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Abstract 

In this research, a new empirical model for calculating solubility of cholesterol in supercritical dioxide carbon 

has been proposed. The new empirical model included a new parameter is time of staying meat under 

supercritical CO2, as well as the traditional parameters as pressure and temperature. Multiple linear regression is 

used to obtain the new empirical model with coefficient correlation of 0.963 and 0.973 for both of static and 

dynamic methods respectively, as well as the standard error reached 0.014 and 0.00915 respectively, also all 

parameters have a significant effect on the cholesterol solubility in supercritical CO2 for static and dynamic 

methods. The results also showed that the cholesterol diffusion coefficient in supercritical CO2 was significantly 

increased with increasing temperature and reduced with increasing pressure. Values of mass transfer coefficient 

ranged between 1.3468×10-5 – 3.7756×10-5 m-2s-1 and 6.9177×10-6 - 3.6480×10-5 m-2s-1 for static and 

dynamic methods respectively.  
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1. Introduction 

 In the last years, the interest has been increased with supercritical fluids especially supercritical CO2 

because this technology is readily used in many applications such as extraction of oils and lipids (Chao, 

et.al.,1991 ; Froning, et.al.,1992), as well as removal of cholesterol from meat (Wehling,1991), egg 

(Catchpole,et.al.,2009) , milk and butter (Rizvi and Bhasker,1995). In general, the extraction process by using 

supercritical fluids is faster than traditional methods. Supercritical CO2 is always used commonly in removal 

cholesterol and extraction oil and caffeine because it is nonflammable, nontoxic, and inexpensive. In addition, it 

has good critical properties like it is critical pressure and temperature which are 73.8 bar and 31.2 oC 

respectively (Cheng et al., 2013; Nasri et al., 2014; Baseri et al., 2014 and Huang et al., 2013). Solubility of 

solutes in supercritical CO2 is an important thermo-physical characteristic. This characteristic is determined by 

two methods, the first is using theoretical or semi-empirical models depend on state equations such as cubic 

EoSs which used to calculate of solid solubility in supercritical fluids because of relevant quickness of 

calculations, in addition to their reliability and flexibility. (Housaindokht et al., 2007; Yazdizadeh et al., 2011; 

Wang et al., 2014; Su et al., 2013; Asgarpour et al., 2014; Baseri et al., 2013; Ardjman et al., 2014). On the other 

hand, they are inaccurate for calculating complex process like process with very massy compounds and need 

sophisticated calculations, as well as knowing solid properties having molar volume, acentric factor critical 

properties which can be calculated from equations and unable determined experimentally (Garnier et al., 1999; 

Shojaee et al., 2013).The second is empirical equations like density based equations such as Chrastil model 

(Chrastil, 1982), Kumar and Johnston model(Kumar and Johnston, 1988), del Valle and Aguilera model (del 

Valle and Aguilera,1988), Mendez-Santiago and Teja model(Mendez-Santiago and Teja, 2000), Bartle and 

others model (Bartle et al., 1991), Yu and others model(Yu et al., 1994), Sung and Shim model (Sung and Shim, 

1999), Gordillo and others model (Gordillo et al., 1999), Jouyban and others model (Jouyban et al., 2002), 

Adachi and Lu model (Adachi and Lu, 1983), Garlapati and Madras model (Garlapati and Madras, 2009), Jafari 

Nejad and others model (Jafari Nejad et al., 2010) and Khansary and others model(Khansary et al., 2015). 

Modulus of these models are taken depended on minimization of error for empirical equations that are against 

temperature, pressure and density of supercritical CO2.  

Rostamian et al., (2015) proposed a modified Redlich-Kwong model of state for calculating the 

solubility of many solids (one of them solids is cholesterol) in supercritical CO2, and they have been coupled 

state equation with the van der Waals zero mixing law. Also, they found that the absolute average relative 

deviation reached 5.7% for the proposed model. Khansary et al., (2015) proposed new empirical model for 

calculating solubility of solute supercritical CO2 and compared their proposed model with thirteen published 

empirical models and they concluded that the proposed model was more accurate in estimation or prediction of 

solubility compared with other models. All these published empirical models did not take into consideration the 

effect of staying meat time under supercritical CO2 on cholesterol solubility. So, the present study aimed to 

propose a new model for calculating solubility of cholesterol in supercritical CO2 including time of staying meat 

under supercritical CO2, pressure and temperature. In addition, calculation of the cholesterol diffusion in 

supercritical CO2 and mass transfer coefficient of cholesterol from meat to supercritical CO2.   
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2.0 Materials and methods 

2.1 Supercritical CO2 system 

Supercritical CO2 system that locally manufactured by AL Rubaiy (2016) had used to removal cholesterol from 

fresh cow meat as illustrated in figure 1. This apparatus works by two methods, the first is a static method which 

means that the meat stays under supercritical CO2 pressure for specific time, when the pressure is reduced, the 

cholesterol and oil with CO2 together separate from meat. The second method means the supercritical CO2 pass 

via the meat and separates cholesterol and some oil from meat then goes to hunter for separating a part of the 

cholesterol and oil. The rest of cholesterol and oil move with CO2 to the cholesterol removal cylinder containing 

calcium carbonate which absorbs cholesterol only. Then the oil with CO2 goes to the pump and return to 

extraction cylinder. The experiment carried out by three supercritical pressures (75, 85 and 95 bar), three 

temperatures (35, 45 and 55 
o
C) and four staying times (20, 40, 60 and 80 min). 

2.2 Cholesterol determination 

A 0.1 g has been took from meat sample and it added to 1.9 ml of ethanol then shacked well and put in the 

centrifugal with 3000 rpm for 15 min. then the filtered liquid is took and added to it 0.25 ml. of ferric chloride, and 

concentrated H2SO4 has been added to the samples and after well shacking was left till cool then the absorbance 

has been read at wave length at 560 nm. (Alubaidy, 1999). 

Figure 1. A photograph of Supercritical CO2 system 

2.3 Mathematical modeling 

Chrastil (1982) concluded the following equation which shows the relationship between solids solubility and 

density of supercritical CO2, as well as temperature that including three constants (K, A, B). It takes into 

consideration the equilibrium state between sold materials and supercritical CO2: 

𝑆 =  𝜌𝐾 𝑒𝑥𝑝 (
𝐴

𝑇
+ 𝐵) (1) 

Where: 

S is the solubility of solid materials in supercritical CO2 (kg m
-3

). 

T is the temperature (K). 

𝜌 is the supercritical CO2 density  (kg ∕m
3
). 

K is the constant related with supercritical CO2 

A and B are constants. 

Values of constants in equation (1) have been concluded via using solver program in excel 2013 with depending on 

the average absolute relative deviation (AARD) according to the following equations: 
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𝐴𝐴𝑅𝐷 = (
100

𝑁
) + ∑

|𝑦𝑐𝑎𝑙. + 𝑦𝑒𝑥𝑝|

𝑦𝑒𝑥𝑝

𝑁

𝑖=1

 (2) 

 

𝑅2 =
∑  (𝑦𝑐𝑎𝑙. − 𝑦𝑐𝑎𝑙.̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

∑ (𝑦𝑒𝑥𝑝 − 𝑦𝑒𝑥𝑝̅̅ ̅̅ ̅)
2𝑁

 𝑖=1

 (3) 

Where: 

N is the data number. 

𝑦𝑐𝑎𝑙. Is the calculated solubility (kg m
-3

). 

𝑦𝑒𝑥𝑝 is the experimental solubility (kg m
-3

). 

Mass transfer coefficient was calculated from the following equation (Norhuda and Omar,2009) : 

𝐾𝑓 =
𝑆ℎ 𝐷12

𝑑𝑝

 (4) 

𝐾𝑓 is heat transfer coefficient (m
2
s

-1
). 

Sh is the Sherwood number. 

D12 is the cholesterol diffusion coefficient in supercritical CO2 (m s
-1

) 

dp is the minced  meat particle diameter (m). 

Sherwood number has been calculated from the following equation (Wakao and Kajuei, 1982): 

𝑆ℎ = 2 + 1.1𝑅𝑒0.6𝑆𝑐0.3 (5) 

Where 

Re is the Reynolds number 

SC is the Schmidt number which relates to the diffusion. 

Reynold number was calculated from equation (6): 

𝑅𝑒 =
𝑢𝑑𝑝𝜌

µ
 (6) 

       Where 

u is the velocity of supercritical CO2 (m sec
-1

). 

µ is the dynamic viscosity (Pa sec.).     

Schmidt number is given by equation (7) (Norhuda and Omar, 2009): 

𝑆𝑐 =
µ 𝜌

𝐷12

 (7) 

Where D12 is the cholesterol diffusion coefficient in the supercritical CO2 (m
2
s

-1
). 

The cholesterol diffusion coefficient can be calculated from equation (8) (Catchpole and King, 1994): 

𝐷12 = 5.152 + 𝐷𝐶𝑇𝑟(𝜌𝑟
−2∕3 − 0.451)

𝐾

𝑋
 (8) 

𝐷𝐶  is the CO2 diffusion coefficient at the critical point (m
2
 s

-1
)  

Tr is the reduced Temperature for supercritical CO2  

𝜌r is the reduced density for supercritical CO2 

K is the correction factor. 

𝑇𝑟 and 𝜌𝑟 have been calculated from the following equations (Wang, et. al., 2015): 

𝑇𝑟 =
𝑇

𝑇𝐶

 (9) 

 

𝜌𝑟 =
 𝜌

𝜌𝑐

 (10) 

Where 

T is the temperature of supercritical CO2 (
o
C). 

Tc is the critical temperature of CO2 (
o
C). 

𝜌c is the critical density of CO2 (kg m
-3

). 

𝜌 is the density of supercritical CO2 (kg m
-3

). 

Where x value has been calculated from the following equation: 

𝑥 =
[1 + 1 + (𝑉𝑐2/𝑉𝑐1)1/3]

2

[1 + 𝑀1/𝑀2]
 (11) 

𝑉𝑐1 is the molar volume for CO2 at critical point (cm
3
mol

-1
). 

 𝑉𝑐2 is the molar volume for CO2 at cholesterol at critical point (cm
3
mol

-1
). 

 𝑀1is the molecular weight of CO2 at critical point (g mol
-1

). 

 𝑀2 is the molecular weight of cholesterol(g mol
-1

). 
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 Correction factor (K) was calculated from the following equation: 

K= 1 ±0.1                                            2< X 

K = X
0.17 

± 0.1                                    2< X< 10 
(12) 

CO2 diffusion coefficient at critical point was calculated from the following equation: 

𝐷𝐶 = 4.30 × 10−7 + 𝑀1
1/2 𝑇𝐶

0.75

∑ 𝑉1
2/3 𝜌𝐶

 (13) 

𝑉1is the molar volume at critical point (m
3
mol

-1
) 

𝑇𝑐 is the critical temperature of CO2 

Coefficient of compressibility (z) was calculated according to the following equation (Marini, 2007) : 

   

𝑍 =
𝑃𝑉

𝑅𝑇
 

 
(14) 

Where  

R is the gases constant (8.314 J mol
-1

 k
-1

). 

T is the temperature (K). 

P is the pressure (Pa). 

V is volume of CO2 (m
3
mol

-1
)  

Dynamic viscosity calculated from equation (15) (Ouyang, 2011): 

µ = 𝐶0 + 𝐶1𝑃 + 𝐶2𝑃2 + 𝐶3𝑃3 + 𝐶4𝑃4 (15) 

µ is the dynamic viscosity (Pa sec.). 

P is the pressure (Pa). 

Ci is the constants and calculated from the following equation: 

𝐶𝑖 = 𝑑𝑖0 + 𝑑𝑖1𝑇 + 𝑑𝑖2𝑇2 + 𝑑𝑖3𝑇3 + 𝑑𝑖4𝑇4 (16) 

T is the temperature (
o
C). 

Density of supercritical CO2 was calculated from equation (17) (Ouyang, 2011): 

𝜌 = 𝐴0 + 𝐴1𝑃 + 𝐴2𝑃2 + 𝐴3𝑃3 + 𝐴4𝑃4 (17) 

𝜌 is the density (kg m
-3

)  

P is the pressure (pa) 

A1, A2, A3, A4 are constants and calculated from equation (18):              

𝐴𝑖 = 𝑏𝑖0 + 𝑏𝑖1𝑇 + 𝑏𝑖2𝑇2 + 𝑏𝑖3𝑇3 + 𝑏𝑖4𝑇4 (18) 

All constants are illustrated in Ouyang (2011)  

  

3.0 Results and discussion 

3.1 The cholesterol solubility and mass transfer coefficient  

A multiple regression by enter method has been used for producing the following equation which shows 

solubility of cholesterol in the supercritical CO2 using static method: 

𝑆 = −0.00929 − 0.00152T + 0.002046t + 0.000816P (19) 

Solubility of cholesterol in the supercritical CO2 by using dynamic method was illustrated in equation (20): 

𝑆 = −0.0366 − 0.00118T + 0.001532t + 0.001049P (20) 

Where: S, T, t, P are solubility (gl
-1

), Temperature (
o
C), staying time of meat under SCCO2 effect (min) and 

pressure (bar) respectively.  

Both equations (19) and (20) were dependent on the Temperature, pressure and staying time of meat under 

SCCO2 effect. The results showed that the staying time of meat under SCCO2 effect which had a significant 

effect on the solubility of cholesterol into supercritical CO2, as well as temperature and pressure. The solubility 

at temperature of 35
 o
C, pressure of 75 bar and staying time of 80 min. was reached 0.162390008, 0.174647304 

and 0.174647355 gl
-1

 by using proposed equation, chrastil equation and practical results respectively, but in the 

dynamic method, the solubility reached 0.12867128, 0.13395961 and 0.138664403 gl
-1

 respectively at the same 

conditions. The results showed that increasing temperature led to reduce solubility of cholesterol at a constant 

pressure. For example, the solubility reached 0.162390008, 0.174647304 and 0.174647355 gl
-1

 respectively by 

using pressure of 75 bar, temperature of 35 
o
C and staying time of 80 min. by static method as shown in tables (3) 

and (4). On the other hand, the solubility has been reduced to 0.147191383, 0.136870272 and 0.136870277 gl
-1

 

respectively at pressure of 75 bar, temperature of 45 
o
C and staying time of 80 min., while reached to 

0.131992758, 0.124560198 and 0.124571788 gl
-1

 respectively at pressure of 75 bar, temperature of 55 
o
C and 

staying time of 80 min. by using proposed equation, Chrastil equation and practical results.  
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Table 1.  ANOVA table and the constants related with proposed equation at using static method. 

 

 

Table 2. ANOVA table and the constants related with proposed equation at using dynamic method. 

 

There was a large converge among calculated solubility of cholesterol in SCCO2 from proposed equations 19 and 

20, practical results and Chrastil equation. Determination coefficient was high as shown in both tables 3 and 4 

and figures 2 and 3. The general form of the proposed equation which describes solubility of cholesterol in the 

SCCO2 by using static and dynamic methods as follow:  

𝑆 = a − bT + ct + dP (21) 

 

SUMMARY OUTPUT 

       

         
Regression Statistics 

       Multiple R 0.963002 

       R Square 0.927374 

       Adjusted R 

Square 0.920565 

       Standard Error 0.01421 

       Observations 36 

       

         ANOVA 

        
  df SS MS F Significance F 

   Regression 3 0.082507154 0.027502 136.2039 2.67064E-18 

   Residual 32 0.006461463 0.000202 

     Total 35 0.088968617       

   

         

  Coefficients Standard Error t Stat P-value Lower 95% 

Upper 

95% 

Lower 

95.0% Upper 95.0% 

Intercept -0.00929 0.028493676 -0.32597 0.746567 -0.06732787 0.048752 -0.06732787 0.04875157 

temperature -0.00152 0.000290058 -5.23986 9.89E-06 -0.002110691 -0.00093 -0.00211069 -0.000929 

time 0.002046 0.000105914 19.31962 3.32E-19 0.001830481 0.002262 0.001830481 0.00226196 

pressure 0.000816 0.000290058 2.81211 0.008338 0.000224846 0.001407 0.000224846 0.0014065 

          

SUMMARY OUTPUT 

       

         Regression Statistics 

       Multiple R 0.973303 

       R Square 0.94732 

       Adjusted R 

Square 0.942381 

       Standard Error 0.009152 

       Observations 36 

       

         ANOVA 

          df SS MS F Significance F 

   Regression 3 0.048195 0.016065 191.8121 1.58427E-20 

   Residual 32 0.00268 8.38E-05 

     Total 35 0.050875       

   

         

  Coefficients 

Standard 

Error t Stat P-value Lower 95% 

Upper 

95% 

Lower 

95.0% 

Upper 

95.0% 

Intercept -0.0366 0.018351 -1.99424 0.054704 -0.073976209 0.000783 

-

0.073976209 0.00078343 

temperature -0.00118 0.000187 -6.2954 4.63E-07 -0.00155655 -0.0008 -0.00155655 -0.0007955 

time 0.001532 6.82E-05 22.45584 3.72E-21 0.001392832 0.001671 0.001392832 0.00167072 

pressure 0.001049 0.000187 5.616009 3.31E-06 0.000668602 0.00143 0.000668602 0.00142963 
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Table 3. Practical and theoretical cholesterol solubility in super critical carbon dioxide by static method and it is statistical 

parameters and mass transfer coefficient. 

 

The results also showed that the solubility of cholesterol was increased with increasing inserted pressure and 

staying time of meat under supercritical pressure effect. It can be seen from tables 3 and 4 that the solubility 

reached 0.162390008, 0.174647304 and 0.174647355 gl
-1

 by using proposed equation, Chrastil and practical 

results respectively at conditions of pressure of 75 bar , temperature of 35 
o
C and staying time of 80 min. by 

static method, and it has been reduced to 0.147191383, 0.136870272 and 0.136870277gl
-1

 respectively at the 

conditions (P=75 bar, T=80 min. T=55
 o
C), while at using dynamic method and at the same conditions (P=75 bar, 

T=80 min. T=55
 o

C) was reached 0.09994775, 0.096750139 and 0.09622796 gl
-1

 by using proposed equation, 

Chrastil and practical results respectively, also when temperature reduced to 35
 o

C, the solubility reached 

0.123468426, 0.116769385 0.116769521 gl
-1

 respectively. on the other hand, when the pressure was 95 bar, 

temperature of 35
 o
C and staying time of meat under supercritical CO2 of 80 min. have a significant effect (p ≤ 

0.05 ) on the cholesterol solubility in the SCCO2 as illustrated in tables 3 and 4 . However, all equations in the 

published papers that descripted solubility of cholesterol in SCCO2 were dependent on the pressure, density and 

temperature, but the proposed equation in this study was dependent on pressure, temperature and staying time of 

meat under SCCO2 effect.  

55 20 75 0.009219458 0.029573139 0.029578086 

0.91127 0.88134 -300.09 -3.1021 0.092158 

3.34552E-05 

55 20 85 0.017376207 0.030626595 0.029842569 2.5371E-05 

55 20 95 0.025532955 0.031605765 0.031605793 1.7986E-05 

55 40 75 0.050143892 0.058036016 0.058054156 

0.897353 3.055677 -308.15 -3.38476 0.274618 

3.34552E-05 

55 40 85 0.05830064 0.064416191 0.059023929 2.5371E-05 

55 40 95 0.066457389 0.070749326 0.07074937 1.7986E-05 

55 60 75 0.091068325 0.095522578 0.09552267 

0.992696 1.045153 -285.45 -2.48681 0.187458 

3.34552E-05 

55 60 85 0.099225073 0.102571498 0.102531486 2.5371E-05 

55 60 95 0.107381822 0.109352243 0.112846348 1.7986E-05 

55 80 75 0.131992758 0.124560198 0.124571788 

0.963158 1.028079 -273.06 -2.17837 0.172443 

3.34552E-05 

55 80 85 0.140149507 0.132991314 0.129023929 2.5371E-05 

55 80 95 0.148306255 0.141057919 0.141057935 1.7986E-05 
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Table 4. Practical and theoretical cholesterol solubility in super critical carbon dioxide by dynamic method and it 

is statistical parameters and mass transfer coefficient. 
 

This may be attributed to increase temperature which leads to huge reduce in density and viscosity of SCCO2, 

then reduce its efficiency in solubility and cholesterol transfer (Ouyang, 2011). Wang,et.al., (2015) stated that 

density of SCCO2 increases with increasing pressure at constant temperature. It can be seen from tables 3 and 4 

that the solubility was increased with increasing staying time of meat at constant pressure and temperature. For 

example, solubility reached 0.055930206, 0.038139817 and 0.038129723 gl
-1

 by using proposed equation, 

Chrastil equation and practical data respectively at pressure of 95 bar, temperature of 35 
o
C and staying time of 

20 min. When staying time increased to 80 min., solubility of cholesterol increased to 0.178703505,  

0.140890833   and 0.190891058  gl
-1

 respectively at a constant pressure and temperature , this results applied 

on both static and dynamic methods .On the other hand , solubility of  cholesterol by static method is greater 

than dynamic method . This may be attributed to mass transfer coefficient by static method was higher than 

dynamic method as illustrated in tables 3 and 4. For example, the mass transfer coefficient reached 1.34681 × 

10
-5

 m
2
s

-1
 by using static method at pressure of 95 bar, temperature of 35 

o
C and staying time of 80 min., while it 

reached 6.91773× 10
-6

 m
2
sec

-1
 by using dynamic method at the same conditions. However, mass transfer 

coefficient indicates speed of cholesterol transfer toward SCCO2. The results also showed that the values of mass 

transfer coefficient ranged between 1.3468×10
-5

 – 3.7756×10
-5 

m
-2

s
-1

 and 6.9177×10
-6 

- 3.6480×10
-5 

m
-2

s
-1

 for 

both static and dynamic methods respectively. 

 

Temperature 

 

(
o
C) 

Time 

(min.) 

Pressure 

(bar) 

Solubility 

(proposed 

equation) 

Solubility 

 (Chrastil 

equatioin) 

(gl
-1

) 

Practical 

Solubility 

(gl
-1

) 

R
2
 AARD A B k 

k f  

(m
2
s

-1
) 

35 20 75 0.031561835 0.033986145 0.033986146 

0.995934 0.641609 -266.701 -3.39404 

 

0.163181 

 

1.75066E-05 

35 20 85 0.042053019 0.036159144 0.036146096 9.55331E-06 

35 20 95 0.052544203 0.038231269 0.038967254 6.91773E-06 

35 40 75 0.062197366 0.074407825 0.07440806 

0.531565 5.712618 -248.743 -2.60228 0.15083 

1.75066E-05 

35 40 85 0.07268855 0.078794813 0.067267003 9.55331E-06 

35 40 95 0.083179733 0.08295958 0.082959698 6.91773E-06 

35 60 75 0.092832896 0.096448357 0.096448363 

0.948526 3.851914 -699.157 -2.59061 0.46864 

1.75066E-05 

35 60 85 0.10332408 0.115238001 0.104206549 9.55331E-06 

35 60 95 0.113815264 0.135237615 0.136561713 6.91773E-06 

35 80 75 0.123468426 0.116769385 0.116769521 

0.968964 2.594935 -661.948 -2.43327 0.452484 

1.75066E-05 

35 80 85 0.13395961 0.138664403 0.128671285 9.55331E-06 

35 80 95 0.144450794 0.161834367 0.16186398 6.91773E-06 

45 20 75 0.019801497 0.025698813 0.025698992 

0.842561 5.365213 -798.463 -3.02014 0.347384 

2.3369E-05 

45 20 85 0.030292681 0.02932332 0.025258186 1.33846E-05 

45 20 95 0.040783865 0.033016577 0.033016373 9.41969E-06 

45 40 75 0.050437028 0.059464718 0.059464736 

0.277816 11.31577 32.36028 -3.59419 0.124581 

2.3369E-05 

45 40 85 0.060928212 0.062346013 0.046549118 1.33846E-05 

45 40 95 0.071419395 0.065055606 0.065062972 9.41969E-06 

45 60 75 0.081072558 0.081790824 0.071586902 

0.998352 8.85045 32.43303 -3.30917 0.130815 

2.3369E-05 

45 60 85 0.091563742 0.085957179 0.085957179 1.33846E-05 

45 60 95 0.102054926 0.089884065 0.102487406 9.41969E-06 

 45 80 75 0.111708088 0.09893401 0.100724181 

0.993094 1.46936 31.93235 -4.96741 0.474773 

2.3369E-05 

45 80 85 0.122199272 0.118483554 0.115447103 1.33846E-05 

45 80 95 0.132690456 0.139337937 0.139338791 9.41969E-06 

55 20 75 0.008041159 0.013400479 0.013400504 

0.518372 15.06553 -44.681 -8.88504 0.875414 

3.64802E-05 

55 20 85 0.018532343 0.018686052 0.034030227 3.18245E-05 

55 20 95 0.029023527 0.025196846 0.025170025 2.67611E-05 

55 40 75 0.03867669 0.040245599 0.040245592 

0.863211 5.439689 -26.2128 -6.05274 0.542841 

3.64802E-05 

55 40 85 0.049167874 0.049460514 0.059023929 3.18245E-05 

55 40 95 0.059659058 0.059533977 0.059464736 2.67611E-05 

55 60 75 0.06931222 0.065116389 0.065062972 

0.671261 5.898386 -26.1141 -4.32607 0.311232 

3.64802E-05 

55 60 85 0.079803404 0.073287038 0.08895466 3.18245E-05 

55 60 95 0.090294588 0.08150505 0.081505038 2.67611E-05 

55 80 75 0.09994775 0.096750139 0.09622796 

0.962259 1.772087 -26.0586 -3.82573 0.291793 

3.64802E-05 

55 80 85 0.110438934 0.108089145 0.113507557 3.18245E-05 

55 80 95 0.120930118 0.119414358 0.119414358 2.67611E-05 
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Figure 2. The correlation between practical and theoretical solubility of cholesterol by static method. 

 

 

Figure 3.  The correlation between practical and theoretical solubility of cholesterol by dynamic method. 

 

3.2 Diffusion of cholesterol in SCCO2: 

    Figures 4 and 5 illustrate the cholesterol diffusion coefficient at different temperatures (35, 45 and 55
 o

C) 

and different pressures (75, 85 and 95) by two methods (static and dynamic). The results showed that the 

cholesterol diffusion coefficient in SCCO2 increased with increasing temperature ,for example the diffusion 

coefficient reached 3.77567×10
-5

 , 3.64802×10
-5

 and 3.64802×10
-5

 m
2
s

-1
 at temperature of 35, 45 and 55 

o
C 

respectively at pressure of 75 bar by static method, while it reached 1.75066×10
-5

 , 2.33690×10
-5

  and  

3.64802×10
-5

 m
2
s

-1
 respectively by using dynamic method at the same conditions, the results also showed that 

the cholesterol diffusion coefficient was reduced with increasing  pressure and temperature where diffusion 

coefficient reached 3.64802×10
-5

 m
2
s

-1
 at pressure of 75 bar and temperature of 55 

o
C, also it reached to 

3.18245×10
-5

, 2.67611×10
-5

 m
2
s

-1
 at 85 bar and 95 bar respectively by static method , while using dynamic 

method at 75 bar pressure and 55 
o
C  temperature , the diffusion coefficient reached 3.34862×10

-5
 m

2
s

-1
 and it 

reduced to 3.38110×10
-5

  3.17899×10
-5

 m
2
s

-1
 at pressure of 85 and 95 bar respectively, this may be attributed to 

increase viscosity and density of SCCO2 where it led to reduce diffusion coefficient. Han, et al. (2007) stated that 

increasing pressure of SCCO2 led to reduce diffusion coefficient of soluble material in SCCO2. Also, the results 

showed that the diffusion coefficient has been increased with increasing temperature.  

Vederman,et al.(2005) found that the cholesterol diffusion coefficient in the SCCO2 at 230, 250 and 270 bar and 

temperature of 60 
o
C is 2.3×10

-13
 m

2
l
-1

 for all pressures in his study and when temperature increased to 70 
o
C , 

the diffusion coefficient has been increased .   
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Figure 4. The Cholesterol diffusion coefficient in supercritical carbon dioxide using the static method. 

 

Figure 5. The Cholesterol diffusion coefficient in supercritical carbon dioxide using dynamic method. 

 

4.0 Conclusion  

The proposed new empirical model can be used to predict solubility of cholesterol in supercritical 

dioxide carbon. The difference between static and dynamic method in solubility of cholesterol in supercritical 

dioxide carbon were significant. Time of staying meat under supercritical dioxide carbon had a huge effect on 

the solubility of cholesterol in supercritical dioxide carbon, as well as temperature and pressure. The cholesterol 

diffusion coefficient in super critical CO2 increased with increasing temperature and reduced with increasing 

pressure. Mass transfer coefficient in static method was higher than dynamic method. 

5.0 Abbreviations   

SCCO2: supercritical carbon dioxide. 

CO2: carbon dioxide. 
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