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Abstract  

The phytopathogenic fungi Sclerotinia sclerotiorum, causative of Sclerotinia stem rot of soybean was studied to 

determine the impact of culture media representing disparate carbon to nitrogen sources and ratios on mycelial growth, 

oxalate accumulation, and culture pH. The three parameters exhibited significant variations with respect to the 

differing preference for the nutrient sources and ratios; most oxalate accumulated on high CN (75:1) nutrient media, 

the intermediate CN (35:1) nutrient media exhibited the best growth potential, while the highest oxalate–to-biomass 

ratio occurred on poor CN (3.6:1) nutrient media and pH raised in low (10:1) and poor (3.6:1) nutrient media. Further, 

we made an attempt to identify the potential regulators for oxalate metabolism by HPLC analysis of metabolites 

present in the culture filtrate, which revealed 6–17 peaks. Nine peaks were identified as acetate, citrate, succinate, 

malate, oxalate, oxaloacetate, succinate, glycolate, and indole-3-acetic acids (IAA). Acetate, oxalate and malate were 

present in all the culture filtrates but in varying amounts. The other metabolites were not detected in some of the culture 

filtrates. Taken together, these results indicate that; 1) oxalate production did not correlate with growth; 2) oxalate 

accumulation and regulation is dependent on nutritional conditions and; 3) the decrease in culture pH was independent 

of oxalate accumulation. Such studies may lead to identification of most commendable media for laboratory assay and 

the rational design of strategies to regulate/depress oxalate accumulation and reduce its availability in plant foods.  
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1. INTRODUCTION  

Sclerotinia sclerotiorum (Lib.) de Bary (de Bary, 1886) is an ubiquitous phytopathogenic Ascomycete fungus capable 

of infecting a wide variety of vegetables, ornamentals, and field crops causing significant quality and yield losses. 

Plants susceptible to this pathogen encompass 75 families, 278 genera, and 408 species (Boland and Hall, 1994). The 

general inability of economically important crops to develop germ plasm resistant to this pathogen has focused 

attention on the need for a more detailed understanding of the pathogenic factors involved in disease development. 

Fungal pathogenicity is dependent on a coordinated interplay between many, disparate pathogenicity determinants. 

The process by which S. sclerotiorum invades plants and causes infection is unresolved. However, secretion of oxalic 

acid/oxalate has been reported to be essential for infection by the pathogen, (Cessna et al., 2000) therefore, 

understanding its biosynthesis is important.  Evidence for this was the demonstration that mutant isolates of S. 

sclerotiorum, deficient in oxalic acid production, were not pathogenic on bean (Phaseolus vulgaris), but revertants 

became pathogenic once they regained the ability to produce oxalic acid (Godoy et al., 1990). The proposed mode of 

action of oxalate formed by S. sclerotiorum in pathogenesis is: 1) chelation of calcium from pectate fraction of the 
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xylem and associated pit vessels. 2) Entry of air leading to a xylem embolism and ultimately, wilting. 3) Spread of 

oxalate reduces pH thereby stimulating the activity of cell wall-degrading enzymes. 4) Inhibits plant-mediated 

defense mechanisms (Marciano et al., 1983: Cessna et al., 2000). 

Nutrients are substances used in biosynthesis and energy release and therefore serve as cardinal impetus towards the 

viability, survival and sustainance of any organism (Safari et al., 2007). Nutrient source is an integral determinant of 

growth and virulence of phytopathogenic fungi. The macro-elements like carbon, nitrogen oxygen, hydrogen, 

sulphur and phosphorus are integral components of carbohydrates, lipids, proteins and nucleic acids and these 

metabolically active groups are directly or indirectly involved in host-pathogen interactions and self-defense and 

perpetuations mechanisms (Gao et al., 2007). Numerous carbon sources, including components of plant cell walls, 

can support oxalic acid accumulation when provided as the sole carbon source (Marciano et al., 1989; Maxwell, 

1973 and Vega et al., 1970). Both simple and complex carbohydrates have been shown to support growth and oxalate 

synthesis by S. sclerotiorum (Marciano et al., 1989: Rollins and Dickman, 2001, Bryan et al., 2007). Nitrogen is an 

essential element of fungal structure and life processes. Geoffrey 1999, showed that nitrate-grown fungi produced 

substantial amounts of oxalic acid, whereas in ammonium-containing liquid medium oxalic acid was only detected in 

small amounts. Earlier workers reported that amino acids were more favourable as a nitrogen source than nitrates or 

ammonium (Willetts et al., 1980). The best medium for oxalic acid synthesis by S. rofsii was reported to be of 

glucose-peptone (Chakrabarti and Samajpati., 1980). Such is the utility of nutrients in the survival ability of 

microorganisms, that, finally it must be emphasized that they require it in a balanced mix. 

The pH of the growth medium has been shown to be very important for S. sclerotiorum; the pathogen could tolerate a 

wide range of pH, but good growth and sclerotial formation were favoured at pH varying from 4 to 5.5 (Chowdhury 

1946; Townsend 1957; Rudolph 1962; Rai and Agnihotri 1971).Culture pH also is a strong regulator of oxalic acid 

biosynthesis (Maxwell and Lumsden, 1970; Vega et al., 1970). Oxalic acid production increases with the ambient pH 

of the growth medium (Ruijter et al., 1999). Production of oxalate by A. niger has been reported to be optimal in the 

pH range of 5–8 (Cleland and Johnson, 1956; Lenz et al., 1976; Kubicek et al., 1988).  

Efforts have been made to elucidate the metabolic pathways of oxalate biosynthesis and to reduce the oxalate 

secretion (Libert and Franceschi, 1987). Despite decades of dedicated efforts, the pathogenesis mechanism is not 

well understood yet, and economically important crops still lack the resistant germplasm (Bolton et al., 2005). In this 

study, we have tried to address the influence of nutrition on growth, oxalate accumulation and culture pH of S. 

sclerotiorum, whilst optimizing nutritional conditions, it is important not to compromise biomass yield. An 

understanding of the growth characteristics and oxalate accumulation with respect to growth substrates becomes 

handy in tolerance selection studies and to some extent predict the virulence of this fungal pathogen.  

2.0 Materials and methods 

2.1 Source, growth and maintenances of Sclerotinia sclerotiorum 

Potato dextrose agar (PDA) (39 g Difco, Detroit, Michigan; PDA media litre
-1

 sterile distilled water), autoclaved to 

sterilise (121
o
C, 15 min) was mixed thoroughly before pouring the plates. The S. sclerotiorium was originally 

isolated from infected soil from soybean growing fields in Nakuru (Kenya) as previously described by (Godoy et al., 

1990). Isolates of S. sclerotiorum were purified and routinely maintained on pre prepared PDA petri-plates, the pH of 

PDA was adjusted to 5.5. Inoculation was accomplished by removing a 5-mm plug (cut with a sterile cork borer) of 

mycelium from the advancing edge of growth and placing the plug, mycelium side down, centrally on the surface of 

a sterile PDA plate. Inoculated PDA plates were placed in plastic zip-lock bags (partially sealed) and incubated at 

room temperature. These subcultures were used in subsequent studies. 

2.2 Culture media 

Solution A 

1g K2HPO4, 0.5g KCl, 0.5g MgSO4.7H2O, 0.01g FeCl2 were dissolved to make 1 litre solution and pH of the mixture 

adjusted to 4.5 (basal solution). 
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Solution B 

Culture media representing disparate carbon and nitrogen sources and ratios were used in this study. They included: 

(P1) high C:N (75:1) medium consisting of 9.1% glucose and 1% peptone; (P2) low C:N (10:1) medium consisting 

of 0.6% glucose and 1% peptone; (P3) intermediate C:N (35:1) medium consisting of 4% glucose and 1% peptone 

(Sabouraud Dextrose Agar) SDA; (P4) nutrient poor media consisting of 1% yeast extract (1Y) and 2% peptone (2P); 

(P5) potato Dextrose Agar (PDA, potato starch and glucose); (P6) glucose alone; (P7) 2% peptone  and (P8) basal 

media (no added glucose) control. Yeast extract, peptone and PDA have CN ratios of 3.6:1, 8:1 and 10:1, respectively, 

and represented different carbon and nitrogen sources (Casa et al., 2003 and Wyss et al .,  2001).  

2.2.1 Preparation of media 

To 125 ml of solution A, solution B [P1, P2, P3, P4and P7] were added and topped up to 200 ml and the mixture 

boiled, P5 (PDA) and P6 lacked solution A while P8 contained only solution A. All the media were prepared using 

1.5% (3.75g) agar to solidify except PDA.  Media were sterilized at 121
o
C at 15 psi for 15 min and allowed to cool, 

30 ml poured into 100 ml flasks in triplicates. 

Glucose and yeast extract obtained from Sigma, while mycological peptone, agar and PDA were obtained from 

Difco. 

2.3 Growth of S. sclerotiorum in different culture media 

Growth was initiated by transferring a single 5-mm agar-mycelial plug of S. sclerotiorum cut from the advancing 

edge of a 3-day-old PDA plate culture, to a flask of non-shaken solid culture medium (P1-P8). After inoculation, 

flasks were incubated at 25°C (room temperature) for 15 days. The colony diameter was measured from the bottom 

at 3 days intervals until 15 days post inoculation and radial growth rate (cm d
-1

) calculated from the linear portions of 

the curves plotted from these values. After the designated incubation period, the following parameters were measured 

in each culture: biomass formed, oxalate levels and culture pH. 

2.4 Analytical methods 

The soluble material was extracted from the cultures by adding distilled water (1 ml/ml of original culture media) to 

the fungal mat. The agar with the embedded fungus was then blended with a spatula. For biomass determinations, 

mycelium from each culture flask was collected by vacuum filtration through a Büchner funnel containing a 

pre-weighed Whatman No. 1 filter paper. Collected fungal biomass was oven-dried at 55°C for 3 days, cooled to 

room temperature in a desiccator, and then weighed. Biomass formed was expressed as mg dry weight flask
−1

. 

Samples of culture filtrates were saved for high performance liquid chromatography (HPLC) analysis and for pH 

determination. 

2.4.1 pH Determination 

The pH of the culture filtrate was determined with a Hanna instrument 211A pH meter and an Orion semi-micro 

combination electrode. 

2.5 Chemical analysis 

Culture filtrates were first analyzed for their initial pH and then adjusted to the pH 7 with 2M HCl or 2M KOH. 

Filtrates were refiltered using a 25mm syringe filter and concentration of oxalate and other metabolites determined 

by HPLC. The analysis of metabolites was conducted on a column of VP ODS (Size: 4.0 mmID × 150 mmL, 

Shimadzu) using a HPLC system (LC 10 A, Shimadzu Co. Ltd, Japan) composed of a pump (LC-10 ADVP), a 

system controller (SCL-10AVP) and a column oven (CTO-10AVP). A sample of 10 µL was chromatographed at 

35°C using 0.01N H2SO4 as eluent at a flow rate of 0.6 ml min
−1

. Oxalate, acetate, malate, citrate, indole-3-acetate 

(IAA), pyruvate and succinate were detected at 210 nm, while oxaloacetate and glycolate were detected at 360 nm 



Journal of Biology, Agriculture and Healthcare                                        www.iiste.org 

ISSN 2224-3208 (Paper)  ISSN 2225-093X (Online) 

Vol 2, No.10, 2012 

 

139 

 

 

 

 

using Shimadzu UV-Vis coupled with waters 2996 photodiode array detector (SPD-M10 AVP). The amount of 

oxalate and other metabolites in the culture filtrates were identified by comparing retention time (Rt) of standards and 

by co-injection. Concentrations were calculated by comparing peak areas of reference compounds with those in the 

samples run under the same conditions and concentrations were expressed on a millimolar basis. 

2.6 Statistical analysis 

Statistical analysis of all the data for fungal growth, biomass formation and oxalate accumulation were subjected to 

one-way analysis of variance (ANOVA) and the means were separated by Student-Newman-Keuls multiple range 

test of comparisons of means at p=0.05. 

3.0 RESULTS AND DISCUSSION 

The primary research interest is in elucidating the mechanisms regulating oxalate metabolism by S. sclerotiorum in 

culture media. An attempt was made to utilize different carbon and nitrogen forms at different ratios to achieve 

various levels of mycelia growth, culture pH and oxalate accumulation.  

3.1 Growth of S. sclerotiorum on different culture media 

All the CN sources showed capability of initiating mycelial growth; the vegetative radial growth of S. sclerotiorum 

varied on the different media ranging from radial diameter of 1.1 to 8.0 mm for glucose CN= 100:0 (P6) and CN= 

10:1 (P5), respectively. Radial growth rate (mm/day) ranged from 0.05 to 0.67 for glucose (P6) and CN= 35:1 (P3), 

respectively (Table 1). Growth was also noted on a medium of basal salts (control) although minimal. Earlier work 

on many nutritional studies on these fungi indicates that they grow readily in or on basal salts of essential elements 

and a simple carbon sources (Willis, 1968). Radial growth and growth rate were poor if produced on glucose alone; 

showing essentiality of nitrogen in mycelia growth. If an essential element is below threshold in supply, then 

microbial growth will be limited regardless of the concentrations of other nutrients. From results in Table 1 the 

optimal CN ratio for growth rate was 35:1. 

The maximum biomass was achieved in CN ratio of 35:1(P3) similar to SDA, 404.5 mg dry weight flask
-1

 and lowest 

in basal medium (P8) 9.06 mg dry weight flask-1(Table 1). Comparing P3 and P4 with carbon almost 10 folds higher, 

both radial growth and growth rate were twice fold greater, respectively, while biomass accumulation was eight folds 

greater. Biomass production on culture media of PDA (P5) was twice folded higher than of P2; whose CN ratio is 

similar (10:1) showing that S. sclerotiorum utilizes different carbon and nitrogen sources at different rates for 

biomass production.  

Radial growth rate and biomass weight represents the measure of growth of mycelia. The results revealed that the 

radial growth and growth rate is dependent upon the presence of both carbon and nitrogen, as sole basal media and 

glucose displayed the lowest growth. Although, there is the tendency for more growth in carbon rich media, the 

threshold varies with the nature of carbon and nitrogen source. These observations confirm and extend previous 

findings that nutritional supplements in culture media stimulate the growth of S. sclerotiorum (Maxwell and 

Lumsden, 1970). 

3.1 Effect of nutrition on culture pH 

The final pH of the culture media ranged from 3.56 - 8.73, although the initial pH was 4.5. Rai and Agnihotri, (1971) 

reported that the pH range of 2.3 - 7.5 permitted growth of S. sclerotiorum with the optimum being in the range of 

3.4 - 4.0. Secretion of organic acid in the culture media is expected to lower the pH, unfortunately this was not 

observed in P2 and P4 where it increased. What caused this increase in pH is yet to be determined. However, these 

observations suggest that medium pH was not influenced by production of oxalate alone. In addition, the fact that 

after 10 days post-inoculation culture media became more pigmented, it is possible that the pigment or other 

metabolites in these cultures buffered the medium during oxalate accumulation to counteract the acidification caused 

by growth and secreted organic acids. 

The culture media acidification observed on P1, P3, P6 and P7 did not correlated with oxalate accumulation (Table 1). 

Acidification favours stimulation of oxalate degradation, but this was not observed as no formate was detected (Table 
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2). Ascomycete fungus possesses an oxalate decarboxylase which catalyse the; oxalate + H
+
 → formate + CO2 

(Magro et al., 1988). However, little is known about this enzyme in S. sclerotiorum, its production apparently require 

an acidic pH < 3.5 and presence of oxalate as an inducer.  The culture pH is known to regulate oxalate accumulation 

and oxalate formation is favoured when the pH or buffering capacity of the medium is increased (Maxwell and 

Lumsden, 1970; Bolton et al., 2006).  

3.2 Effect of nutrition on oxalate accumulation 

Oxalic acid is produced by a variety of fungi, including saprophytic and phytopathogenic species (excellently 

reviewed by Dutton and Evans, 1996). Oxalate production in the culture media of S. sclerotiorum varied significantly 

(p < 0.05); the high nutrient CN media P1 accumulated the highest level while P8 had the lowest (Table 1). Indeed, 

cultures containing glucose alone P6 exhibited minimal growth yet oxalate was produced at levels of 7 fold higher 

than in basal medium cultures (no additions) P8, indicating that glucose as a carbon source promoted oxalate 

accumulation. Similarly, sole nutritional supplements (yeast and peptone) registered higher oxalate level than basal 

medium. Nonetheless, what is apparent is that the combination of a nutritional supplement and glucose provided 

culture conditions that positively impacted growth and oxalate accumulation by S. sclerotiorum. 

The level of oxalate accumulation in P2 was four folds greater than of P5, amid similar C: N (10:1) ratio; while 

biomass production was half fold, this could be attributed to different sources of carbon and nitrogen. From these 

results it’s evident that oxalate accumulations did not correlate with biomass production but linked to nutrient source. 

As would be expected, some carbon and nitrogen sources are more readily utilized than others. From the results in 

table 1, it is evident that the best oxalate accumulating media was not the same as the media which induced best 

colony growth in them. 

Nutrient poor media C: N (3.6:1) P4 showed the highest oxalate-to-biomass ratios, while glucose compared with the 

control exhibiting the lowest (Table 1). The rapid oxalate accumulation to biomass formation was linked to the 

relatively high protein content of these media. The oxalate-to-biomass ratio is often used as an indicator of 

oxalogenic potential of S. sclerotiorum during growth (Durman et al., 2005).Therefore, P4 was the most potent 

oxalate producer, showing that biomass formation negatively correlated with oxalate accumulation, thus biomass 

formation may not be used as a measure of oxalate secretion. The most potent oxalogenic CN media has an important 

influencer as a tool for biogeochemical particularly if used with other parameters such as high growth rate and 

biomass accumulation. 

Based on these observations, oxalate levels and culture pH, like growth and oxalate formation, appeared not to be 

related. These findings were unexpected given that culture pH is considered to be directly influenced by oxalate 

secretion by S. sclerotiorum, with decreasing culture pH being the result of increasing oxalate accumulation 

(Maxwell and Lumsden, 1970; Dutton and Evans, 1996; Gadd, 1999; Rollins and Dickman, 2001; Hegedus and 

Rimmer, 2005; Bolton et al., 2006).  

Accumulation of oxalate often reaches millimolar concentrations (up to 10 mM) in infected tissues (Bateman and 

Beer, 1965; Marciano et al., 1983). From table1, the some culture medium registered higher oxalate amounts; this 

could be attributed to the different environment. Oxalic acid is metabolically produced from several different 

biochemical pathways. To attenuate oxalate production in S. sclerotiorum, it is necessary to first identify potential 

substrates responsible for oxalate formation. Since the fungus behaves like a car with its engine ticking over; the fuel 

(substrate) is not used for growth, so a convenient metabolic intermediate is released a kind of exhaust product. To 

identify the potential regulators for oxalate metabolism (oxalogenesis); the culture media filtrate were subjected to 

HPLC analysis.  

3.3 HPLC analysis of culture filtrates of Sclerotinia sclerotiorum 

The HPLC profiles of different culture media filtrate of S. sclerotiorum, demonstrated the variation in constituents 

and concentration in the metabolites. HPLC chromatogram profiles revealed 6–17 peaks in the culture filtrates of S. 

sclerotiorum suggesting different CN source and ratio excretes differing metabolites. Out of these peaks, 9 were 

identified on the basis of their retention time (Rt) as well as by co-injection. All these 8 peaks consistently appeared 
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in culture filtrates of most of the isolates. The peaks identified were of oxalate (Rt 3.86 min), oxaloacetate (Rt 4.26 

min) Pyruvate (Rt 4.43 min), acetate (Rt 4.85 min), citrate (Rt 6.10 min) succinate (Rt 6.43 min), malate (Rt 7.4 

min),and glycolate acids (Rt 11.64 min), while indole-3-acetateIAA (Rt 3.95 min) was detected in P3 only (Table 2). 

No definite pattern of the occurrence of organic acids in culture filtrates was observed. However, oxalate, malate and 

acetate were detected in culture filtrates of the all medium. Oxalate was the major component, and its amount varied 

from 0.15 to 23.06 ppm followed by acetate (0.04 to 12.74 ppm) and malate (0.06 to 11.63 ppm), respectively (Table 

2). Citrate, oxaloacetate, IAA, and pyruvate were only detected in P5, P3, P3, and P1, respectively, Table 2. The 

presence of IAA in the culture filtrates of P3 is significant. There are several reports on the IAA production by fungi 

and bacteria that cause plant diseases (Gruen, 1959, Sequeira, 1973, Chauhan et al., 2000). In many cases, IAA 

production is related to gall formation in the host plants.  But there is no such gall formation at the site of infection 

caused by S. rolfsii (Chauhan et al., 2000). 

A chromatogram of the authentic oxalate at 0.05 mg mL
−1

 by HPLC is shown in Figure 1. Oxalate was eluted as a 

steep peak; the peak area was exactly proportional to the dose applied onto the column, with its correlation 

coefficient being greater than 0.992, as shown in Figure 2. Metabolic pathway must be coordinated so that the 

production of energy and synthesis of end product meets the needs of the cells (Ryan, 2001).  

The pathway of oxalate biosynthesis, however, has remained controversial. Metabolic pathway may be influenced by 

the availability of substrates, product inhibition or alteration in the levels of allosteric activators or inhibitors. In most 

cases information about oxalate biosynthesis has only been obtained under conditions also leading to the synthesis of 

other organic acids (Ryan et al., 2001). In order to understand how oxalate accumulation is associated in the 

metabolic network, an attempt was made to relate metabolites secreted in the culture media.   

Pyruvate was detected in P1; it is an end product of glycolysis via Embden- Meyerhof pathway (EMP). Pyruvic acid 

is an intermediate of central metabolism representing a branch-point; pyruvate carboxylase [EC 6.4.1.1], a 

gluconeogenic enzyme which converts pyruvate to oxaloacetate, and pyruvate dehydrogenase that converts pyruvate 

to acetyl-CoA (C-2) compound, which may then enter the tricarboxylic acid (TCA) cycle. In the culture media no 

oxaloacetate was detected suggesting the latter could be the most probable route as supported by the detection of 

malate and succinate other intermediates of TCA. In addition from oxaloacetate there is the release of two molecules 

of CO2 for every acetyl-CoA entering the TCA cycle. 

Oxalate a common metabolic product found in the culture fluid of several fungi; in A. niger, it may occur as an 

unwanted by-product of citric acid fermentation which, because of its toxicity, must be completely removed 

(Christian et al., 1988). Citrate was detected only in P5, which registered lower oxalate level compared to P2 with 

similar CN ratio this may be attributed to the fact that oxalate may be formed from hydrolysis of oxaloacetate but, 

instead acetyl CoA condenses with oxaloacetate to produce citric acid, detected in P5 an intermediate of TCA) cycle. 

Acetyl CoA + oxaloacetate → citrate 

Anaplerotic reaction involving coupling of CO2 to pyruvic acid gives oxaloacetate via pyruvate carboxylase, a 

cytoplasmic constitutive enzyme when intermediated of TCA cycle are removed, breaking the cycle. However, 

pyruvate carboxylase has not been reported during oxalate formation in S. sclerotiorum. Therefore, need to 

investigate the presence of this enzyme in the culture media or in the mycelia.   

The detection of malate, succinate and citrate, intermediates of tricarboxylic acid cycle suggested a direct source of 

oxaloacetate, another TCA- level intermediate. The detection of acetate in all the culture media suggested, the 

probable source of oxalate could be oxaloacetate which is apparently hydrolysed by S. sclerotiorum to oxalate and 

acetate by oxaloacetase [EC 3.7.1.1] enzyme, a cytoplasmic constitutive enzyme (Salisbury and Ross, 1986). 

Oxaloacetate → oxalate + acetate 

Detection of glycolate in P1, P2, P3 and P4 which registered higher oxalate levels, a potential substrate suggested the 

involvement of glycolate metabolism in oxalate accumulation in S. sclerotiorum. Glycolate accumulated in a 

negative correlation with oxalate, suggesting that the downstream of glyoxylate metabolism including glyoxylate 
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oxidation to oxalate could be interrupted under different CN media. Glyoxylate (2-carbon) and acetylCoA are 

condensed by malate synthase (MS; EC 2.3.3.9), yielding malate (Wong and Aji, 1956), which is oxidized further to 

oxaloacetate. 

The result hints at possible involvement of three schemes in oxaloacetate accumulation and regulation in S. 

sclerotiorum EMP pathway, tricarboxylic cycle and glyoxylate cycle. Consequently, oxalate may arise from (i) 

oxaloacetate not entering TCA; (ii) oxaloacetate entering the TCA; and oxidation of glyoxalate, respectively. The 

presence of oxalate and acetate in all culture media, favours the role of cytosolic oxaloacetate acetylhydrolase OAH 

(EC 3.7.1.1) which catalyses the conversion of oxaloacetate to acetate and oxalate (Maxwell, 1973). This is also 

supported by the amounts of acetate, almost fourth to third of that of oxalate in almost all medium. This observation 

is ultimately based on the enzymatic evidence reports that synthesis of oxalic acid in S. sclerotiorum is catalyzed by 

oxaloacetate acetylhydrolase and the enzyme activity increases as the pH of the ambient environment increases, 

paralleling oxalic acid accumulation (Kubicek et al., 1988; Maxwell, 1973; Lenz et al., 1976; Ruijter et al., 1999). 

4. Conclusion 

Even, though oxalate is important to the pathogenesis of S. sclerotiorum, very little is known about the mechanism of 

oxalate synthesis and regulation in this phytopathogenic fungus. The present results hint on the nutrition influencing 

the culture pH, growth, oxalate formation as well as metabolic pathway. The study has shown that the best oxalate 

supporting media was not the same as the media which induced best colony growth in S. sclerotiorum. We observed 

that CN 35:1 produced maximum biomass, yeast produced the best growth and high CN 75:1 nutrient media yielded 

the highest oxalate level.  

Oxalate accumulation by S. sclerotiorum is dependent upon the nutrition and does not appear to be linked with radial 

growth and pH as an increase in radial growth and decrease in pH did not result in simulation increase in oxalate 

concentration. The presence of disparate substrates (peptone and yeast) probably requires different pathways for the 

utilization of nutrients and subsequently regulation of oxalate metabolism. This supports earlier finding that different 

mechanisms may even occur in one organism, depending on the nutritional conditions (Vega et al., 1970). 

Accordingly, we found that culture filtrates of different disparate CN source and ratio of S. sclerotiorum exhibited 

qualitative and quantitative variation in their organic acid composition. The fungus excreted substantial concentration 

of acetate, malate and oxalate during growth among other organic acids, in addition IAA was detected. Mycelial 

growth strategies and ability to produce and exude organic acids and other metabolites make fungi important 

biological weathering agents, while these acids has profound implications for metal speciation, physiology and 

biogeochemical cycles (Gadd, 1999). More detailed studies are needed to define the exact role of IAA in infection 

and oxalate regulation. Similarly, enzymatic studies are called for aimed at repressing oxalate accumulation by the 

fungi; which coupled with nutritional findings would go towards better sclerotinia disease management. 

The knowledge of nutritional requirement of S. sclerotiorum are important as they lead to better understanding of 

host-parasite relationship in terms of the survival and distribution of these fungi in field; as some of the nutrient 

sources might mimic the on-field situations such as nutrient poor soil. In addition, optimum conditions can enable 

prediction or inhibit habitats that encourage pathogen amplification. 
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Table 1.  Effect of nutrition (media composition) on the growth, oxalate accumulation and culture pH by Sclerotinia 

sclerotiorum. 

Culture media Final 

diameter 

(cm) 

Radial 

growth  

(cmday
-1

) 

Biomass mg dry 

weight flask
-1

 

Oxalate- to- 

biomass ratio 

Oxalate (mM) Final pH 

C:N 75:1 3.9±0.34 0.53 ± 0.26 195.95 ± 13.40 0.12 ± 0.02 23.06 ± 0.72 3.67 ± 0.06 

C:N 10:1 6.37±0.78 0.42 ± 0.03 104.65 ± 6.03 0.15 ± 0.01 15.65 ± 0.97 8.23 ± 0.02 

C:N 35:1 7.77±0.12 0.67 ± 0.11 404.50 ± 20.05 0.02 ± 0.02 8.85 ± 0.36 4.80 ± 0.08 

1% Yeast 6.07±0.27 0.326 ± 0.03 50.77 ± 2.01 0.38 ± 0.03 19.39 ±0.83 8.73 ± 0.01 

PDA 8.0±0.08 0.40 ± 0.12 217.13 ± 5.05 0.02 ± 0.01 3.95 ± 0.12 5.65 ± 0.01 

Glucose (25 mM) 2.09±0.19 0.14 ± 0.02 86.54.±3.26 0.01± 0.01 1.09 ± 0.02 3.56 ± 0.07 

2% peptone 5.34±0.23 0.19 ± 0.05 56.02 ± 0.09 0.14 ± 0.03 4.29 ±  0.03 4.21± 0.02 

Control (Basal) 1.10 ± 0.09 0.05 ± 0.01 9.06 ± 0.04 0.01 ± 0.01 0.15 ± 0.01 5.47± 0.01 

Each value represents the mean of triplicate cultures ± the standard deviation.  

  

 

Table 2. Concentration of metabolites secreted (ppm) in culture filtrates of different CN source and ratios.  

Concentration of metabolites (ppm) in different culture medium 

  

Substrate 

pKa 

C:N  75:1  C:N 10:1 C:N 35:1 C:N 3.6:1 PDA 

Glucose Peptone Basal 

Oxalate 

1.23, 4.19 

23.06±0.28 15.65±0.92 8.85±0.78 

19.39±0.1

7 3.95±0.08 

1.09±0.01 4.29±0.03 0.15±0.01 

Citrate   ND ND ND ND 3.01±0.12 ND ND ND 

Acetate 4.76 7.40±.019 3.32±0.06 12.74±0.87 3.04±0.17 3.61±0.15 0.58±0.12 1.08±0.14 0.04±0.01 

Succinate 4.16, 5.61 0.24±0.03 1.12±0.09 6.03±0.13 8.51±0.43 ND 0.15±0.02 0.84±0.03 ND 

Oxaloacetate   ND ND 1.74±0.05 ND ND ND ND ND 

IAA   ND ND 1.75 ± 0.07 ND ND ND ND ND 

Glycolate 3.83 2.95±0.35 0.42±0.02 3.57±0.03 0.51±0.42 ND ND 0.36±0.02 ND 

Pyruvate 2.39 5.73±0.07 ND ND ND ND ND ND ND 

Malate  3.40, 5.11 8.04±0.63 0.06±0.01 11.63±0.09 8.38±0.25 0.28±0.02 0.13±0.01 0.55±0.02 0.06±0.01 

Each value represents the mean of triplicate cultures ± the standard deviation.  

   Key: ND- not detected 
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Fig.1: Chromatogram of oxalate.                   Fig. 2: Calibration curve of authentic oxalic acid. 
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Chromatogram of an authentic oxalic acid 


