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Abstract 
Molecular ecology researches are rapidly advancing the knowledge of microorganisms associated with 

petroleum hydrocarbon degradation, one of the major large-scale pollutants in terrestrial ecosystems. The design 

and monitoring of bioremediation techniques for hydrocarbons rely on a thorough understanding of the diversity 

of enzymes involved in the processes of hydrocarbon degradation and the microbes that harbor their allocated 

genes. This review describes the impact of hydrocarbon pollution on soil microbial communities, the state of the 

art of detecting functional genes, and functional groups. We will focus on i) the structure, function and 

succession behavior of microbial communities exposed to hydrocarbons, ii) key genes and pathways, iii) future 

prospect into bioremediation of petroleum hydrocarbons in aerobic environments. The aim is to get a 

fundamental insight in these issues to ultimately improve petroleum hydrocarbons bioremediation.  
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1. Introduction 

Petroleum hydrocarbon compounds can impact soil and groundwater mainly due to spills during exploration, 

production and distribution of oil and gas and derived petroleum products or as a result of natural seepage (Das 

& Chandran 2010). Hydrocarbons include a large array of linear, branched, cyclic and aromatic components 

(Brown et al. 2017) all of which different in terms of volatility, bioavailability, toxicity, degradability, and 

persistence. Alkanes with carbon chain lengths longer than C8, for instance, can cause hardening and, as a result, 

limit wetting of soils (Liu et al. 2015). Polycyclic aromatic hydrocarbons (PAHs) are dangerous to human health 

as they cause mutagenesis and carcinogenesis even at low levels of exposure (Hesham et al. 2014). As a 

consequence, sixteen PAHs have been listed by the US Environmental Protection Agency as priority 

contaminants in ecosystems (Habe & Omori 2003; Keith & Telliard 1979).  

However, biodegradation of hydrocarbons occurs naturally and is found in most types of soils (Pinholt et al. 

1979; Whitby & Skovhus 2009). In fact, microbes which have the potential to degrade hydrocarbons are widely 

distributed in the environment (Bamforth & Singleton 2005; Head et al. 2006; Whitby & Skovhus 2009; 

Fukuhara et al. 2013; Boon et al. 2014) and exposure to hydrocarbons result in changes in the microbial 

community structure. During this process, genes encoding for a variety of metabolizing enzyme are critical for 

the ability of microorganisms to biodegrade hydrocarbons (Liu et al. 2015). 

Technologies based on abilities of certain microorganisms to enzymatically degrade petroleum 

hydrocarbons  can often be very effective  for remediation because they are minimally invasive, require little 

disturbance of soils, are often cost-effective and result in minimal secondary contamination (Balba et al. 1998; 

Das & Chandran 2010; Fuentes et al. 2014; Wilson & Jones 1993). Abiotic methods used for the soil 

remediation such as excavation followed by incineration, soil washing, removal of hydrocarbons by thermal 

desorption are expensive and can lead to incomplete decomposition of contaminants (Das & Chandran 2010; 

Morelli et al. 2013; Thakur 2014). The most promising and energy efficient process for removing petroleum 

hydrocarbons from soil environments is aerobic bioremediation that can result in the complete mineralization of 

hydrocarbons (Bailey et al. 1973; Das & Chandran 2010; Fuentes et al. 2014).  

Despite soil microbial communities having great potential for bioremediation of petroleum hydrocarbons 

and the considerable amount of literature on microbial hydrocarbon degradation, the scientific community is yet 

to arrive at a consensus on the key bacteria species and molecular mechanisms involved, and how they can 

contribute to oil bioremediation in polluted soils. Information on community composition of bacteria, their 

catabolic genes involved in hydrocarbon degradation along with their mutual interactions will enable a more 

efficient implementation of remedial strategies that rely on monitored natural attenuation as well as remedies that 

aim at stimulating natural attenuation through addition of nutrients, electron acceptors, and specific 

microorganisms  (Head et al. 2006; Adams et al. 2015). 

Previous reviews on the microbiology of hydrocarbon degradation initially emphasized i) the environmental 

factors that contribute to the biodegradation rate (Leahy & Colwell 1990), ii) the diversity of alkane oxygenase 
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systems (Beilen & Funhoff 2005; Das & Chandran 2010; Varjani 2017), iii) the enzymes for aerobic 

biodegradation of PAHs and their apparent functional redundancies (Fuentes et al. 2014; Head et al. 2006; Vila 

et al. 2015), and iv) microbial communities modeling approaches for hydrocarbon degradation (Röling et al. 

2014a). In spite of all this information, the relationship between a repertoire of genes, encoded enzymes and 

functional groups existing in a microbial community is still not well understood. 

The aim of this review is to organize a guideline of the state of the art of the species composition and genes 

associated with hydrocarbon degradation in microbial communities, their interactions and succession and, 

ultimately, how the control of the overall degradation process is divided over different functional groups. To 

achieve this, three topics will be discussed: i) the succession of soil microbial communities upon hydrocarbon 

pollution, ii) genes and pathways associated with hydrocarbon biodegradation, iii) future prospect of 

bioremediation of petroleum hydrocarbons in oxic environments, with an emphasis on soil systems.  

 

2. Succession of soil microbial communities upon hydrocarbon pollution 

Degradation of petroleum hydrocarbons generally requires evolution of the existing microbial community to a 

new organizational state that usually constitute a small number of phylotypes with overall broad enzymatic 

capacities (Bordenave et al. 2007; Hesham et al. 2014; Leahy & Colwell 1990). Patel et al. (2016) showed that 

exposure to petroleum hydrocarbons causes a significant reduction on microbial diversity which can be 

attributed to a combination of hydrocarbon compounds being toxic to some microbes while providing novel 

types of carbon and free energy sources to other more specialized microbes.  

Various researchers have demonstrated that the indigenous microbial communities  can adapt within hours, 

with  an increase in hydrocarbon-degrading bacteria along with their hydrocarbon-degrading genes (Atlas & 

Bartha 1997; Juck et al. 2000; Kostka et al. 2011; Lindstrom et al. 1999; Röling et al. 2002). Some of the genes 

involved in catabolism of hydrocarbons are expressed constitutively (Cappelletti et al. 2011; Tani et al. 2001). 

However most of them are ordered in inducible operons located on chromosomes or plasmids. There are three 

interconnected mechanisms to start biodegradation. These are i) selective enrichment of organisms able to 

transform the compounds of interest, ii) induction of specific enzymes in these species, and iii) genetic changes 

which result in new metabolic capabilities and enhanced rates of growth on oil components (Leahy & Colwell 

1990; MacNaughton et al. 1999; Ogino et al. 2001; Röling, Milner, et al. 2004). Those mechanisms generate a 

series of successional changes in the structure of the microbial community (Roy et al. 2018). In general terms, 

Archaea are no longer detected because they are usually hydrocarbon sensitive (Röling et al. 2004), while 

growth of alkane-degrading specialists sometimes occurs within hours. Following the depletion of alkanes, 

certain specialists in aromatic hydrocarbon degradation are able to dominate the bacterial community (Habe & 

Omori 2003; Head et al. 2006; Röling et al. 2014a). Thereby, hydrocarbon-utilizing bacteria are able to reflect 

the degree of contamination of the soil using specific catabolic genes markers (Evans et al. 2004; Leahy & 

Colwell 1990).  

The understanding of the microbial-community dynamics during bioremediation is still in its infancy. 

Because an individual bacterium can metabolize only a limited range of hydrocarbons (Adams et al. 2015; 

Chikere et al. 2011; Paniagua-Michel & Fathepure 2018), the breakdown intermediates can be used by the same 

bacteria or by other members of the community forming part of a microbial degradation network. The microbial 

interactions during hydrocarbon degradation involves antagonistic interactions such as competition for limiting 

nutrients (mostly N and P), antibiotic production by competing organisms, and predation by bacteria, protozoa 

and bacteriophages (Gentry et al. 2004). The positive interactions include i) production of biosurfactant that 

reduce the surface tension and disperse hydrocarbons into small droplets (commensalism), ii) cross-feeding or 

pathway completion where microorganisms are engaged in exchange of metabolites (mutualism) and iii) 

horizontal gene transfer reported as one of the major mechanisms responsible for the evolution of enhanced 

hydrocarbon degradation rates (Obayori & Salam 2010). All those interactions are influenced by the element 

fluxes of metabolites and nutrients on the one hand and environmental conditions of the spatial-temporal 

dynamic of the community on the other hand. 

The identification of the primary degraders and their catalytic potential as a first critical step in this 

ecological network is important for understanding, evaluating and developing in situ petroleum hydrocarbons 

bioremediation strategies.  

 

3. Genes and pathways associated with aerobic hydrocarbon degradation   

The initial intracellular attack of hydrocarbons involves the activation as well as incorporation of oxygen in an 

enzymatic key reaction catalyzed by oxygenases. These are usually monooxygenases for breakdown of aliphatic 

compounds and dioxygenases for that of aromatic compounds. The general pathway is shown in figure 1. The 

oxygenases are part of different enzyme systems that are distributed mainly among Proteobacteria, 

Actinobacteria and Firmicutes (Fuentes et al. 2014; Popp et al. 2006). Alkanes are highly reduced molecules 

with single bonds that are less difficult to break down. Homocyclic aromatic compounds on the other hand are 
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particularly difficult to degrade due to the even distribution of electrons around the aromatic ring which makes 

them relatively more recalcitrant to reduction or oxidation reactions required for degradation. Thus, 

hydrocarbons differ in their susceptibility to enzymatic attack according to their chemical reactivity. The easiest 

ones to degrade are n-alkanes, followed by branched alkanes, low molecular weight aromatic cyclic alkanes and 

finally high molecular weight aromatics.  

 

3.1 Alkane-degrading enzymes 

Monooxygenases can catalyze a variety of reactions including the hydroxylation of linear and branched aliphatic, 

alicyclic, and alkylaromatic compounds (Ji et al. 2013).  The aerobic degradation starts by converting alkanes to 

the corresponding alcohols, aldehydes, carboxylic acids, and acyl-coenzyme A's (CoAs), which then enter the β-

oxidation pathway. Based on the type of cofactor and cellular location, five families of bacterial alkane 

monooxygenase can be distinguished (Coleman et al. 2011; Torres Pazmiño et al. 2010). These are i) particulate 

alkane hydroxylases (pAH/AlkB) (Kok et al. 1989; van Beilen et al. 2002), ii) cytochromes P450 (CYP) 

(Bernhardt 2006; Maier et al. 2001), iii) flavin-dependent monooxygenases (van Berkel et al. 2006; Throne-

Holst et al. 2007), iv) particulate copper-containing alkane monooxygenases (pMMO-family) (Lieberman & 

Rosenzweig 2004) and v) soluble diiron alkane monooxygenases (sMMO-family) (Leahy et al. 2003; Notomista 

et al. 2003). A summary of the key genes, composition of enzymes, substrate preferences and hydrocarbon 

degraders in soils is shown in Table 1.  

3.1.1 Particulate alkane hydroxylases (pAH/AlkB) 

The particulate (or membrane-associated) non-heme iron alkane hydroxylases oxidize substrates with chain 

lengths from C3 to C16  (Beilen et al. 2003; Smith et al. 2013). They are encoded by three genes, alkB for the 

catalytically active alkane hydroxylase, and alkG and alkT for rubredoxin and rubredoxin reductase, respectively 

(Cappelletti et al. 2011; Smits et al. 2002; Staijen et al. 2000). The alkane hydroxylase gene (alkB) and its 

promoter were first identified in Pseudomonas putida (Baptist et al. 1963) where they were shown to be located 

on a so-called OCT-plasmid (Kok et al. 1989). As such, the gene cluster may well be spread amongst community 

members via horizontal gene transfer (van Beilen et al. 2001).  

The alkB gene sequences contain sufficient conservation for the design of broad-spectrum PCR primers that 

are used to amplify the alkB gene from environmental samples as a functional marker for tracking the abundance 

and diversity of alkane degrading communities in a variety of polluted soils (Gielnik et al. 2019; Kloos et al. 

2006; Pérez-de-Mora et al. 2011; Whyte et al. 2002). Those studies showed that richness and diversity 

of alkB genes was higher in polluted soils compared to unpolluted soils.   

3.1.2 Cytochrome P450 (CYP) 

The soluble cytochrome P450 alkane hydroxylases constitute a super family of ubiquitous heme-thiolate 

monooxygenases (Das & Chandran 2010). Phylogenetic analyses grouped them in more than 100 families (Rojo 

2009), only 10–15% of which are found in bacteria (Beilen & Funhoff 2005). They incorporate oxygen into 

alkanes with chain lengths from C5 to C16. Electrons for these reactions are provided by ferredoxins or 

rubredoxins. Reduction of these iron-sulphur proteins is catalyzed by a ferredoxin reductase that uses NAD(P)H 

as the initial electron donor.  

The first member of this family characterized in bacteria was CYP153A1 from Acinetobacter sp. (Maier et 

al. 2001). After that discovery, the abundance and expression of the CYP gene in soils was studied in much more 

detail (Afzal et al. 2011; Arslan et al. 2014; Kubota et al. 2005). Cytochrome P450 alkane hydroxylases have 

since then been described in members of the Actinobacteria such as Mycobacterium and Rhodococcus as well as 

in other phyla (van Beilen et al. 2005, 2006; Sekine et al. 2006). Bacteria with CYP genes have great interest 

since their enzymes are not only involved in alkane hydroxylation but also in dehalogenation of aromatic 

compounds. As such, they may be exploited for future biotechnological needs in bioremediation of soils polluted 

with these kinds of compound. 

3.1.3 Flavin-dependent monooxygenases (AlmA and LadA) 

Flavin dependent monooxygenases have either flavin mononucleotide (FMN) or flavin adenine dinucleotide 

(FAD) as cofactor. These enzymes are relevant for the biodegradation of long chain alkanes. In contrast to 

cytochrome P450, genes encoding flavin-dependent monooxygenases are more abundant in prokaryotic genomes 

(Torres Pazmiño et al. 2010). We will describe two principal enzymes AlmA and LadA, respectively.  

AlmA is an integral membrane enzyme involved in the metabolism of alkanes from C10 to C32, and longer. 

The enzyme is a member of the subclass of flavin-containing monooxygenase (FMOs) (van Berkel et al. 2006; 

Ziegler 2002). The almA gene was first identified in Acinetobacter sp. DSM 17874 (Throne-Holst et al. 2007). It 

was then recognized in many other Acinetobacter species capable of degrading long chain alkanes (Wentzel et al. 

2007) as well as in in marine microbes belonging to the genus Pseudomonas, Alcanivorax, Marinobacter, 

Acinetobacter, Salinisphaera and Parvibaculum (Liu et al. 2011; Wang & Shao 2012). Little is known about the 

environmental distribution of this gene type in contaminated soils. The only putative AlmA-like oxygenase 

reported in contaminated soil is from Pseudomonas aeruginosa (Liu et al. 2014).  
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LadA is member of a subclass of bacterial luciferases and can degrade alkanes ranging from C15 to C36 

(Feng et al. 2007). The LadA homologue from the soil bacteria Geobacillus thermodenitrificans, is characterized 

as a thermophilic extracellular and soluble long-chain alkane monooxygenase. The gene LadA, isolated from a 

deep-subsurface oil reservoir after genome sequencing and confirmed by in vivo and in vitro experiments (Feng 

et al. 2007), shows no detectable similarity to other alkane oxidizing enzymes from soils or other environments. 

It is the first long-chain n-alkane monooxygenase to be cloned and structurally characterized (Li et al. 2008). 

The crystal structure of LadA reveals a two‐component flavin‐dependent oxygenase with a large hydrophobic 
pocket to accommodate the FMN cofactor, O2, and terminal parts of a long-chain n-alkane in order to produce 

primary alcohols (Feng et al. 2007).  This thermophilic LadA is an ideal candidate for treatment of 

environmental oil pollutions and biosynthesis of complex molecules. 

3.1.4 Copper-containing enzymes (pMMOs) 

The particulate methane monooxygenase (pMMOs) are found in bacteria that aerobically grow on methane 

(Torres Pazmiño et al. 2010), but these enzymes also act on alkanes from C2 to C5 as well as on several other 

hydrophobic compounds (Elliott et al. 1997). An example of these monooxygenases is pMMO from 

Methylococcus capsulatus whose crystal structure shows three subunits α, β, and γ, and three metal-binding 

centers, two of which are copper centers (mono- and dinuclear, respectively), and the third contains zinc 

(Balasubramanian et al. 2010; Culpepper & Rosenzweig 2012; Kitmitto et al. 2005; Lieberman & Rosenzweig 

2005; Smith et al. 2011). The pMMO gene has been used as a phylogenetic marker for identifying 

methanotroph‐specific DNA sequences in soils (Baani & Liesack 2008; Hoffmann et al. 2002; R & J.Colin 1997; 

Roey & Ralf 2009), but it may identify alkane degrading capacities as well. 

3.1.5 Soluble diiron monooxygenases (sMMO) 

Another type of MMO is a cytoplasmic diiron monooxygenases (sMMO). They can oxidize alkanes from C1 to 

C8 as well as a broad range of substrates and as such they are relevant for biodegradation of alkanes and mono-

aromatic hydrocarbons (Beilen & Funhoff 2007; Green & Dalton 1989). Its crystal structure reveals three 

components: hydroxylase, reductase and a regulatory protein. The hydroxylase component is a dimer with three 

subunits namely (αβγ)2 (Grosse et al. 1999; Rosenzweig et al. 1993). Structural and functional analysis has 

revealed that the α-subunit contains the catalytic binuclear iron center that is required for the oxidation reaction 

(Merkx et al. 2001). It turns out that sMMO is less prevalent than pMMO (Rojo 2009). If a strain contains both 

pMMO and sMMO, expression of sMMO occurs only under conditions of low copper availability (Hakemian & 

Rosenzweig 2007; Lieberman & Rosenzweig 2004).  

 

3.2 Aromatic hydrocarbons degrading enzymes 

The catabolism of aromatic hydrocarbons in bacteria is extremely diverse and complex because of i) the large 

variety in PAHs (660 reported by (Reed 2011)), ii) the considerable amount of energy required to change an 

aromatic compound into a nonaromatic and iii) the number of genes and enzymes involved in the complete 

breakdown of these compounds. For instance, in Mycobacterium vanbaalenii PYR-1, the degradation of pyrene 

needs the sequential action of 27 enzymes (Kim et al. 2007). Furthermore, the genetic organization and function 

of aromatic catabolic genes are still not fully understood since many proposed gene functions need to be assessed 

experimentally. In addition, the activation of an aromatic hydrocarbon may produce molecules with higher 

toxicity, leading to persistent products (Lundstedt et al. 2003). 

Evidence for biodegradation of high-molecular-weight PAHs, containing more than four aromatic rings 

such as chrysene, benzo[a]pyrene and benz[a]anthracene is still limited. This is in contrast to the bacterial 

degradation of monoaromatic compounds and low-molecular-weight PAHs (containing two or three aromatic 

rings) such as naphthalene, acenaphthene, fluorene, phenanthrene and anthracene, since the biochemical 

pathways for their breakdown have been well studied and reviewed (Fuentes et al. 2014; Habe & Omori 2003; 

Jones et al. 2011; Ladino-Orjuela et al. 2016; Lu et al. 2011; Peng et al. 2008; Seo et al. 2009; Wick et al. 2003). 

The biodegradation process of these relatively simpler compounds is commonly separated into peripheral and 

central pathways. Peripheral pathways include the incorporation of molecular oxygen into the aromatic nucleus 

forming cis-dihydrodiol (Carredano et al. 2000; Ferraro et al. 2006). These compounds are rearomatized through 

a cis-diol dehydrogenase to yield dehydroxylated intermediates such as catechol, salicylate, gentisate, 

homogentisate, protocatechuate or phthalate (Fuentes et al. 2014). In the central pathway, the covalent bond of 

the aromatic ring of these dihydroxylated intermediates are cleaved by enzymes between two adjacent carbon 

atoms with hydroxyl groups (meta-pathway) or between a carbon with a hydroxyl group and its adjacent carbon 

with a carboxyl group (ortho-pathway) (Seo et al. 2006), which then are further degraded into TCA cycle 

intermediates (Cerniglia 1992; Habe & Omori 2003). Most of the enzymes necessary in the central pathway can 

be common between community members.  

The incorporation of molecular oxygen into an aromatic hydrocarbon is the most difficult yet important 

catalytic step (Jouanneau et al. 2011). It is catalyzed by a ring hydroxylating oxygenase (RHO) belonging to the 

family of Rieske non-heme iron oxygenases (Gibson & Parales 2000) that have been studied in many different 
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microorganisms. RHOs are multi-component enzymes consisting of an oxygenase and an electron transport 

chain. The oxygenase is the catalytic portion composed of large and small subunits (α and β, respectively) that 
are either homo- (αn) or hetero-oligomers (αnβn) (Butler & Mason 1997; Kweon et al. 2008; Parales et al. 1998). 

The electron transport chain can be a flavoprotein reductase or a flavoprotein reductase and a ferredoxin (Figure 

2). The electron transport chain transfers reducing equivalents from NAD(P)H to the oxygenase components. 

Finally, the oxygenase transfers electrons from the electron donor to break down the aromatic hydrocarbon 

electron acceptor.  

To date, over a thousand of RHOs have been identified and compiled in the GenBank as well as in the 

ring‐hydroxylating oxygenase database (Chakraborty et al. 2014). Based on substrate specificities and functional 

evolutionary behavior of the enzyme components, a classification of RHOs into five type-groups has been 

proposed (Chakraborty et al. 2012; Kweon et al. 2008; Nam et al. 2001). Type I comprises broad range 

monooxygenases including monooxygenases like sMMO. The other four types contain typical dioxygenases 

(RHD). RHOs have low substrate specificity as a common feature (Jouanneau et al. 2011), allowing bacteria to 

initiate the degradation of a wide range of aromatic hydrocarbons. Type II enzymes such as benzoate and toluate 

dioxygenases activate the catabolism of heterocyclic compounds. Types III, IV and V include enzyme systems 

for the activation of aromatic hydrocarbons. Figure 3 summarize the pathways proposed for each type.  

3.2.1 Type III naphthalene/PAH dioxygenases  

Type III enzymes make part of three-component systems that consist of the oxygenase, a [2Fe-2S]-type 

ferredoxin and a ferredoxin-NADP+ reductase (FNR) typically present in Gram negative bacteria. The three-

dimensional structure of the catalytic component of naphthalene dioxygenase of Pseudomonas sp. NCIB9816-4 

(NDO) has been characterized. It have revealed that NDO oxidizes bi‐ and tri‐cyclic PAH substrates, such as 

naphthalene, phenanthrene and anthracene (Kauppi et al. 1998). 

The metabolism of naphthalene has been studied in Pseudomonas putida strain G7. In this strains, the 

transmissible plasmid coding for naphthalene catabolism was isolated (Dunn & Gunsalus 1973). This plasmid 

contains the naphthalene catabolic genes (nah) organized into two operons: upper and lower encoding enzymes 

for the peripheral and central pathways, respectively. The upper operon nahABFCED encodes six enzymes for 

the conversion of naphthalene into salicylate (Habe & Omori 2003). Enzymes encoded by the lower operon 

nahGTHINLOMKJ transform salicylate via meta-cleavage into pyruvate and acetaldehyde (Simon et al. 1993). 

Both upper and lower operons are regulated by a trans-acting positive control regulator encoded by the nahR 

gene, which is sandwiched by the two operons. NahR is needed for high-level expression of the nah genes and 

their induction by salicylate. In effect, binding of salicylate to NahR at the promoters induces a conformational 

change in DNA-bound NahR that enables transcription to occurs. 

Bacteria with RHD Type III enzymes like Pseudomonas are ubiquitous in soil environments particularly 

after hydrocarbon pollutions (Ahn et al. 1999; Lloyd-Jones et al. 1999; Martin et al. 2013; Tuomi et al. 2004; 

Widada et al. 2002). The genetic organization of the naphthalene dioxygenase system present in P. putida 

resembles those in other different Pseudomonas strains as well as in other Proteobacteria like Comamonas 

testeroni strain GZ42 (Goyal & Zylstra 1996), and Burkholderia sp. strain RP007 (Laurie & Lloyd-Jones 1999). 

Yet other strains like Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2 have so-called nag genes to 

convert naphthalene to gentisate rather than the Pseudomonas-type nah genes where naphthalene is converted in 

salicylate (Jeon et al. 2006; Zhou et al. 2001).  A third group of species, like Alcaligenes faecalis AFK2 and 

Acidovorax NA3, have phn genes to degrade phenanthrene through protocatechuate with some unique accessory 

genes (Singleton et al. 2009).  

3.2.2 Type IV benzene/toluene/biphenyl dioxygenases 

The type IV enzymes make part of yet another three-component system that consist of an oxygenase, a [2Fe-2S]-

type ferredoxin and a glutathione reductase (GR). This type is the largest group for the known RHD enzyme 

systems that includes the biphenyl, toluene and PAH metabolic enzymes from both Gram negative and positive 

bacteria (Takeda et al. 1998). The three dimensional structure of the components of biphenyl dioxygenase from 

Sphingobium yanoikuyae B1 was characterized (Ferraro et al. 2007; Yu et al. 2007). Later, also those from 

Sphingomonas CHY-1 (Jakoncic et al. 2007) and Rhodococcus sp. RHA1 were determined (Furusawa et al. 

2004). The biphenyl dioxygenase system (BDO) is able to oxidize a broad range of substrates, ranging from one 

to four-ring PAHs (Ferraro et al. 2007; Kimura et al. 1996; Yu et al. 2007).  

The biphenyl biodegradation pathway by the enzymes encoded from the genes bph has been studied in 

Pseudomonas pseudoalcaligenes KF707 (Furukawa & Miyazaki 1986) and Burkholderia xenovorans LB400 

(Mondello 1989). Typically, the genes bph are located in two clusters. The first cluster called bphABCD is 

common in many aerobic biphenyl degraders and consists of seven genes. Enzymes encoded by this operon are 

responsible for the transformation of biphenyl into benzoates and aliphatic acids (biphenyl upper pathway). The 

second cluster of genes is responsible for metabolism of benzoates and aliphatic acids into pyruvate and 

acetaldehyde via the catechol pathway (Seeger & Pieper 2010), which can then be further oxidized via the TCA 

cycle (biphenyl lower pathway). Besides, the biodegradation of monocyclic aromatic hydrocarbon initiated by 
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RHD like toluene dioxygenase (TDO) in general follow the similar upper and lower pathways described in this 

functional group including the catechol pathway.  

The diversity and versatility of RHD Type IV enzymes were assessed from different soils contaminated 

with BTEX and PAH (Cárcer et al. 2007; Furukawa et al. 2004; Seeger & Pieper 2010). Furthermore, key 

enzymes in the common pathway, such as catechol 1,2- dioxygenase and catechol 2,3-dioxygenase, were used 

for detecting biphenyl and toluene metabolic enzymes in soils (Mesarch et al. 2000). 

Similar genetic organization of the biphenyl dioxygenase genes described in Burkholderia xenovorans 

LB400 appear in Ralstonia eutropha H850 (Bedard et al. 1987), Achromobacter xylosoxydans KF701 (Furukawa 

et al. 1989) Pseudomonas putida KF715 (Hayase et al. 1990) and Burkholderia sp. LB400 (Bartels et al. 1999).  

Those results could suggest that certain bph gene clusters were transferred among soil bacteria and have evolved 

from a common ancestor.  

On the other hand, a heterogeneous genetic organization of the biphenyl dioxygenase system is present in 

Sphingomonads (that includes the genera Sphingomonas, Novosphingobium, Sphingopyxis and Sphingobium) 

which are able to degrade a wide range of PAHs such as naphthalene, fluorine and phenanthrene because of a 

large substrate-binding pocket. In Sphingomonads the catalytic genes for breakdown of aromatic hydrocarbons 

are often localized separately. There is no evident biochemical function of functional operons. All the 

Sphingomonads genes for degradation of aromatic hydrocarbons are carried on a single plasmid (pNL1) and they 

encode α and β subunits of seven distinct RHOs (Jouanneau et al. 2011; Romine et al. 1999). All these RHOs 

may receive their electrons from a single set of ferredoxin and ferredoxin reductase. This gives Sphingomonads 

flexibility and means to adapt easily to new environmental conditions since their RHOs can catalyze the 

oxidation of many types of aromatic hydrocarbons and simultaneously  share the same electron transport chain 

(Jouanneau et al. 2011; Khara et al. 2014). Therefore, Sphingomonads evolved as an independent subgroup with 

a possible restriction of gene transfer to other bacteria. 

3.2.3 Type V phthalate/phenanthrene dioxygenases 

Type V enzymes make part of yet other three-component systems that consist of a dioxygenase, a [3Fe-4S]-type 

ferredoxin and of a glutathione reductase (GR), typically found in Gram positive bacteria. The first well-known 

example in this group is phenanthrene dioxygenase (encoded by the phdABCD operon) from Nocardioides sp. 

KP7 that transforms phenanthrene to 1-hydroxy-2-naphthoate (Saito et al. 1999). Later on, PhdC was shown to 

be a novel type of [3Fe-4s]-type ferredoxin as typical electron carrier present in Mycobacterium and 

Rhodococcus strains  (Kweon et al. 2008).  

The ability of the genus Mycobacterium to degrade different types of high molecular weight PAHs, 

including  pyrene, fluoranthene, and benzo[a]pyrene has been documented (Cheung & Kinkle 2001; Kim et al. 

2005; Schneider et al. 1996). In Mycobacterium PYR-1, the genes encoding the hydroxylase component of a 

pyrene dioxygenase were first called nidBA (nid for naphthalene induced) (Khan et al., 2001). Based on system 

biology analysis of genomic and proteomic data, 27 enzymes were identified to be necessary for constructing a 

complete pathway for pyrene degradation to central intermediates through o-phthalate and the β-ketoadipate 

pathway in M. vanbaalenii PYR-1, (Kim et al. 2007). In another pyrene degrader Mycobacterium 6PY1, a 

thorough proteomic analysis of pyrene- and phenanthrene-induced polypeptides identified 23 proteins, four of 

which were subunits of two gram-positive RHDs named Pdo1 and Pdo2 (Krivobok et al. 2003). Amino acid 

sequence comparison indicated that Pdo1 and Pdo2 are similar to the pyrene dioxygenase from strain PYR-1, 

and phenanthrene dioxygenase from strain KP7, respectively (Krivobok et al., 2003). Additionally, Other 

Mycobacterium strains able to degrade pyrene or fluoranthene were found to express RHDs homologous to Pdo1 

or Pdo2 (Kim et al. 2005; Roey & Ralf 2009; Seo et al. 2006).  

Multiple pathways of pyrene degradation operate in Mycobacterium vanbaalenii PYR 1 strain (Brezna et al. 

2006; Heitkamp & Cerniglia 1988). The general pathway of pyrene degradation is dioxygenation at the 4,5-

positions to produce trans-4,5-pyrenedihydrodiol. Rearomatization of the dihydrodiol and subsequent ortho-

cleavage lead to the formation of 4,5-dicarboxyphenanthrene, which is further decarboxylated to 4-

phenanthroate. Following another dioxygenation reaction, 4-phenanthroate forms cis-3,4-

dihydroxyphenanthrene-4-carboxylate. Rearomatization of the metabolite yields 3,4-dihydroxyphenanthrene, 

which is further metabolized to 1-hydroxy-2-naphthoate. The subsequent enzymatic reactions, including intradiol 

ring cleavage dioxygenation, result in the production of o-phthalate. Then phthalate is further metabolized via 

the β-ketoadipate pathway and via the TCA cycle, successively (Kim et al. 2003; Wang et al. 2000).  

RHD genes from Mycobacterium and Rhodococcus were reported in soil environments by (Debruyn et al. 

2009; Hall et al. 2005; Marcos et al. 2009; Peng et al. 2010; Ren et al. 2015; Shahsavari et al. 2016). Therefore, 

the abundance of nidA gene serves as a biomarker for pyrene and other PAH degradation processes. The 

prevalence of Mycobacterium nidA genotypes corroborated previous studies indicating that PAH-degrading 

Mycobacteria have a cosmopolitan distribution and suggests they play an important role in natural attenuation of 

PAHs. 
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3.3 Conclusion 

Although none of the enzyme systems is completely specific, a broad correlation between the grouping in 

alkanes and aromatics-degrading enzymes subfamilies and the native substrates oxidized by the subfamily 

members can be perceived. It is unlikely that PCR primers that were used to genotype particular environments 

will reliably cover the huge diversity of homologous genes within each sub-group. Besides the first catalytic 

steps that lead the degradation pathways, the complete metabolism of hydrocarbons depends upon the collective 

activities of peripheral and central pathway enzymes. We may then conclude that diversity of hydrocarbons-

degrading genes and enzymes is unexpectedly high, which may support the hypothesis that natural attenuation of 

petroleum hydrocarbons occurs widely in nature by functional redundancies in enzymes that overlap in 

substrates and metabolites. The full range of genes involved, their genetic regulation and organization as well as 

the interaction of all those enzymes in the microbial degradation network is still far from being understood. 

Therefore, the application of omics approaches is crucial to study the functional potential of microbial 

communities that we are going to discuss in the next section.   

 

4. Future prospect into bioremediation of petroleum hydrocarbons in soils 

Traditional analytical chemistry and molecular tools have identified individual functional genes, metabolic 

pathways and key players. For example, culturable bacteria such as Pseudomonas, Sphingobium  and 

Acinetobacter have been isolated and provide suitable, tractable systems to perform controlled biodegradation 

experiments (Röling et al. 2014a). Genome and transcriptome sequencing of these organisms have been carried 

out. Databases such as GenBank and Uniprot support sequencing query and are applied for prediction of gene 

function of unknown key-players. However, the catabolic machinery of a complex microbial community is still 

far from being completely understood. The recent applications of cultivation-independent methods such as 

molecular meta-omics technologies (e.g. meta-barcoding, genomics, transcriptomics, proteomics and 

environmental metabolomics) can provide a deeper insight into the active microbial processes during 

hydrocarbon degradation in soils. The implementation of culture-independent methods enables further 

exploration of the environmental diversity of PAH-degrading bacteria as well as of alkane-degrading enzymes 

and RHOs. 

 

4.1 Metabarcoding and metagenomics 

Next-generation sequencing of DNA has revolutionized the study of microbial communities. Metabarcoding, a 

technology based on the amplicon sequencing of 16S rRNA gene, enabled studying the structure and diversity of 

microbial communities and may create predictive models in hydrocarbon contaminated soils (Fowler et al. 2016; 

Jiao et al. 2016; Yang et al. 2016). The output of metabarcoding analysis is a table containing the relative 

abundance of each Operational Taxonomic Unit (OTU), which represent species abundances (16S reads) in a 

community sample. Using statistical and network analysis-based tools, it is possible to compute the correlation 

coefficients among species abundances (Ma et al. 2016). In this way we may identify bacterial interactions 

(based on correlation) that possibly drive hydrocarbon degradation. This technology can also be applied to 

specific catabolic genes markers in a targeted functional gene analysis.  

Metagenomics, a technology based on shotgun sequencing, allows the study of total genomes from a 

microbial community.  The assemblage of functional groups is essential to predict for example pathways that 

mediate key reactions in the hydrocarbon biodegradation process (Duarte et al. 2017; Sharpton 2014). 

Metabarcoding and metagenomics analyses can be combined with targeted functional gene analyses to 

characterize the metabolic potential of uncultured organisms. This new technology uses labelled 13C 

hydrocarbons that can be assimilated into cellular biomass (e. g. heavy DNA) of hydrocarbon-degrading bacteria. 

The resulting labeled DNA is amplified by PCR using stable isotope probing (DNA-SIP) for further 

metabarcoding or metagenomics sequencing to retrieve the genomes of uncultured hydrocarbon degraders (Grob 

et al. 2015). Similar SIP based technologies are starting to be applied to characterize RNA (Lueders 2015) and 

proteins (Bergen et al. 2013). 

 

4.2 Metatranscriptomics 

A limitation of genetic profiling of hydrocarbon degradation is that genes can be present but not expressed. 

Metagenomics coupled with metatranscriptomics allows elucidation of the active metabolic processes by 

quantification of gene expression in an existing microbial community.  Only a few metatranscriptomics studies 

have been applied in hydrocarbon degradation in soils and sediments so far (Gonzalez et al. 2015; de Menezes et 

al. 2012; Reid et al. 2018). The studies show increases in RHO gene expression and widespread changes in the 

microbial community structure of soils contaminated with phenanthrene. (Gonzalez et al. 2015) found Bacillus 

and Klebsiella in greater abundance in trees cultivated on hydrocarbon contaminated soil. (Reid et al. 2018) 

observed abundance of alkane-degrading and RHO gene expression that suggest considerable natural 

degradation in hydrocarbon rich sediments. Although most of the dominant species were unclassified, which 
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revealed novel lineages of microbes potentially involved in hydrocarbon degradation. Furthermore, highly 

expressed sequences in their metatranscriptomic data encode proteins with still unknown function. In effect, 

metatranscriptomics requires mapping of expressed sequences to reference genomes but if absent they remain 

unexplored and vice versa (González et al. 2016; Hanson et al. 2009). Therefore, it is better to focus on the 

complete metatranscriptome of an environmental sample with the hypothesis that they serve as genetic 

fingerprints for contamination by hydrocarbons (Pérez-Pantoja & Tamames 2015). Consequently, processing 

data collected from metatranscriptomics studies may well lead to prediction of novel genes important for the 

degradation of hydrocarbons.  

 

4.3 Metaproteomics 

While proteomics has been stablished as a robust and reliable technique to study the functional network in single 

organisms, metaproteomics can be used to understand complex community interactions associated with in situ 

bioremediation of soil, but it is still in its infancy (Siggins et al. 2012). Metaproteomics analyses involves sample 

preparation, high throughput mass spectrometry analysis and bioinformatics data processing (Christie-Oleza et al. 

2015). Current bottlenecks for this technology applied to contaminated soils include: the lack of complete 

genome data for all the bacteria, the difficulty in assigning peptides that are highly conserved, the complexity of 

the peptide mixture, the size of mass spectrometer data generated, and the purification of proteins from 

contaminated soils that contain interfering humic acids. As a result, there is a small subset of the diversity of 

proteins expected in soils (Williams et al. 2010). Metaproteomics in combination with protein-stable isotope 

probing revealed enzymes for the naphthalene degradation pathway in laboratory microcosm that fail in situ 

(Herbst et al. 2013).  

 

4.4 Environmental metabolomics 

In contrast to proteomics, metabolomics focuses on identification of metabolites and serve to predict enzymatic 

activity in an individual organism. These findings may then be extrapolated to environmental metabolomics at 

the community level to study the functional potential of soils. The microbial degradation of a complex 

hydrocarbon mixtures generates mixture of oxygenated metabolites which are relatively difficult to detect. The 

identification of hydrocarbons metabolites require gas chromatography coupled with mass spectrometry and can 

be theoretically divided in targeted and untargeted approaches (Bonifay et al. 2016). Targeted analyses focus on 

a specific small number of compounds that are diagnostic for a particular pathway and the original substrate can 

be identified by the initial activation of the hydrocarbon by the oxygenase. In contrast, an untargeted metabolic 

analysis qualitatively measures generally unknown metabolites that result from all catabolic pathways in the 

microbial community (Bargiela et al. 2015). Unraveling such a metabolic fingerprint aimed at the identification 

of combined catabolic pathways is challenging and may not even be practically achievable. 

 

4.5 Systems biology modelling approaches 

Mathematical approaches are needed to get a more fundamental understanding of how microbial communities 

function (Succurro & Ebenhöh 2018; Wade et al. 2016; Xiao et al. 2017). Systems biology can integrate 

information on genes, transcripts, proteins, and interacting biological networks in single cells. This approach 

may be extended to populations and communities in order to characterize a community phenotype. Figure 4 is a 

scheme that connects different omics approaches in hydrocarbon degradation the integration of which is carried 

out with modelling approaches. For example, Ecological Regulation Analysis (ERA), is a systems biology 

approach that quantifies fluxes through a microbial network at the level of individual species or functional 

groups. Data on cells numbers of species and fluxes through those cells (e.g. substrate consumption, product 

formation or respiration) in at least two different (near) steady-state conditions enables the calculation of 

regulation coefficients of each individual species or functional groups (Röling et al. 2014b).   

Metabolic flux models investigate the functional and microbial capacity either in top-down or in bottom-up 

approaches. The top-down approach focuses on ecological significances of microbial community, where the 

species provide the building blocks for the model. They include interaction of species and metabolites, but they 

lack details at the gene level.  Conversely, the bottom-up approach focuses on metabolic pathways and 

biochemical interactions of the entire community. Those models may provide a high level of prediction, but its 

complexity is extremely challenging.  

 

Final remarks 

Although decades of microbial research into hydrocarbon degradation processes have generated a 

comprehensive overview of which hydrocarbons can be biodegraded and which bacteria and genes are involved, 

there are still many gaps in our understanding about the main drivers for degradation of hydrocarbons by the 

microbial communities. Despite novel emerging technologies, it is still difficult to develop a comprehensive 

understanding on sites contaminated by hydrocarbons whether which microbes are essential and how to enhance 
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the biodegradation.  

Based on the present review, it may be concluded that the microbial communities play a critical role in the 

cleaning up process of oil spills in soils. In order to effectively monitor, manage or stimulate a remedial strategy 

that relies on biodegradation three aspects remain essential: i) to reveal the dynamics and interaction of the 

indigenous microbial communities, ii) to detect functional metabolic capabilities to monitor and optimize 

bioremediation and iii) to provide appropriate environmental conditions. Consequently, further research is 

required to enhance these new technologies to elucidate the metabolic potential and interaction between non-

culturable bacteria specialist in hydrocarbon degradation. 
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Figure 1. Principle of aerobic degradation of hydrocarbons for growth associated processes. Adapted from 

Fritsche & Hofrichter (2000) 

Figure 2. Composition of and electron flow within a Rieske non-heme iron oxygenases. Adapted from 

Chakraborty et al. (2014). 
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Figure 3. Pathways attributed to each sub family of ring hydroxylating oxygenase (RHO) for aromatic 

hydrocarbon degradation.  i) RHO type III genes are part of operon nahABFCED that encodes six enzymes for 

the conversion of naphthalene into salicylic acid in Pseudomonas putida G. ii) RHO type IV genes are part of the 

bphABCD operon that encodes seven enzymes to transform biphenyl into catechol in Burkholderia xenovorans 

LB400. iii) RHO type V genes are present in several complex gene clusters that encode enzymes to break down 

pyrene into phthalate or gentisate in Mycobacterium PYR-1. 
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Figure 4. Flow chart of recent technologies for bioremediation of petroleum hydrocarbons and principal 

limitations. 

 

Table 1. Alkane hydroxylases in microbial communities 

Enzyme system 
Composition and 

cofactors 

Substrate 

range 
Reference 

Particulate alkane 

hydroxylases 

(pAH/AlkB) 

Membrane hydroxylase: 

binuclear iron 

Rubredoxin: iron  

Rubredoxin 

reductase: FAD, NADH 

C3 to C16 

 

Pseudomonas putida 

 (Baptist et al. 1963) 

Acinetobacter  

(Ratajczak et al. 1998) 

 Alcanivorax, Burkholderia, Mycobacterium, 

Pseudomonas and Rhodococcus  

(Beilen et al. 2003). 

Cytochrome P450 

(CYP) 

P450 oxygenase: P450 

heme  

ferredoxin: 

iron–sulfur  

ferredoxin reductase: 

FAD, NADH 

C5 to C16 

 

Acinetobacter sp.  

(Maier et al. 2001) 

Mycobacterium 

 (van Beilen et al. 2005)  

Rhodococcus  

(Sekine et al. 2006) 

 

 

Flavin-dependent 

monooxygenases 

(almA) 

 

 

 

Flavin-dependent 

monooxygenases 

(ladA) 

 

 

αβ external 
monooxygenase 

FAD  

NAD(P)H 

 

 

αβ external oxygenase 

FMN / NAD(P)H 

 

 

 

C22 to C36 

 

 

 

 

 

C15 to C36 

Acinetobacter sp.  

(Wentzel et al. 2007) 

Alcanivorax, Marinobacter,  Salinisphaera & 

Parvibaculum,  

(Wang & Shao 2012). 

Pseudomonas aeruginosa 

 (Liu et al. 2014) 

 

Geobacillus thermodenitrificans  

(Wang et al. 2006) 

Copper-containing 

monooxygenases 

(pMMO) 

αβγ hydroxylase; copper, 

iron 

Quinone reductase: FAD, 

NADH 

C1 to C5 

 

Methylococcus, Methylosinus, Methylocystis, 

Methylobacter, Methylomonas, 

Methylomicrobium 

 (McDonald et al. 2006) 

Methylocystis echinoides  

(Pieja et al. 2011) 

Soluble diiron 

monooxygenases 

(sMMO) 

α2β2γ2 hydroxylase; 
binuclear iron reductase, 

[2Fe–2S], FAD, NADH 

regulatory subunit 

C1 to C8 

 

M. capsulatus (Bath)  

(Green & Dalton 1989) 

Methylocystis sp. strain M  

(Nakajima et al. 1992), and 

M. trichosporium OB3b 

(Fox et al. 1989) 
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Table 2. Aromatic hydrocarbon degrading dioxygenases 

Enzyme 

system 

Composition 

and cofactors 
Substrate range Strain, gene and reference 

Type III 

naphthalene 

dioxygenase 

and PAH 

dioxygenases 

α3β3 

oxygenase 

FNRN-type 

reductase 

[2Fe-2S]-type 

ferredoxin 

 

Low-MW PAH 

(naphthalene, 

phenanthrene 

and anthracene) 

 

Pseudomonas sp. NCIB9816-4 (ndo)  

(Kauppi et al. 1998)  

Pseudomonas putida G7 (nah)  

(Simon et al. 1993) 

Comamonas testeroni GZ42 (phn)   

(Goyal & Zylstra 1996)  

Burkholderia sp. RP007, (phn)  

(Laurie & Lloyd-Jones 1999)  

Ralstonia sp. U2 (nag)  

(Zhou et al. 2001) 

Polaromonas naphthalenivorans CJ2 (nag)   

(Jeon et al. 2006)  

Alcaligenes faecalis AFK2 (phn)  

(Kiyohara et al. 1982) 

Acidovorax NA3 (phn)  

(Singleton et al. 2009).  

Type IV 

toluene 

dioxygenase  

and biphenyl 

dioxygenase 

 

α3β3 
oxygenase 

GR-type 

reductase 

[2Fe-2S]-type 

ferredoxin 

 

BTEX, biphenyl, 

naphthalene, 

fluorene, 

phenanthrene 

and pyrene 

Pseudomonas putida Fl (tol) 

 (Zylstra & Gibson 1989) 

Pseudomonas pseudoalcaligenes KF707(bph)  

(Furukawa & Miyazaki 1986)  

Burkholderia xenovorans. LB400 (bph)  

(Mondello 1989) 

Rhodococcus sp. RHA1 (bph)  

(Furusawa et al. 2004) 

Sphingobium yanoikuyae B1 (bph)   

(Ferraro et al. 2007)  

Sphingomonas CHY-1(bph)   

(Jakoncic et al. 2007)  

Novosphingobium pentaromativorans sp. nov.(bph)  

(Sohn et al. 2004) 

Type V 

phenanthrene 

and phthalate 

dioxygenase 

α3β3 
oxygenase, 

GR-type 

reductase 

[3Fe-4S]-type 

ferredoxin 

phenanthrene  

and high-MW 

PAH 

Nocardioides sp. KP7 (phd)  

(Saito et al. 1999) 

Mycobacterium vanbaalenii PYR-1 (pht)   

(Kim et al. 2007) 

Mycobacterium sp. (pht) 6PY1  

(Krivobok et al. 2003) 

Terrabacter sp. strain DBF63 (pht)  

(Habe et al. 2003) 

Rhodococcus sp. UW1 (pht)  

(Walter et al. 1991) 

Glossary  

Alkanes. Saturated hydrocarbons, they can be linear (n-alkanes), cyclic (cyclo-alkanes) or branched (iso-alkanes) 

(Wentzel et al. 2007)  

Biodegradation. Process by which organic substances are broken down by enzymes produced by living 

microbial organisms (mainly by aerobic bacteria but also reported under anaerobic conditions) into simpler 

substances such as carbon dioxide, water and ammonia (OECD, 1997).  

Hydroxylases. Group of enzymes that catalyze oxidation reactions in which one of the two atoms of molecular 

oxygen is incorporated into the substrate and the other is used to oxidize NADH or NADPH (Massart & 

Vercauteren 1959). 

Metatranscriptomics. Science that studies gene expression profiling of complex microbial communities within 

natural environments (Aguiar-Pulido et al. 2016).  

Metabolomics. Science of chemical processes involving metabolites, the small molecule intermediates and 

products of metabolism in a biological system (Aguiar-Pulido et al. 2016). 

Microbial communities. Multi-species assemblages, in which organisms live together in a contiguous 

environment and interact with each other (Boon et al. 2014; Konopka 2009).  

Microbial bioremediation. Technology treatment of naturally occurring organisms and their products in 
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different biotechnological applications to break down hazardous substances into less toxic or non-toxic 

substances (Vitorino & Bessa 2017)  

Petroleum hydrocarbons. Organic compounds from oil that contain only carbon and hydrogen (Atlas, 1981). 

PAHs. Polycyclic aromatic hydrocarbons are a group of chemicals that contain two or more fused aromatic rings 

in linear, angular, or cluster arrangements (Cerniglia 1992).  

Proteomics. Large-scale study of proteins in a biological system aimed at understanding of gene function 

(Pandey & Mann 2000). 

RHO and RHD. Rieske, non-heme iron-type aromatic ring-hydroxylating oxygenases are multicomponent 

enzymes that catalyze the insertion of molecular oxygen into benzene rings, a common first step in the bacterial 

degradation of aromatic compounds. They can be monooxygenases (RHO) or dioxygenases (RHD) when one or 

both atoms of dioxygen are inserted into the substrate, respectively  (Ferraro et al. 2005). 

 


