay incorporates seed extract with an equal volume of agar medium. The mixture is incubated, dried, and 
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exposed to target bacterium-specific antibodies conjugated with a fluorescent dye. Colonies stained with the 

antibody-dye conjugate can be visualized with fluorescent microscopy, and bacteria inside the colonies can be 

isolated with a glass capillary tube and transferred to a suitable growth medium. ELISA also has been used for 

seed health assays. In general, ELISA, like the IF, is suspected of producing too many false-positive results 

(Munkvold, 2009). ELISA successfully detected Pantoea stewartii ssp. stewartii in maize seeds (McCornack and 

Ragsdale, 2006). The double antibody sandwich (DAS)-ELISA with polyclonal and monoclonal antibodies was 

most appropriate for seed health testing. Later, the method was used to quantify populations of P. stewartii ssp. 

stewartii in individual seeds by constructing a response curve relating absorbance values with numbers of 

bacterial CFU recovered (ISTA, 2007). 

Flow cytometery (Broders et al., 2007a), another promising serological technique for use in seed 

health assays, automatically sorts and analyzes bacterial cells tagged with dye-conjugated antibodies, while in 

suspension. Several parameters can thus be determined within a few minutes by measuring the degree of light 

scattering and fluorescence emitted by thousands of individual cells recovered from an infected seed sample. As 

a stream containing tagged bacterial cells passes through a flow cell, a laser beam illuminates the cells and 

excites the fluorescent tags attached to the antibodies. By using different fluorescent detectors, several 

parameters such as cell size, granularity, and cell roughness can be measured simultaneously. If used in 

conjunction with fluorescent probes that target key enzymes, membrane potential, or respiratory activities, flow 

cytometry can also determine the viability of target cells. Immunomagnetic separation (IMS) PCR is another 

technique that takes advantage of antibody-antigen specificity. IMS uses small magnetic polystyrene beads 

coated with antibodies to sequester target cells from heterogenous mixtures (Ojeda and Verdier, 2000). After 

immobilization with a magnet particle concentrator, the immunomagnetic beads are rinsed to remove inhibitory 

compounds and nontarget bacteria. Template DNA can be released from captured cells by boiling and used for 

PCR or, alternatively, captured cells can be plated onto a semiselective medium. In assaying water-melon seed, 

Walcott et al. (2003) showed that IMS-PCR improved the detection threshold of A. avenae subsp. citrulli 100-

fold when compared to conventional PCR. IMS, essentially a concentration step to efficiently increase the 

amount of target DNA in the PCR sample, was also successfully used to detect P. ananatis in onion seeds. IMS-

PCR can reduce false-negative reactions by improving the efficiency and reliability of extracting PCR quality 

pathogen DNA from seeds, and eliminating seed compounds that can inhibit PCR (Munkvold, 2009). 

 

Table 1. General features of seed detection assays including the time required for completion, sensitivity, ease of 

application, specificity, and applicability for the detection of fungi, bacteria and viruses. 

Assay Time of 

Specificity 

Time of 

required 

Sensitivity Ease of application Specificity 

Visual examination  5–10 min  Low  Simple and 

inexpensive (requires 

experience)  

Low 

Semiselective media   2–14 d Moderate  Simple and 

inexpensive 

Low–

moderate 

Seedling grow-out assay  2–3 weeks  Low Simple, inexpensive 

and robust 

Low 

Serology-based detection  2–4 h Moderate–

high 

Simple, moderately 

expensive and robust 

Moderate–

high 

Conventional DNA extraction and 

polymerase chain reaction (PCR)  

5–6 h High Complicated; easy to 

interpret, expensive 

Very high 

BIO-PCR (selective target colony 

enrichment followed by PCR) 

2-3 d Very high Complicated, 

expensive 

Very high 

IMS-PCR (immunomagnetic 

separation and PCR) 

2-5 h Very high Complicated, 

expensive 

Very high 

MCH-PCR (magnetic capture 

hybridization and PCR) 

2-5 h Very high Complicated, 

expensive 

Very high 

Real-time PCR 40-60min Very high Complicated, 

expensive 

Very high 

DNA microarrays 6 h Very high Complicated, 

expensive 

Very high 

Source: Walcott, 2003.                           Where d (day); h (hours) 

 

2.2.2. Nucleic Acid–Based Detection Methods  

Polymerase chain reaction (PCR) is the in-vitro, primer-directed, enzymatic amplification of nucleic acids 
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(Erlich et al., 1988; Saiki et al., 1988). This technique has been used in many diverse applications including 

diagnosis of plant diseases. For PCR, primers (small oligonucleotide probes) designed to anneal to specific DNA 

sequences in the target organism’s chromosomal DNA or RNA, hybridize with and direct amplification of 

millions of copies of the target sequence. This amplified DNA can be visualized after electrophoresis in ethidium 

bromid estained agarose gels (Walcott, 2003). The remarkable proliferation of PCR-based methods for detecting 

pathogens in seeds has provided very useful tools that are available, and have begun to be implemented, in the 

vegetable seed industry and in some official seed testing laboratories for quality control testing (Agarwal, 2006). 

Molecular techniques based on hybridisation or amplification, and especially on PCR, have been 

developed for the most important plant pathogenic viruses and bacteria. Although PCR can reach high sensitivity 

and specificity, its introduction for routine detection has been hampered by a lack of robustness (Van der Wolf et 

al., 2001). PCR has many beneficial characteristics that make it highly applicable for detecting seedborne 

pathogens. These include speed (completed within 2 to 3 h); specificity (DNA probes can be designed to amplify 

nucleic acids from the desired genus, species, subspecies, race, etc.); sensitivity (single copies of nucleic acids 

can be detected after amplification) and easy and objective result interpretation (the presence of a DNA fragment 

of specific size indicates the presence of the pathogen). Because of this great potential, over the past 10 years 

many PCR-based assays have been reported for seedborne pathogens (Prosen et al., 1993; Audy et al., 1996; 

Pasquini et al., 1998; Zhang et al., 1999; Hussain et al., 2000; Hadas et al., 2001; Frederick et al., 2002).  

There are several obstacles that have slowed the adoption of PCR-based methods for seed health 

testing (Walcott, 2003). In the developing world, the capital costs and technical expertise for establishing PCR 

capabilities can be problematic. Even when costs and expertise are not major barriers, there can be technical 

impediments in terms of poor quality DNA and PCR inhibitors from seed extracts, leading to false negatives. 

Poor sensitivity also can result from low sampling intensity for PCR-based methods. One of the major obstacles 

to the adoption of nucleic acid–based seed health tests has been the potential for false positives due to the 

detection of remnant DNA from nonviable pathogen propagules (Agarwal, 2006). 

PCR was initially considered to be too sensitive to be routinely applied as a seed health assay. There 

were also concerns about the ability of PCR to distinguish between dead and viable cells. Although PCR is a 

sensitive technique and, theoretically, capable of detecting a single bacterial cell, the sample size and volume of 

seeds (e.g., 30,000 seeds/liter of buffer) being tested in conjunction with the small volume (~4 µl) that can be 

used as template in the PCR reaction make PCR no more sensitive than many other techniques. As a 

consequence, other approaches, such as nested PCR (Ojeda and Verdier, 2000), have been used to detect 

pathogens in seeds. Nested PCR increases sensitivity by utilizing a second round of amplification using primers 

designed to anneal to internal regions of the amplicon produced by the first round of amplification. Using nested 

PCR, (Poussier et al., 2002). detected Ralstonia solanacearum, the causal agent of bacterial wilt in tomato seeds. 

Nucleic acid-based methods tend to be relatively expensive to apply and the advantages of these more rapid 

methods have to be considered against the less cost (but greater inconvenience to the grower, of the longer 

period required to achieve identification of a pathogen) of isolation-based methods. At present, a major 

disadvantage of nucleic acid methods in seed health testing is that of quantification. The technology is available 

and relatively simple to use. However, the cost of the necessary equipment so far remains prohibitive for use in 

routine seed health testing (Munkvold, 2009). 

2.2.2.1. Use of nucleic acid–based methods in epidemiology research on seedborne pathogens 

Methods used to detect pathogens in seeds can be valuable research tools for tracking the progress of the 

organisms during disease development. These methods can be applied to understand the sources of seedborne 

infections, the location of pathogens within seed tissues to confirm the occurrence of seed transmission and its 

mechanisms, and to understand the influence of external biotic and abiotic factors on seed transmission or other 

phases of the disease cycle. One example is watermelon fruit blotch (A. avenae ssp. citrulli), where the use of 

IMS-PCR facilitated the detection of a high incidence of infection in seeds from symptomless fruit following 

blossom inoculation (Walcott et al., 2003). This was the first indication that blossoms were an avenue of 

infection, in the absence of fruit blotch symptoms. Real-time PCR also was used to pinpoint the location of 

seedborne A. avenae ssp. citrulli infections to the surface of the perisperm-endosperm layer (Dutta et al., 2008). 

In rice, a BIOPCR technique was used to study survival of Xanthomonas oryzae pv. oryza in rice seed and track 

its progress in planta following seed transmission (Sakthivel et al., 2001). In olives, seed transmission of 

Verticillium dahliae was confirmed using a nested PCR assay in seedlings (Karajeh, 2006). One of the most 

interesting applications of nucleic acid–based methods in seed pathology has been the elucidation of embryo 

infection pathways for Pea early browning virus and Pea seedborne mosaic virus (PSbMV). Using a 

combination of approaches, including in situ hybridization, Maule and coworkers (Maule. 2007; Maule and 

Wang, 1996; Roberts et al., 2003) showed that the two viruses have different routes for embryonic infection. 

Whereas Pea early browning virus reaches the embryo as a result of gamete infection, PSbMV infects the 

developing embryo after fertilization. The PSbMV pathway is novel among viruses, and the results indicated a 

symplastic connection between maternal and filial tissues during embryo maturation (Maule, 2007). 
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2.2.2.2. Use of markers in seedborne pathogens 

This is another approach that has made significant contributions to understanding the epidemiology of seedborne 

pathogens. For pathosystems involving ubiquitous pathogens or those with multiple infection pathways, marker 

use can be critical for differentiating seedborne strains from strains originating from other inoculum sources. The 

most commonly employed types of markers have been naturally occurring genetic markers, including antibiotic 

resistance, vegetative compatibility, and molecular markers unrelated to phenotype. Antibiotic resistance in 

bacterial pathogens, naturally occurring, induced through mutation, or inserted by genetic engineering, has been 

used effectively as a marker for decades (Munkvold, 2009).  

Vegetative compatibility is a genetically controlled trait that describes the ability of fungal isolates to 

anastomose and form vegetative (asexual) heterokaryons. Strains that are vegetatively compatible are designated 

as members of the same vegetative compatibility group (Leslie, 1993). In fungi with a very diverse vegetative 

compatibility structure, the trait can be used to differentiate introduced strains from endemic strains. This 

approach has been used in a number of studies on seed transmission of Fusarium verticillioides and related 

Fusarium species. The approach commonly employs nitrogen utilization mutants (Klittich and Leslie, 1988) of 

the pathogen as a tool for recognizing compatible reactions. Conversely, using nitrogen-utilization mutants as 

marked strains, Galperin et al. (2003) concluded that seedborne inoculum was a significant source of inoculum 

for kernel infection of mature sweet corn plants. The contribution of seedborne inoculum to epidemics of 

Stagonospora leaf blotch was characterized by using Stagonospora nodorum strains identifiable by unique AFLP 

profiles (Bennet et al. 2007). Mycotoxin production is another genetic marker used to investigate the importance 

of seedborne F. verticillioides. Other markers have been employed by transforming pathogen strains with foreign 

genes that can act as molecular markers or easily distinguishable expression phenotypes. Two examples are 

genes for beta-glucuronidase (GUS) expression and fluorescent protein expression (Munkvold, 2009).   

 

3. CONCLUSION  

Seed is a small embryonic plant which is a basic unit of production for the world’s food crop. It is an efficient 

means of introducing plant pathogens into a new area as well as providing a means of their survival from one 

cropping season to another. Seed health is a well recognized factor in the modern agricultural science for desired 

plant population and good harvest. Seed-borne fungi are one of the most important biotic constrains in seed 

production worldwide. ISTA, ISHI and NSHS are three primary organizations that publish standardized seed 

health test methods. Seed health testing to detect seed-borne pathogens is an important step in the management 

of crop diseases. Seed health is a measure of freedom of seeds from pathogens. Specificity, sensitivity, speed, 

simplicity, cost effectiveness and reliability are main requirements for selection of seed health tests methods. 

PCR has many beneficial characteristics that make it highly applicable for detecting seedborne pathogens. Some 

seed health testing methods can be applied to understand the sources of seedborne infections, location of 

pathogens within seed tissues, to confirm the occurrence of seed transmission and its mechanisms, and to 

understand the influence of external biotic and abiotic factors on seed transmission or other phases of the disease 

cycle. Since seed serve as means of dispersal and survival of plant pathogens, it is critical to  test its health 

before using it as planting material. Seed health testing and detection is a first line approach in managing 

seedborn diseases of plants.          
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