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Abstract 
Covid-19 disease is a highly infectious and contagious disease and the outbreak has caused  high mortality and 
morbidity with rates of about 5% and 0.9% it is a global pandemic requiring immediate attention,some of the 
symptoms include Anemia ,dehydration,Emaciation,weakness ,pneumonitis and Death. The etiology is covid-19 
,the problem at the moment is the lack of cure for the disease.In this study five continents where of interest  and 
they include North and South America,Europe,Africa and Asia.Data was obtained from the internet from 
worldometer.info/coronavirus/country and cases from February to 15 december 2020 were considered and 
analysed statistically using analysis of variants to determine monthly incidence and prevalence,case 
fatality,morbidity ,mortality and population at risk.The reason for this survey is to establish ways to decrease the 
high morbidity and mortality rates , reduce the devastating economic impact of this disease and increase daily 
socialization among Humans and curb hunger and boredom that covid-19 has caused.More so the  it is a global 
pandemic needing urgent attention.In conclusion the morbidity and mortality where highest in the months of July 
and October and the population at risk are 95%-98%.Prophylactic measure to help alleviate the incidence of this 
disease include daily administration of  blood tonic and ascorbic acid in their daily recommended dosages pre-
infection to enhance growth of tissues  and cellular epithelization and boost energy generation and build . 
Keywords: Anemia ,Mortality, Morbidity, Prophylaxis, Griscelli syndrome, Genome,Replicase-trypticase,MHC 
I and II, Lupus erythmatosus M and E proteins 
DOI: 10.7176/JBAH/11-4-05 
Publication date: February 28th 2021 
 
1.0 INTRODUCTON 
Statement of research problem 
i.  High Morbidity and Mortality Rates 
ii.  Devastating effect on economic development and recovery 
iii. Restricted movement and Social distancing among Human beings with a resultant boredom and subsequent 
hunger. 
iv.  Zoonotic 
Coronavirus is highly infectious and contagious disease and mode of transmission are through direct and indirect 
routes such as inhalation of contaminated aerosol and ingestion of contaminated food other modes are through 
formites.Covid -19 high mordity and mortality rates through out the world .This rates are so alarming that existence 
of the Human race is in jeopardy. 

It is so acclaimed that “a Tree cannot make an Island” we need interaction between and among ourselves for 
survival.It is therefore pertinent that businesses cannot be at a still between and among countries in order for 
economies not to go into recession, but with decrease interaction among Humans due to the Covid-19 pandemic 
most countries in the world have gone into recession with some finding it very difficult to navigate their way out. 
Boredom and it”s intricacies makes life not worth living ,what is the use of making money without been able to 
utilize it for goods and services, more so, covid 19 can be transmitted from man to animals and like-wise,  hence 
zoonotic .Most  African countries are hungry and are lagging behind in availability of animal protein and with the 
subsequent occurrence of this disease living in Africa becomes more difficult in the area of  food scarcity  and 
daily animal protein requirement. 
1.1.1  Significance of the study 
In order for the Human race not to be annihilated from the surface of Earth by Coronavirus because what started 
as an epidermic in one country  has gradually turned into a pandemic  with a lot relying on various ways and means 
of survival. It is therefore evident that Palliative and prophylactive ways need to be abruptly designed to curb the 
menace of Coronavirus. 
1.1.2 Objectives of the study 
The objective of the study are: 
1 To decrease the high morbidity and mortality rates 
2 To decrease the devastating economic effects of this disease 
3 To increase the daily socialization among Humans and curb hunger and boredom 
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2.0 LITERATURE REVIEW 
2.1.1 History of Coronavirus 
The name "coronavirus" is derived from Latin corona, meaning "crown" or "wreath", .[9][10] The name was coined 
by June Almeida and David Tyrrell who first observed and studied human coronaviruses.[11] The word was first 
used in print in 1968 by an informal group of virologists in the journal Nature to designate the new family of 
viruses.[8] The name refers to the characteristic appearance of virions (the infective form of the virus) by electron 
microscopy, which have a fringe of large, bulbous surface projections creating an image reminiscent of the solar 
corona or halo.[8][11] This morphology is created by the viral spike peplomers, which are proteins on the surface of 
the virus.[12] 

The scientific name Coronavirus was accepted as a genus name by the International Committee for the 
Nomenclature of Viruses (later renamed International Committee on Taxonomy of Viruses) in 1971.[13] As the 
number of new species increased, the genus was split into four genera, namely Alphacoronavirus, 
Betacoronavirus, Deltacoronavirus, and Gammacoronavirus in 2009.[14] The common name coronavirus is used 
to refer to any member of the subfamily Orthocoronavirinae.[5] As of 2020, 45 species are officially recognise[15 

The earliest reports of a coronavirus infection in animals occurred in the late 1920s, when an acute respiratory 
infection of domesticated chickens emerged in North America.[16] Arthur Schalk and M.C. Hawn in 1931 made 
the first detailed report which described a new respiratory infection of chickens in North Dakota. The infection of 
new-born chicks was characterized by gasping and listlessness with high mortality rates of 40–90%.[17] Leland 
David Bushnell and Carl Alfred Brandly isolated the virus that caused the infection in 1933.[18] The virus was then 
known as infectious bronchitis virus (IBV). Charles D. Hudson and Fred Robert Beaudette cultivated the virus for 
the first time in 1937.[19] The specimen came to be known as the Beaudette strain. In the late 1940s, two more 
animal coronaviruses, JHM that causes brain disease (murine encephalitis) and mouse hepatitis virus (MHV) that 
causes hepatitis in mice were discovered.[20] It was not realized at the time that these three different viruses were 
related.[21][13] 

Human coronaviruses were discovered in the 1960s[22][23] using two different methods in the United Kingdom 
and the United States.[24] E.C. Kendall, Malcolm Bynoe, and David Tyrrell working at the Common Cold Unit of 
the British Medical Research Council collected a unique common cold virus designated B814 in 1961.[25][26][27] 
The virus could not be cultivated using standard techniques which had successfully cultivated rhinoviruses, 
adenoviruses and other known common cold viruses. In 1965, Tyrrell and Bynoe successfully cultivated the novel 
virus by serially passing it through organ culture of human embryonic trachea.[28] The new cultivating method was 
introduced to the lab by Bertil Hoorn.[29] The isolated virus when intranasally inoculated into volunteers caused a 
cold and was inactivated by ether which indicated it had a lipid envelope.[25][30] Dorothy Hamre[31] and John 
Procknow at the University of Chicago isolated a novel cold from medical students in 1962. They isolated and 
grew the virus in kidney tissue culture, assigning it as 229E. The novel virus caused a cold in volunteers and was 
inactivated by ether similarly as B814.[32] 

 
Transmission electron micrograph of organ cultured coronavirus OC43 

Scottish virologist June Almeida at St. Thomas Hospital in London, collaborating with Tyrrell, compared the 
structures of IBV, B814 and 229E in 1967.[33][34] Using electron microscopy the three viruses were shown to be 
morphologically related by their general shape and distinctive club-like spikes.[35] A research group at the National 
Institute of Health the same year was able to isolate another member of this new group of viruses using organ 
culture and named one of the samples OC43 (OC for organ culture).[36] Like B814, 229E, and IBV, the novel cold 
virus OC43 had distinctive club-like spikes when observed with the electron microscope.[37][38] 

The IBV-like novel cold viruses were soon shown to be also morphologically related to the mouse hepatitis 
virus.[20] This new group of viruses were named coronaviruses after their distinctive morphological appearance.[8] 
Human coronavirus 229E and human coronavirus OC43 continued to be studied in subsequent decades.[39][40] The 
coronavirus strain B814 was lost. It is not known which present human coronavirus it was.[41] Other human 
coronaviruses have since been identified, including SARS-CoV in 2003, HCoV NL63 in 2003, HCoV HKU1 in 
2004, MERS-CoV in 2013, and SARS-CoV-2 in 2020.[42] There have also been a large number of animal 
coronaviruses identified since the 1960s.[43] 
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2.1.2 Microbiology 
Structure 

 
Cross-sectional model of a coronavirus 

Coronaviruses are large, roughly spherical particles with unique surface projections.[44] Their size is highly 
variable and generally is an average diameter of 120 nm. Extreme sizes are known from 50 to 200 nm in 
diameter.[45] The total molecular weight is on average 40,000 kDa. They are enclosed in an envelope embedded 
with a number of protein molecules.[46] The lipid bilayer envelope, membrane proteins, and nucleocapsid protect 
the virus when it is outside the host cell.[47] 

The viral envelope is made up of a lipid bilayer, in which the membrane (M), envelope (E) and spike (S) 
structural proteins are anchored.[48] The ratio of E:S:M in the lipid bilayer is approximately 1:20:300.[49] The E and 
M protein are the structural proteins that combined with the lipid bilayer shape the viral envelope and maintain its 
size.[50] S proteins are needed for interaction with the host cells. But human coronavirus NL63 is peculiar in that 
its M protein has the binding site for the host cell, and not its S protein.[51] The diameter of the envelope is 85 nm. 
The envelope of the virus in electron micrographs appears as a distinct pair of electron-dense shells (shells that are 
relatively opaque to the electron beam used to scan the virus particle).[52][50] 

The M protein is the main structural protein of the envelope that provides the overall shape and is a type III 
membrane protein. It consists of 218 to 263 amino acid residues and forms a layer of 7.8 nm thickness.[46] It has 
three domains such as a short N-terminal ectodomain, a triple-spanning transmembrane domain, and a C-terminal 
endodomain. The C-terminal domain forms a matrix-like lattice that adds to the extra-thickness of the envelope. 
Different species can have either N- or O-linked glycans in their protein amino-terminal domain. The M protein is 
crucial in the life cycle of the virus such as during assembly, budding, envelope formation, and pathogenesis.[53] 

The E proteins are minor structural proteins and highly variable in different species. There are only about 20 
E proteins in a coronavirus. They are 8.4 to 12 kDa in size and are composed of 76 to 109 amino acids.[45] They 
are integral proteins (i.e. embedded in the lipid layer) and have two domains namely transmembrane domain and 
extramembrane C-terminal domain. They are almost fully α-helical, with a single α-helical transmembrane 
domain, and form pentameric (five-molecular) ion channels in the lipid bilayer. They are responsible for virion 
assembly, intracellular trafficking and morphogenesis (budding).[46] 

 
Diagram of the genome and functional domains of the S protein for SARS-CoV and MERS-CoV 

The spikes are the most distinguishing feature of coronaviruses, and are responsible for the corona- or halo-
like surface. On average a coronavirus particle has 74 surface spikes.[54] Each spike is about 20 nm long and is 
composed of a trimer of the S protein. The S protein is in turn composed of an S1 and S2 subunit. The homotrimeric 
S protein is a class I fusion protein which mediates the receptor binding and membrane fusion between the virus 
and host cell. The S1 subunit forms the head of the spike and has the receptor binding domain (RBD). The S2 
subunit forms the stem which anchors the spike in the viral envelope and on protease activation enables fusion. 
The two subunits remain noncovalently linked as they are exposed on the viral surface, until they attach on the 
host cell membrane.[46] In a functionally active state, three S1 are attached to two S2 subunits. The subunit complex 
is split to individual subunits when the virus binds and fuses with the host cell under the action of proteases such 
as cathepsin family and transmembrane protease serine 2 (TMPRSS2) of the host cell.[55] 

S1 proteins are the most critical components in terms of infection. They are also the most variable components 
as they are responsible for host cell specificity. They possess two major domains named N-terminal domain (S1-
NTD) and C-terminal domain (S1-CTD), both of which serve as the receptor-binding domains. The NTDs 
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recognise and bind sugars on the surface of the host cell. An exception is the MHV NTD that binds to a protein 
receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). S1-CTDs are responsible for 
recognizing different protein receptors such as angiotensin-converting enzyme 2 (ACE2), aminopeptidase N 
(APN), and dipeptidyl peptidase 4 (DPP4).[46] 

A subset of coronaviruses (specifically the members of betacoronavirus subgroup A) also have a shorter 
spike-like surface protein called hemagglutinin esterase (HE).[43] The HE proteins occur as homodimers composed 
of about 400 amino acid residues and are 40 to 50 kDa in size. They appear as tiny surface projections of 5 to 7 
nm long embedded in between the spikes. They help in attachment to and detachment from the host cell.[56] 

Inside the envelope, there is the nucleocapsid, which is formed from multiple copies of the nucleocapsid (N) 
protein, which are bound to the positive-sense single-stranded RNA genome in a continuous beads-on-a-string 
type conformation.[50][57] N protein is a phosphoprotein of 43 to 50 kDa in size, and is divided into three conserved 
domains. The majority of the protein is made up of domains 1 and 2, which are typically rich in arginines and 
lysines. Domain 3 has a short carboxy terminal end and has a net negative charge due to excess of acidic over 
basic amino acid residues.[45] 
2.1.3 Genome 
 Severe acute respiratory syndrome-related coronavirus § Genome 

 
SARS-CoV genome and proteins 

Coronaviruses contain a positive-sense, single-stranded RNA genome. The genome size for coronaviruses 
ranges from 26.4 to 31.7 kilobases.[7] The genome size is one of the largest among RNA viruses. The genome has 
a 5′ methylated cap and a 3′ polyadenylated tail.[50] 

The genome organization for a coronavirus is 5′-leader-UTR-replicase (ORF1ab)-spike (S)-envelope (E)-
membrane (M)-nucleocapsid (N)-3′UTR-poly (A) tail. The open reading frames 1a and 1b, which occupy the first 
two-thirds of the genome, encode the replicase polyprotein (pp1ab). The replicase polyprotein self cleaves to form 
16 nonstructural proteins (nsp1–nsp16).[50] 

The later reading frames encode the four major structural proteins: spike, envelope, membrane, and 
nucleocapsid.[58] Interspersed between these reading frames are the reading frames for the accessory proteins. The 
number of accessory proteins and their function is unique depending on the specific coronavirus.[50] 
Replication cycle 
Cell entry 

 
The life cycle of a coronavirus 
Infection begins when the viral spike protein attaches to its complementary host cell receptor. After attachment, a 
protease of the host cell cleaves and activates the receptor-attached spike protein. Depending on the host cell 
protease available, cleavage and activation allows the virus to enter the host cell by endocytosis or direct fusion of 
the viral envelope with the host membrane.[59] 
2.1.4 Genome translation 
On entry into the host cell, the virus particle is uncoated, and its genome enters the cell cytoplasm. The coronavirus 
RNA genome has a 5′ methylated cap and a 3′ polyadenylated tail, which allows it to act like a messenger RNA 
and be directly translated by the host cell's ribosomes. The host ribosomes translate the initial overlapping open 
reading frames ORF1a and ORF1b of the virus genome into two large overlapping polyproteins, pp1a and 
pp1ab.[50] 
The larger polyprotein pp1ab is a result of a -1 ribosomal frameshift caused by a slippery sequence (UUUAAAC) 
and a downstream RNA pseudoknot at the end of open reading frame ORF1a.[60] The ribosomal frameshift allows 
for the continuous translation of ORF1a followed by ORF1b.[50] 
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The polyproteins have their own proteases, PLpro (nsp3) and 3CLpro (nsp5), which cleave the polyproteins at 
different specific sites. The cleavage of polyprotein pp1ab yields 16 nonstructural proteins (nsp1 to nsp16). Product 
proteins include various replication proteins such as RNA-dependent RNA polymerase (nsp12), RNA helicase 
(nsp13), and exoribonuclease (nsp14).[50] 
Replicase-transcriptase 

 
Replicase-transcriptase complex 
A number of the nonstructural proteins coalesce to form a multi-protein replicase-transcriptase complex. The main 
replicase-transcriptase protein is the RNA-dependent RNA polymerase (RdRp). It is directly involved in the 
replication and transcription of RNA from an RNA strand. The other nonstructural proteins in the complex assist 
in the replication and transcription process. The exoribonuclease nonstructural protein, for instance, provides extra 
fidelity to replication by providing a proofreading function which the RNA-dependent RNA polymerase lacks.[61] 
Replication – One of the main functions of the complex is to replicate the viral genome. RdRp directly mediates 
the synthesis of negative-sense genomic RNA from the positive-sense genomic RNA. This is followed by the 
replication of positive-sense genomic RNA from the negative-sense genomic RNA.[50] 

 
Transcription of nested mRNAs 

 
Nested set of subgenomic mRNAs 
Transcription – The other important function of the complex is to transcribe the viral genome. RdRp directly 
mediates the synthesis of negative-sense subgenomic RNA molecules from the positive-sense genomic RNA. This 
process is followed by the transcription of these negative-sense subgenomic RNA molecules to their corresponding 
positive-sense mRNAs.[50] The subgenomic mRNAs form a "nested set" which have a common 5'-head and 
partially duplicate 3'-end.[62] 
Recombination – The replicase-transcriptase complex is also capable of genetic recombination when at least two 
viral genomes are present in the same infected cell.[62] RNA recombination appears to be a major driving force in 
determining genetic variability within a coronavirus species, the capability of a coronavirus species to jump from 
one host to another and, infrequently, in determining the emergence of novel coronaviruses.[63] The exact 
mechanism of recombination in coronaviruses is unclear, but likely involves template switching during genome 
replication.[63] 
2.1.5 Assembly and release 
The replicated positive-sense genomic RNA becomes the genome of the progeny viruses. The mRNAs are gene 
transcripts of the last third of the virus genome after the initial overlapping reading frame. These mRNAs are 
translated by the host's ribosomes into the structural proteins and a number of accessory proteins.[50] RNA 
translation occurs inside the endoplasmic reticulum. The viral structural proteins S, E, and M move along the 
secretory pathway into the Golgi intermediate compartment. There, the M proteins direct most protein-protein 
interactions required for assembly of viruses following its binding to the nucleocapsid. Progeny viruses are then 
released from the host cell by exocytosis through secretory vesicles. Once released the viruses can infect other 
host cells.[64] 
2.1.6 Transmission 
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Infected carriers are able to shed viruses into the environment. The interaction of the coronavirus spike protein 
with its complementary cell receptor is central in determining the tissue tropism, infectivity, and species range of 
the released virus.[65][66] Coronaviruses mainly target epithelial cells.[43] They are transmitted from one host to 
another host, depending on the coronavirus species, by either an aerosol, fomite, or fecal-oral route.[67] 
Human coronaviruses infect the epithelial cells of the respiratory tract, while animal coronaviruses generally infect 
the epithelial cells of the digestive tract.[43] SARS coronavirus, for example, infects via an aerosol route,[68] the 
human epithelial cells of the lungs by binding to the angiotensin-converting enzyme 2 (ACE2) receptor.[69] 
Transmissible gastroenteritis coronavirus (TGEV) infects, via a fecal-oral route,[67] the pig epithelial cells of the 
digestive tract by binding to the alanine aminopeptidase (APN) receptor.[50] 
Classification 
 Coronaviridae. 

 
Phylogenetic tree of coronaviruses 
Coronaviruses form the subfamily Orthocoronavirinae,[3][4][5] which is one of two sub-families in the family 
Coronaviridae, order Nidovirales, and realm Riboviria.[43][70] They are divided into the four genera: 
Alphacoronavirus, Betacoronavirus, Gammacoronavirus and Deltacoronavirus. Alphacoronaviruses and 
betacoronaviruses infect mammals, while gammacoronaviruses and deltacoronaviruses primarily infect 
birds.[71][72] 

 Genus: Alphacoronavirus;[67] type species: Alphacoronavirus 1 (TGEV) 
o Species: Alphacoronavirus 1, Human coronavirus 229E, Human 

coronavirus NL63, Miniopterus bat coronavirus 1, Miniopterus bat 
coronavirus HKU8, Porcine epidemic diarrhea virus, Rhinolophus bat 
coronavirus HKU2, Scotophilus bat coronavirus 512 

 Genus Betacoronavirus;[68] type species: Murine coronavirus (MHV) 
o Species: Betacoronavirus 1 (Bovine Coronavirus, Human coronavirus 

OC43), Hedgehog coronavirus 1, Human coronavirus HKU1, Middle 
East respiratory syndrome-related coronavirus, Murine coronavirus, 
Pipistrellus bat coronavirus HKU5, Rousettus bat coronavirus HKU9, 
Severe acute respiratory syndrome-related coronavirus (SARS-CoV, 
SARS-CoV-2), Tylonycteris bat coronavirus HKU4 

 Genus Gammacoronavirus;[19] type species: Avian coronavirus (IBV) 
o Species: Avian coronavirus, Beluga whale coronavirus SW1 

 Genus Deltacoronavirus; type species: Bulbul coronavirus HKU11 
o Species: Bulbul coronavirus HKU11, Porcine coronavirus HKU15 

Origin 

 
Origins of human coronaviruses with possible intermediate hosts 

The most recent common ancestor (MRCA) of all coronaviruses is estimated to have existed as recently as 
8000 BCE, although some models place the common ancestor as far back as 55 million years or more, implying 
long term coevolution with bat and avian species.[73] The most recent common ancestor of the alphacoronavirus 
line has been placed at about 2400 BCE, of the betacoronavirus line at 3300 BCE, of the gammacoronavirus line 
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at 2800 BCE, and of the deltacoronavirus line at about 3000 BCE. Bats and birds, as warm-blooded flying 
vertebrates, are an ideal natural reservoir for the coronavirus gene pool (with bats the reservoir for 
alphacoronaviruses and betacoronavirus – and birds the reservoir for gammacoronaviruses and 
deltacoronaviruses). The large number and global range of bat and avian species that host viruses has enabled 
extensive evolution and dissemination of coronaviruses.[74] 

Many human coronaviruses have their origin in bats.[75] The human coronavirus NL63 shared a common 
ancestor with a bat coronavirus (ARCoV.2) between 1190 and 1449 CE.[76] The human coronavirus 229E shared 
a common ancestor with a bat coronavirus (GhanaGrp1 Bt CoV) between 1686 and 1800 CE.[77] More recently, 
alpaca coronavirus and human coronavirus 229E diverged sometime before 1960.[78] MERS-CoV emerged in 
humans from bats through the intermediate host of camels.[79] MERS-CoV, although related to several bat 
coronavirus species, appears to have diverged from these several centuries ago.[80] The most closely related bat 
coronavirus and SARS-CoV diverged in 1986.[81] A possible path of evolution of SARS coronavirus and keen bat 
coronaviruses is that SARS-related coronaviruses coevolved in bats for a long time. The ancestors of SARS-CoV 
first infected leaf-nose bats of the genus Hipposideridae; subsequently, they spread to horseshoe bats in the species 
Rhinolophidae, then to Asian palm civets, and finally to humans.[82][83] 

Unlike other betacoronaviruses, bovine coronavirus of the species Betacoronavirus 1 and subgenus 
Embecovirus is thought to have originated in rodents and not in bats.[75][84] In the 1790s, equine coronavirus 
diverged from the bovine coronavirus after a cross-species jump.[85] Later in the 1890s, human coronavirus OC43 
diverged from bovine coronavirus after another cross-species spillover event.[86][85] It is speculated that the flu 
pandemic of 1890 may have been caused by this spillover event, and not by the influenza virus, because of the 
related timing, neurological symptoms, and unknown causative agent of the pandemic.[87] Besides causing 
respiratory infections, human coronavirus OC43 is also suspected of playing a role in neurological diseases.[88] In 
the 1950s, the human coronavirus OC43 began to diverge into its present genotypes.[89] Phylogentically, mouse 
hepatitis virus (Murine coronavirus), which infects the mouse's liver and central nervous system,[90] is related to 
human coronavirus OC43 and bovine coronavirus. Human coronavirus HKU1, like the aforementioned viruses, 
also has its origins in rodents.[75] 
Infection in humans 

 
Illustration of SARSr-CoV virion 
Coronaviruses vary significantly in risk factor. Some can kill more than 30% of those infected, such as MERS-
CoV, and some are relatively harmless, such as the common cold.[50] Coronaviruses can cause colds with major 
symptoms, such as fever, and a sore throat from swollen adenoids.[91] Coronaviruses can cause pneumonia (either 
direct viral pneumonia or secondary bacterial pneumonia) and bronchitis (either direct viral bronchitis or secondary 
bacterial bronchitis).[92] The human coronavirus discovered in 2003, SARS-CoV, which causes severe acute 
respiratory syndrome (SARS), has a unique pathogenesis because it causes both upper and lower respiratory tract 
infections.[92] 
Six species of human coronaviruses are known, with one species subdivided into two different strains, making 
seven strains of human coronaviruses altogether. 
Four human coronaviruses produce symptoms that are generally mild: 

1. Human coronavirus OC43 (HCoV-OC43), β-CoV 
2. Human coronavirus HKU1 (HCoV-HKU1), β-CoV 
3. Human coronavirus 229E (HCoV-229E), α-CoV 
4. Human coronavirus NL63 (HCoV-NL63), α-CoV 

Three human coronaviruses produce symptoms that are potentially severe: 
1. Middle East respiratory syndrome-related coronavirus (MERS-CoV), 

β-CoV 
2. Severe acute respiratory syndrome coronavirus (SARS-CoV), β-CoV 
3. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), β-

CoV 
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Common cold 
The human coronaviruses HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63 continually circulate in 
the human population and produce the generally mild symptoms of the common cold in adults and children 
worldwide.[93] These coronaviruses cause about 15% of common colds,[94] while 40 to 50% of colds are caused by 
rhinoviruses.[95]  
Severe acute respiratory syndrome 

Characteristics of zoonotic coronavirus strains 
MERS-CoV, SARS-CoV, SARS-CoV-2, 

and related diseases 
 MERS-CoV  SARS-CoV  SARS-CoV-2  

Disease MERS  SARS  COVID-19  

Outbreaks 
2012, 2015, 
2018 

2002–2004 

2019–2020 
pandemic 

Epidemiology 

Date of first 
identified case 

June 
2012 

November 
2002 

December 
2019[99] 

Location of first 
identified case 

Jeddah, 
Saudi Arabia 

Shunde, 
China 

Wuhan, 
China 

Age average 56 44[100][a] 56[101] 

Sex ratio (M:F) 3.3:1 0.8:1[102] 1.6:1[101] 

Confirmed cases 2494 8096[103] 67,618,431[104][b] 

Deaths 858 774[103] 1,544,985[104][b] 

Case fatality rate 37% 9.2% 2.3%[104] 

Symptoms 

Fever 98% 99–100% 87.9%[105] 

Dry cough 47% 29–75% 67.7%[105] 

Dyspnea  72% 40–42% 18.6%[105] 

Diarrhea 26% 20–25% 3.7%[105] 

Sore throat 21% 13–25% 13.9%[105] 

Ventilatory use 24.5%[106] 14–20% 4.1%[107] 

In 2003, following the outbreak of severe acute respiratory syndrome (SARS) which had begun the prior year 
in Asia, and secondary cases elsewhere in the world, the World Health Organization (WHO) issued a press release 
stating that a novel coronavirus identified by a number of laboratories was the causative agent for SARS. The virus 
was officially named the SARS coronavirus (SARS-CoV). More than 8,000 people from 29 different countries 
and territories were infected, and at least 774 died.[108][69] 
Middle East respiratory syndrome (MERS) 
Middle East respiratory syndrome 
In September 2012, a new type of coronavirus was identified, initially called Novel Coronavirus 2012, and now 
officially named Middle East respiratory syndrome coronavirus (MERS-CoV).[109][110] The World Health 
Organization issued a global alert soon after.[111] The WHO update on 28 September 2012 said the virus did not 
seem to pass easily from person to person.[112] However, on 12 May 2013, a case of human-to-human transmission 
in France was confirmed by the French Ministry of Social Affairs and Health.[113] In addition, cases of human-to-
human transmission were reported by the Ministry of Health in Tunisia. Two confirmed cases involved people 
who seemed to have caught the disease from their late father, who became ill after a visit to Qatar and Saudi 
Arabia. Despite this, it appears the virus had trouble spreading from human to human, as most individuals who are 
infected do not transmit the virus.[114] By 30 October 2013, there were 124 cases and 52 deaths in Saudi Arabia.[115] 

After the Dutch Erasmus Medical Centre sequenced the virus, the virus was given a new name, Human 
Coronavirus—Erasmus Medical Centre (HCoV-EMC). The final name for the virus is Middle East respiratory 
syndrome coronavirus (MERS-CoV). The only U.S. cases (both survived) were recorded in May 2014.[116] 

In May 2015, an outbreak of MERS-CoV occurred in the Republic of Korea, when a man who had traveled 
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to the Middle East, visited four hospitals in the Seoul area to treat his illness. This caused one of the largest 
outbreaks of MERS-CoV outside the Middle East.[117] As of December 2019, 2,468 cases of MERS-CoV infection 
had been confirmed by laboratory tests, 851 of which were fatal, a mortality rate of approximately 34.5%.[118] 
2.1.8 Coronavirus disease 2019 (COVID-19) 
 Coronavirus disease 2019 
In December 2019, a pneumonia outbreak was reported in Wuhan, China.[119] On 31 December 2019, the outbreak 
was traced to a novel strain of coronavirus,[120] which was given the interim name 2019-nCoV by the World Health 
Organization (WHO),[121][122][123] later renamed SARS-CoV-2 by the International Committee on Taxonomy of 
Viruses. 

As of 8 December 2020, there have been at least 1,544,985[104] confirmed deaths and more than 67,618,431[104] 
confirmed cases in the COVID-19 pandemic. The Wuhan strain has been identified as a new strain of 
Betacoronavirus from group 2B with approximately 70% genetic similarity to the SARS-CoV.[124] The virus has a 
96% similarity to a bat coronavirus, so it is widely suspected to originate from bats as well.[125][126] The pandemic 
has resulted in travel restrictions and nationwide lockdowns in many countries. 

Infection in animals 
Coronaviruses have been recognized as causing pathological conditions in veterinary medicine since the 

1930s.[20] They infect a range of animals including swine, cattle, horses, camels, cats, dogs, rodents, birds and 
bats.[127] The majority of animal related coronaviruses infect the intestinal tract and are transmitted by a fecal-oral 
route.[128] Significant research efforts have been focused on elucidating the viral pathogenesis of these animal 
coronaviruses, especially by virologists interested in veterinary and zoonotic diseases.[129] 

Farm animals 
Coronaviruses infect domesticated birds.[130] Infectious bronchitis virus (IBV), a type of coronavirus, causes avian 
infectious bronchitis.[131] The virus is of concern to the poultry industry because of the high mortality from 
infection, its rapid spread, and its effect on production.[127] The virus affects both meat production and egg 
production and causes substantial economic loss.[132] In chickens, infectious bronchitis virus targets not only the 
respiratory tract but also the urogenital tract. The virus can spread to different organs throughout the chicken.[131] 
The virus is transmitted by aerosol and food contaminated by feces. Different vaccines against IBV exist and have 
helped to limit the spread of the virus and its variants.[127] Infectious bronchitis virus is one of a number of strains 
of the species Avian coronavirus.[133] Another strain of avian coronavirus is turkey coronavirus (TCV) which 
causes enteritis in turkeys.[127] 

Coronaviruses also affect other branches of animal husbandry such as pig farming and the cattle raising.[127] 
Swine acute diarrhea syndrome coronavirus (SADS-CoV), which is related to bat coronavirus HKU2, causes 
diarrhea in pigs.[134] Porcine epidemic diarrhea virus (PEDV) is a coronavirus that has recently emerged and 
similarly causes diarrhea in pigs.[135] Transmissible gastroenteritis virus (TGEV), which is a member of the species 
Alphacoronavirus 1,[136] is another coronavirus that causes diarrhea in young pigs.[137][138] In the cattle industry 
bovine coronavirus (BCV), which is a member of the species Betacoronavirus 1 and related to HCoV-OC43,[139] 
is responsible for severe profuse enteritis in young calves.[127] 

Domestic pets 
Coronaviruses infect domestic pets such as cats, dogs, and ferrets.[130] There are two forms of feline coronavirus 
which are both members of the species Alphacoronavirus 1.[136] Feline enteric coronavirus is a pathogen of minor 
clinical significance, but spontaneous mutation of this virus can result in feline infectious peritonitis (FIP), a 
disease with high mortality.[127] There are two different coronaviruses that infect dogs. Canine coronavirus 
(CCoV), which is a member of the species Alphacoronavirus 1,[136] causes mild gastrointestinal disease.[127] Canine 
respiratory coronavirus (CRCoV), which is a member of the species Betacoronavirus 1 and related to HCoV-
OC43,[139] cause respiratory disease.[127] Similarly, there are two types of coronavirus that infect ferrets.[140] Ferret 
enteric coronavirus causes a gastrointestinal syndrome known as epizootic catarrhal enteritis (ECE), and a more 
lethal systemic version of the virus (like FIP in cats) known as ferret systemic coronavirus (FSC).[141][142] 

Laboratory animals 
Coronaviruses infect laboratory animals.[127] Mouse hepatitis virus (MHV), which is a member of the species 
Murine coronavirus,[143] causes an epidemic murine illness with high mortality, especially among colonies of 
laboratory mice.[144] Prior to the discovery of SARS-CoV, MHV was the best-studied coronavirus both in vivo and 
in vitro as well as at the molecular level. Some strains of MHV cause a progressive demyelinating encephalitis in 
mice which has been used as a murine model for multiple sclerosis.[129] Sialodacryoadenitis virus (SDAV), which 
is a strain of the species Murine coronavirus,[143] is highly infectious coronavirus of laboratory rats, which can be 
transmitted between individuals by direct contact and indirectly by aerosol. Rabbit enteric coronavirus causes acute 
gastrointestinal disease and diarrhea in young European rabbits.[127] Mortality rates are high.[145] 
Prevention and treatment 
No vaccines existed against coronaviruses until 2020 in the midst of the COVID-19 pandemic, during which 
substantial resources were deployed to develop vaccine candidates.[146][147] Several antiviral drugs were also 
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identified during that period which are theraputic against coronavirus.[148] Previously, a number of antiviral targets 
were identified such as viral proteases, polymerases, and entry proteins. Drugs are in development which target 
these proteins and the different steps of viral replication. A number of vaccines using different methods are also 
under development for different human coronaviruses[50] 

Vaccines are available for IBV, TGEV, and Canine CoV, although their effectiveness is limited. In the case 
of outbreaks of highly contagious animal coronaviruses, such as PEDV, measures such as destruction of entire 
herds of pigs may be used to prevent transmission to other herds. 
2.1.9  Anemia 
Anemia is defined as a low number of red blood cells. In a routine blood test, anemia is reported as a low hemoglobin or 
hematocrit. Hemoglobin is the main protein in your red blood cells. It carries oxygen, and delivers it throughout your 
body. If you have anemia, your hemoglobin level will be low too. If it is low enough, your tissues or organs may not get 
enough oxygen. Symptoms of anemia -- like fatigue or shortness of breath -- happen because your organs aren't getting 
what they need to work the way they should. 

Anemia is the most common blood condition in the U.S. It affects almost 6% of the population. Women, 
young children, and people with long-term diseases are more likely to have anemia. Important things to remember 
are: 

 Certain forms of anemia are passed down through your genes, and infants may have it from birth. 
 Women are at risk of iron-deficiency anemia because of blood loss from their periods and higher blood supply 

demands during pregnancy. 
 Older adults have a greater risk of anemia because they are more likely to have kidney disease or other chronic 

medical conditions. 
There are many types of anemia. All have different causes and treatments. Some forms -- like the mild anemia 

that happens during pregnancy -- aren’t a major concern. But some types of anemia maymay reflect a serious 
underlying medical condition 
2.2.1 Anemia Symptoms 
The signs of anemia can be so mild that you might not even notice them. At a certain point, as your blood cells decrease, 
symptoms often develop. Depending on the cause of the anemia, symptoms may include: 

 Dizziness, lightheadness, or feeling like you are about to pass out 
 Fast or unusual heartbeat 
 Headache 
 Pain, including in your bones, chest, belly, and joints 
 Problems with growth, for children and teens 
 Shortness of breath 
 Skin that’s pale or yellow 
 Cold hands and feet 
 Tiredness or weakness 

2.2.2 Anemia Types and Causes 
There are more than 400 types of anemia, and they’re divided into three groups: 

 Anemia caused by blood loss 
 Anemia caused by decreased or faulty red blood cell production 
 Anemia caused by destruction of red blood cells 

2.2.3  Lupus Erythmatosus 
This is inflammatory disease where the immune system attack the body tissues of it,s own. there are four types, namely: 

- Systemic lupus erythmatosus 
- Immunologic lupus erythmatosus 
- Lupus dermatitis 
- Congenital lupus erythmatosus  

2.2.4   Histiocytosis 
In medicine, histiocytosis is an excessive number of histiocytes[1] (tissue macrophages), and the term is also often 
used to refer to a group of rare diseases which share this sign as a characteristic. Occasionally and confusingly, the 
term "histiocytosis" is sometimes used to refer to individual diseases. 
According to the Histiocytosis Association of America, 1 in 200,000 children in the United States are born with 
histiocytosis each year.[2] HAA also states that most of the people diagnosed with histiocytosis are children under 
the age of 10, although the disease can afflict adults. The disease usually occurs from birth to age 15.[3] 
Histiocytosis (and malignant histiocytosis) are both important in veterinary as well as human pathology. 
Types 
Types of LCH have also been known as "eosinophilic granuloma", "Hand-Schuller-Christian disease", "Letterer-
Siwe disease", and "histiocytosis. 
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Alternatively, histiocytoses may be divided into the following groups:[4]:714–724 
 X-type histiocytoses 
 Non-X histiocytoses 

Lymphohistiocytosis is "a widespread infiltrate of non-malignant lymphocytes and macrophages, involving 
principally the liver, spleen and central nervous system and associated with a severe lymphoid atrophy."[5] 
Diagnosis 

 
Sinus histiocytosis, a common feature in lymph node biopsies, is characterized by dilated sinuses 
containing variable numbers of histiocytes.[6] 

2.2.3 Classification 
There are competing systems for classifying histiocytoses. According to the 1999 classification proposed by the 
World Health Organization, they can be divided into three categories.[7][8] However, the classifications in ICD10 
and MeSH are slightly different, as shown below: 

Name WHO ICD10  MeSH  

Langerhans cell histiocytosis (LCH) I D76.0 Langerhans-cell histiocytosis 

Juvenile xanthogranuloma (JXG) II D76.3 non-Langerhans-cell histiocytosis 

Hemophagocytic lymphohistiocytosis (HLH) II D76.1 non-Langerhans-cell histiocytosis 

Niemann–Pick disease  II E75.2  non-Langerhans-cell histiocytosis 

Sea-blue histiocytosis II - non-Langerhans-cell histiocytosis 

Acute monocytic leukemia III C93.0 malignant histiocytic disorders 

Malignant histiocytosis  III C96.1 malignant histiocytic disorders 

Erdheim–Chester disease II C96.1 malignant histiocytic disorders 

Treatment 
 Chemotherapy 

o Cladribine (also known as 2CDA or Leustatin) 
o Etoposide 
o Vinblastine (Velban) 
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2.2.4    Hemophagocytic lymphohistiocytosis 

Hemophagocytic lymphohistiocytosis 

Other names HLH 

 

Micrograph showing red blood cells within macrophages. H&E stain. 

Hemophagocytic lymphohistiocytosis (HLH), also known as haemophagocytic lymphohistiocytosis (British 
spelling), and hemophagocytic or haemophagocytic syndrome,[1] is an uncommon hematologic disorder seen 
more often in children than in adults. It is a life-threatening disease of severe hyperinflammation caused by 
uncontrolled proliferation of activated lymphocytes and macrophages, characterised by proliferation of 
morphologically benign lymphocytes and macrophages that secrete high amounts of inflammatory cytokines. It is 
classified as one of the cytokine storm syndromes. There are inherited and non-inherited (acquired) causes of 
hemophagocytic lymphohistiocytosis (HLH). 

 
Signs and symptoms 
The onset of HLH occurs under the age of one year in approximately 70 percent of cases. Familial HLH should be 
suspected if siblings are diagnosed with HLH or if symptoms recur when therapy has been stopped. Each full 
sibling of a child with familial HLH has a twenty-five–percent chance of developing the disease, a fifty-percent 
chance of carrying the defective gene (which is very rarely associated with any risk of disease), and a twenty-five–
percent chance of not being affected and not carrying the gene defect.[citation needed] 
Patients with HLH, especially when untreated, may need intensive therapy. Therefore, HLH should be included in 
the differential diagnosis of intensive care unit patients with cytopenia and hyperferritinemia.[2] Patients in the 
earlier stages of HLH are frequently hospitalized at internal medicine wards.[3] 
HLH clinically manifests with fever, enlargement of the liver and spleen, enlarged lymph nodes, yellow 
discoloration of the skin and eyes, and a rash.[4] Laboratory findings may include elevated triglyceride levels, low 
fibrinogen levels, transaminitis, and elevated ferritin levels (among others).[4] 
 
Causes 
Primary HLH is caused by loss of function, (i.e. inactivating) mutations in genes that code for proteins cytotoxic 
T cells and NK cells use to kill targeted cells, such as those infected with pathogens like the Epstein-Barr virus 
(EBV) or the Dengue virus.[5] These mutations include those in the following genes: UNC13D, STX11, RAB27A, 
STXBP2, LYST, PRF1 1, SH2D1A, BIRC4, ITK, CD27, and MAGT1.[6] 
Secondary HLH (sHLH) is associated with, and thought to be promoted, by malignant and non-malignant diseases 
that likewise weaken the ability of the immune system ability to attack EBV-infected cells. Malignant disorders 
associated with secondary HLH include T-cell lymphoma, B-cell lymphoma, acute lymphocytic leukemia, acute 
myeloid leukemia, and myelodysplastic syndrome. Non-malignant disorders associated with secondary HLH 
include: autoimmune disorders such as juvenile idiopathic arthritis, juvenile Kawasaki disease, systemic lupus 
erythematosus, the juvenile onset and adult onset forms of Still's disease, and rheumatoid arthritis;[6] 
immunodeficiency disorders such as severe combined immunodeficiency, DiGeorge syndrome, Wiskott–Aldrich 
syndrome, ataxia–telangiectasia, and dyskeratosis congenita);[7] and infections caused by EBV, cytomegalovirus, 
HIV/AIDS, bacteria, protozoa, fungi and possibly SARS-CoV-2.[8] Secondary HLH may also result from 
iatrogenic causes such as bone marrow or other organ transplantations; chemotherapy; or therapy with 
immunosuppressing agents;[9] 
About 33% of all HLH cases, ~75% of Asian HLH cases, and nearly 100% of HLH cases caused by mutations in 
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SH2D1A (see X-linked lymphoproliferative disease type 1) are associated with, and thought triggered or promoted 
by, EBV infection. These cases of HLH are classified as belonging to the class of Epstein–Barr virus-associated 
lymphoproliferative diseases and termed EBV+ HLH.[10] 
Pathophysiology 
The underlying causes, either inherited or acquired, lead to an unchecked immune response when exposed to 
triggers. Impaired NK-cell cytotoxicity is the hallmark of HLH. All genetic defects for familial HLH are related 
to granule-dependent cytotoxicity. This inability to remove infected and antigen-presenting cells and terminate the 
immune response leads to uncontrolled proliferation and activation of the immune system with release of excessive 
cytokines. These cells then infiltrate organs, releasing more cytokines, which gives the clinical picture. The fever 
is caused by IL-1, IL-6 and TNF-alpha; the cytopenia is due to the suppressive effect on hematopoiesis by TNF-
alpha and TNF-gamma. TNF-alpha and TNF-gamma may also lead to inhibition of lipoprotein lipase or stimulate 
triglyceride synthesis. Activated macrophages secrete ferritin and plasminogen activator leading to 
hyperfibrinolysis.[11] 

 
Genetics 
Five genetic subtypes (FHL1, FHL2, FHL3, FHL4, and FHL5) are described, with an estimated overall prevalence 
of one in 50,000 and equal gender distribution. Molecular genetic testing for four of the causative genes, PRF1 
(FHL2), UNC13D (FHL3), STX11 (FHL4), and STXBP2 (FHL5), is available on a clinical basis. Symptoms of 
FHL are usually evident within the first few months of life and may even develop in utero.  
The five subtypes of FHL[12] are each associated with a specific gene: 

 FHL1: HPLH1 
 FHL2: PRF1 (Perforin) 
 FHL3: UNC13D (Munc13-4) 
 FHL4: STX11 (Syntaxin 11) 
 FHL5: STXBP2 (Syntaxin binding protein 2)/UNC18-2 

Nearly half of the cases of type 2 familial hemophagocytic lymphohistiocytosis are due to bi-allelic PRF1 
mutations.[13] 
 
Diagnosis 

 
Light microscopic image of bone marrow showing stromal macrophages containing numerous red blood cells in 
their cytoplasm 
The blood count typically shows decreased numbers of blood cells—including a decreased number of circulating 
red blood cells, white blood cells, and platelets. The bone marrow may show hemophagocytosis. The liver function 
tests are usually elevated. A low level of the protein albumin in the blood is common.[citation needed] 
The serum C reactive protein, erythrocyte sedimentation rate, and ferritin level are markedly elevated. In children, 
a ferritin above 10000 is very sensitive and specific for the diagnosis of HLH,[14] however, the diagnostic utility 
for ferritin is less for adult HLH patients.[15] 
The serum fibrinogen level is usually low and the D-dimer level is elevated. 
The sphingomyelinase is elevated.[16] 
Bone marrow biopsy shows histiocytosis.[17] 

2.2.5    Classification 
Primary HLH, also known as familial haemophagocytic lymphohistiocytosis (FHL) or familial 
erythrophagocytic lymphohistiocytosis, is a heterogeneous autosomal recessive disorder found to be more 
prevalent with parental consanguinity.[citation needed] 

Secondary haemophagocytic lymphohistiocytosis (acquired haemophagocytic lymphohistiocytosis) occurs 
after strong immunologic activation, such as that which can occur with systemic infection, immunodeficiency, or 
underlying malignancy.[citation needed] 

Both forms are characterized by the overwhelming activation of normal T lymphocytes and macrophages, 
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invariably leading to clinical and haematologic alterations and death in the absence of treatment.[citation needed] 
A subtype of primary HLH where the inflammation is limited to the central nervous system has been 

described.[18] 

2.2.6 Diagnostic criteria 
The current (2008) diagnostic criteria for HLH are[19] 
1. A molecular diagnosis consistent with HLH. These include the identification of pathologic mutations of PRF1, 
UNC13D, or STX11. 
OR 
2. Fulfillment of five out of the eight criteria below: 

 Fever (defined as a temperature >100.3 °F, >38 °C) 
 Enlargement of the spleen 
 Decreased blood cell counts affecting at least two of three lineages in the 

peripheral blood: 
o Haemoglobin <9 g/100 ml (in infants <4 weeks: haemoglobin <10 

g/100 ml) (anemia) 
o Platelets <100×109/L (thrombocytopenia) 
o Neutrophils <1×109/L (neutropenia) 

 High blood levels of triglycerides (fasting, greater than or equal to 265 
mg/100 ml) and/or decreased amounts of fibrinogen in the blood (≤ 150 
mg/100 ml) 

 Ferritin ≥ 500 ng/ml 
 Haemophagocytosis in the bone marrow, spleen or lymph nodes 
 Low or absent natural killer cell activity 
 Soluble CD25 (soluble IL-2 receptor) >2400 U/ml (or per local reference 

laboratory) 
In addition, in the case of familial HLH, no evidence of malignancy should be apparent. 

Not all five out of eight criteria are required for diagnosis of HLH in adults, and a high index of suspicion is 
required for diagnosis as delays results in increased mortality. The diagnostic criteria were developed in pediatric 
populations and have not been validated for adult HLH patients.[20] Attempts to improve diagnosis of HLH have 
included use of the HScore, which can be used to estimate an individual's risk of HLH.[21] In adults, soluble IL-2 
receptor has been found to be a very sensitive marker for HLH, demonstrating 100% sensitivity for ruling out HLH 
below a cutoff of 2400 U/mL and optimal cutoff for ruling in at 2515 U/mL (sensitivity, 100%; specificity, 72.5%), 
with 93% specificity at >10 000 U/mL.[22] 

Differential diagnosis 
The differential diagnosis of HLH includes secondary HLH and macrophage-activation syndrome or other primary 
immunodeficiencies that present with hemophagocytic lymphohistiocytosis, such as X-linked lymphoproliferative 
disease.[citation needed] 

Other conditions that may be confused with this condition include autoimmune lymphoproliferative 
syndrome.[23] As a syndrome of intense inflammation it needs to be differentiated from sepsis, what may be 
extremely challenging.[24] 

The diagnosis of acquired, or secondary, HLH is usually made in association with infection by viruses, 
bacteria, fungi, or parasites or in association with lymphoma, autoimmune disease, or metabolic disease. Acquired 
HLH may have decreased, normal, or increased NK cell activity.[citation needed] 
2.2.7   Griscelli syndrome 
A major differential diagnosis of HLH is Griscelli syndrome (type 2). This is a rare autosomal recessive disorder 
characterized by partial albinism, hepatosplenomegaly, pancytopenia, hepatitis, immunologic abnormalities, and 
lymphohistiocytosis. Most cases have been diagnosed between 4 months and 7 years of age, with a mean age of 
about 17 months.[citation needed] 

Three types of Griscelli syndrome are recognised: type 1 has neurologic symptoms and mutations in MYO5A. 
Prognosis depends on the severity of neurologic manifestations. Type 2 has mutations in RAB27A and 
haemophagocytic syndrome, with abnormal T-cell and macrophage activation. This type has a grave prognosis if 
untreated. Type 3 has mutations in melanophilin and is characterized by partial albinism. This type does not pose 
a threat to those so affected.[citation needed] 
Treatment 
In secondary cases, treatment of the cause, where possible, is indicated. Additionally, treatment for HLH itself is 
usually required. 
While optimal treatment of HLH is still being debated, current treatment regimes usually involve high dose 
corticosteroids, etoposide and cyclosporin.[citation needed] Intravenous immunoglobulin is also used. Methotrexate and 
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vincristine have also been used. Other medications include cytokine targeted therapy. 
On 20 November 2018, the FDA approved the anti-IFN-gamma monoclonal antibody emapalumab (proprietary 
name Gamifant) for the treatment of pediatric and adult primary HLH.[25] 
Prognosis 
The prognosis is guarded with an overall mortality of 50%. Poor prognostic factors included HLH associated with 
malignancy, with half the patients dying by 1.4 months compared to 22.8 months for non-tumour associated HLH 
patients.[26] 
Secondary HLH in some individuals may be self-limited because patients are able to fully recover after having 
received only supportive medical treatment (i.e., IV immunoglobulin only). However, long-term remission without 
the use of cytotoxic and immune-suppressive therapies is unlikely in the majority of adults with HLH and in those 
with involvement of the central nervous system (brain and/or spinal cord).[12] 
2.2.8 The major histocompatibility complex (MHC) 
 MHC is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell 
surface proteins essential for the adaptive immune system. This locus got its name because it was discovered in 
the study of tissue compatibility upon transplantation.[1] Later studies revealed that tissue rejection due to 
incompatibility is an experimental artifact masking the real function of MHC molecules - binding an antigen 
derived from self-proteins or from pathogen and the antigen presentation on the cell surface for recognition by the 
appropriate T-cells.[2] MHC molecules mediate interactions of leukocytes, also called white blood cells (WBCs), 
which are immune cells, with other leukocytes or with body cells. The MHC determines compatibility of donors 
for organ transplant, as well as one's susceptibility to an autoimmune disease via cross-reacting immunization. 
In a cell, protein molecules of the host's own phenotype or of other biologic entities are continually synthesized 
and degraded. Each MHC molecule on the cell surface displays a small peptide, molecular fraction of a protein, 
called an epitope.[3] The presented self-antigens prevent an organism's immune system targeting its own cells. 
Presentation of pathogen-derived proteins results in the elimination of the infected cell by the immune system. 
Diversity of antigen presentation, mediated by MHC antigens, is attained in at least three ways: (1) an organism's 
MHC repertoire is polygenic (via multiple, interacting genes); (2) MHC expression is codominant (from both sets 
of inherited alleles); (3) MHC gene variants are highly polymorphic (diversely varying from organism to organism 
within a species).[4] Sexual selection has been observed in male mice making mate choices of females with different 
MHCs and thus demonstrating sexual selection.[5] Also, at least for MHC I presentation, there has been evidence 
of antigenic peptide splicing which can combine peptides from different proteins, vastly increasing antigen 
diversity.[6] 
Discovery 
The first descriptions of the MHC were made by British immunologist Peter Gorer in 1936.[7] MHC genes were 
first identified in inbred mice strains. Clarence Little transplanted tumors across differing strains and found 
rejection of transplanted tumors according to strains of host versus donor.[8] George Snell selectively bred two 
mouse strains, attained a new strain nearly identical to one of the progenitor strains, but differing crucially in 
histocompatibility—that is, tissue compatibility upon transplantation—and thereupon identified an MHC locus.[9] 
Later Jean Dausset demonstrated the existence of MHC genes in humans and described the first human leucocyte 
antigen, the protein which we call now HLA-A2. Some years later  Baruj Benacerraf showed that polymorphic 
MHC genes not only determine an individual’s unique constitution of antigens but also regulate the interaction 
among the various cells of the immunological system. These three scientists have been awarded the 1980 Nobel 
Prize in Physiology or Medicine[10] for their discoveries concerning “genetically determined structures on the cell 
surface that regulate immunological reactions”. 
The first fully sequenced and annotated MHC was published for humans in 1999 by a consortium of sequencing 
centers from the UK, USA and Japan in Nature.[11] It was a "virtual MHC" since it was a mosaic from different 
individuals. A much shorter MHC locus from chickens was published in the same issue of Nature.[12] Many other 
species have been sequenced and the evolution of the MHC was studied, e.g. in the gray short-tailed opossum 
(Monodelphis domestica), a marsupial, MHC spans 3.95 Mb, yielding 114 genes, 87 shared with humans.[13] 
Marsupial MHC genotypic variation lies between eutherian mammals and birds, taken as the minimal MHC 
encoding, but is closer in organization to that of nonmammals. The IPD-MHC Database[14] was created which 
provides a centralised repository for sequences of the Major Histocompatibility Complex (MHC) from a number 
of different species. The database contains 77 species for the release from 2019-12-19. 
2.2.9    Genes 
The MHC locus is present in all jawed vertebrates, it is assumed to have arisen about 450 million years ago.[15] 
Despite the difference in the number of genes included in the MHC of different species, the overall organization 
of the locus is rather similar. Usual MHC contains about a hundred genes and pseudogenes, not all of them are 
involved in immunity. In humans, the MHC region occurs on chromosome 6, between the flanking genetic markers 
MOG and COL11A2 (from 6p22.1 to 6p21.3 about 29Mb to 33Mb on the hg38 assembly), and contains 224 genes 
spanning 3.6 megabase pairs (3 600 000 bases).[11] About half have known immune functions. The human MHC 
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is also called the HLA (human leukocyte antigen) complex (often just the HLA). Similarly, there is SLA (Swine 
leukocyte antigens), BoLA (Bovine leukocyte antigens), DLA for dogs, etc. However, historically, the MHC in 
mice is called the Histocompatibility system 2 or just the H-2, in rats - RT1, and in chicken - B-locus. 
The MHC gene family is divided into three subgroups: MHC class I, MHC class II, and MHC class III. Among 
all those genes present in MHC, there are two types of genes coding for the proteins MHC class I molecules and 
MHC class II molecules that directly involved in the antigen presentation. These genes are highly polymorphic, 
19031 alleles of class I HLA, and 7183 of class II HLA are deposited for human in the IMGT database.[16] 

Class Encoding Expression 

I 

(1) peptide-binding proteins, which select short sequences of 
amino acids for antigen presentation, as well as (2) molecules 
aiding antigen-processing (such as TAP and tapasin). 

One chain, called α, whose ligands are 
the CD8 receptor—borne notably by 
cytotoxic T cells—and inhibitory 
receptors borne by NK cells 

II  

(1) peptide-binding proteins and (2) proteins assisting antigen 
loading onto MHC class II's peptide-binding proteins (such as 
MHC II DM, MHC II DQ, MHC II DR, and MHC II DP). 

Two chains, called α & β, whose 
ligands are the CD4 receptors borne by 
helper T cells. 

III 

Other immune proteins, outside antigen processing and 
presentation, such as components of the complement cascade 
(e.g., C2, C4, factor B), the cytokines of immune signaling 
(e.g., TNF-α), and heat shock proteins buffering cells from 
stresses 

Various 

 2.3.1  Proteins 
MHC class I 
MHC class I molecules are expressed in all nucleated cells and also in platelets—in essence all cells but red blood 
cells. It presents epitopes to killer T cells, also called cytotoxic T lymphocytes (CTLs). A CTL expresses CD8 
receptors, in addition to T-cell receptors (TCR)s. When a CTL's CD8 receptor docks to a MHC class I molecule, 
if the CTL's TCR fits the epitope within the MHC class I molecule, the CTL triggers the cell to undergo 
programmed cell death by apoptosis. Thus, MHC class I helps mediate cellular immunity, a primary means to 
address intracellular pathogens, such as viruses and some bacteria, including bacterial L forms, bacterial genus 
Mycoplasma, and bacterial genus Rickettsia. In humans, MHC class I comprises HLA-A, HLA-B, and HLA-C 
molecules. 
The first crystal structure of Class I MHC molecule, human HLA-A2, was published in 1989.[17] The structure 
revealed that MHC-I molecules are heterodimers, they have polymorphic heavy α-subunit whose gene occurs 
inside the MHC locus and small invariant β2 microglobulin subunit whose gene is located usually outside of it. 
Polymorphic heavy chain of MHC-I molecule contains N-terminal extra-cellular region composed by three 
domains, α1, α2, and α3, transmembrane helix to hold MHC-I molecule on the cell surface and short cytoplasmic 
tail. Two domains, α1 and α2 form deep peptide-binding groove between two long α-helices and the floor of the 
groove formed by eight β-strands. Immunoglobulin-like domain α3 involved in the interaction with CD8 co-
receptor. β2 microglobulin provides stability of the complex and participates in the recognition of peptide-MHC 
class I complex by CD8 co-receptor.[18] The peptide is non-covalently bound to MHC-I, it is held by the several 
pockets on the floor of the peptide-binding groove. Amino acid side-chains that are most polymorphic in human 
alleles fill up the central and widest portion of the binding groove, while conserved side-chains are clustered at the 
narrower ends of the groove. 

 
Schematic view of MHC class I and MHC class II molecules 
Classical MHC molecules present epitopes to the TCRs of CD8+ T lymphocytes. Nonclassical molecules (MHC 
class IB) exhibit limited polymorphism, expression patterns, and presented antigens; this group is subdivided into 
a group encoded within MHC loci (e.g., HLA-E, -F, -G), as well as those not (e.g., stress ligands such as ULBPs, 
Rae1, and H60); the antigen/ligand for many of these molecules remain unknown, but they can interact with each 
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of CD8+ T cells, NKT cells, and NK cells. The evolutionary oldest nonclassical MHC class I lineage in human 
was deduced to be the lineage that includes the CD1 and PROCR (alias EPCR) molecules, and this lineage may 
have been established before the origin of tetrapod species [19]. However, the only nonclassical MHC class I lineage 
for which evidence exists that it was established before the evolutionary separation of Actinopterygii (ray-finned 
fish) and Sarcopterygii (lobe-finned fish plus tetrapods) is lineage Z of which members are found, together in each 
species with classical MHC class I, in lungfish and throughout ray-finned fishes [20]; why the Z lineage was well 
conserved in ray-finned fish but lost in tetrapods is not understood. 
2.3.2  MHC class II 
MHC class II can be conditionally expressed by all cell types, but normally occurs only on "professional" antigen-
presenting cells (APCs): macrophages, B cells, and especially dendritic cells (DCs). An APC takes up an antigenic 
protein, performs antigen processing, and returns a molecular fraction of it—a fraction termed the epitope—and 
displays it on the APC's surface coupled within an MHC class II molecule (antigen presentation). On the cell's 
surface, the epitope can be recognized by immunologic structures like T-cell receptors (TCRs). The molecular 
region which binds to the epitope is the paratope. 

On surfaces of helper T cells are CD4 receptors, as well as TCRs. When a naive helper T cell's CD4 molecule 
docks to an APC's MHC class II molecule, its TCR can meet and bind the epitope coupled within the MHC class 
II. This event primes the naive T cell. According to the local milieu, that is, the balance of cytokines secreted by 
APCs in the microenvironment, the naive helper T cell (Th0) polarizes into either a memory Th cell or an effector 
Th cell of phenotype either type 1 (Th1), type 2 (Th2), type 17 (Th17), or regulatory/suppressor (Treg), as so far 
identified, the Th cell's terminal differentiation. 

MHC class II thus mediates immunization to—or, if APCs polarize Th0 cells principally to Treg cells, immune 
tolerance of—an antigen. The polarization during primary exposure to an antigen is key in determining a number 
of chronic diseases, such as inflammatory bowel diseases and asthma, by skewing the immune response that 
memory Th cells coordinate when their memory recall is triggered upon secondary exposure to similar antigens. 
B cells express MHC class II to present antigens to Th0, but when their B cell receptors bind matching epitopes, 
interactions which are not mediated by MHC, these activated B cells secrete soluble immunoglobulins: antibody 
molecules mediating humoral immunity. 

Class II MHC molecules are also heterodimers, genes for both α and β subunits are polymorphic and located 
within MHC class II subregion. Peptide-binding groove of MHC-II molecules is forms by N-terminal domains of 
both subunits of the heterodimer, α1 and β1, unlike MHC-I molecules, where two domains of the same chain are 
involved. In addition, both subunits of MHC-II contain transmembrane helix and immunoglobulin domains α2 or 
β2 that can be recognized by CD4 co-receptors.[21] In this way MHC molecules chaperone which type of 
lymphocytes may bind to the given antigen with high affinity, since different lymphocytes express different T-
Cell Receptor (TCR) co-receptors. 

MHC class II molecules in humans have five to six isotypes. Classical molecules present peptides to CD4+ 
lymphocytes. Nonclassical molecules, accessories, with intracellular functions, are not exposed on cell 
membranes, but in internal membranes, assisting with the loading of antigenic peptides onto classic MHC class II 
molecules. The important nonclassical MHC class II molecule DM is only found from the evolutionary level of 
lungfish [22], although also in more primitive fishes both classical and nonclassical MHC class II are found [23][24]. 

Sr.No Feature[25] Class I MHC Class II MHC 

1 
Constituting polypeptide 
chains 

α chain (45KDa in humans) 
β2 chain (12 KDa in humans) 

α chain (30-34 KDa in humans) 
β chain (26-29 KDa in humans) 

2 Antigen binding domain α1and α2 domains α1 and β1 domains 

3 Binds protein antigens of 8-10 amino acids residues 13-18 amino acids residues 

4 Peptide bending cleft 
Floor formed by β sheets and 
sides by a 
helices, blocked at both the ends 

Floor formed by β sheets and sides 
by a 
helices, opened at both the ends 

5 
Antigenic peptide motifs 
involved in binding 

Anchor residues located at amino 
and 
carbon terminal ends 

Anchor residues located almost 
uniformly 
along the peptide 

6 
Presents antigenic peptide 
to 

CD8+ T cells CD4+ T cells 

2.3.3  MHC class III 
Class III molecules have physiologic roles unlike classes I and II, but are encoded between them in the short arm 
of human chromosome 6. Class III molecules include several secreted proteins with immune functions: 
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components of the complement system (such as C2, C4, and B factor), cytokines (such as TNF-α, LTA, and LTB), 
and heat shock proteins. 
Function 
MHC is the tissue-antigen that allows the immune system (more specifically T cells) to bind to, recognize, and 
tolerate itself (autorecognition). MHC is also the chaperone for intracellular peptides that are complexed with 
MHCs and presented to T cell receptors (TCRs) as potential foreign antigens. MHC interacts with TCR and its co-
receptors to optimize binding conditions for the TCR-antigen interaction, in terms of antigen binding affinity and 
specificity, and signal transduction effectiveness. 
Essentially, the MHC-peptide complex is a complex of auto-antigen/allo-antigen. Upon binding, T cells should in 
principle tolerate the auto-antigen, but activate when exposed to the allo-antigen. Disease states occur when this 
principle is disrupted. 
Antigen presentation: MHC molecules bind to both T cell receptor and CD4/CD8 co-receptors on T lymphocytes, 
and the antigen epitope held in the peptide-binding groove of the MHC molecule interacts with the variable Ig-
Like domain of the TCR to trigger T-cell activation[26] 
Autoimmune reaction: Having some MHC molecules increases the risk of autoimmune diseases more than having 
others. HLA-B27 is an example. It is unclear how exactly having the HLA-B27 tissue type increases the risk of 
ankylosing spondylitis and other associated inflammatory diseases, but mechanisms involving aberrant antigen 
presentation or T cell activation have been hypothesized. 
Tissue allorecognition: MHC molecules in complex with peptide epitopes are essentially ligands for TCRs. T cells 
become activated by binding to the peptide-binding grooves of any MHC molecule that they were not trained to 
recognize during positive selection in the thymus. 
2.3.4    Antigen processing and presentation 

 
MHC class I pathway: Proteins in the cytosol are degraded by the proteasome, liberating peptides internalized 
by TAP channel in the endoplasmic reticulum, there associating with MHC-I molecules freshly synthesized. MHC-
I/peptide complexes enter Golgi apparatus, are glycosylated, enter secretory vesicles, fuse with the cell membrane, 
and externalize on the cell membrane interacting with T lymphocytes. 
Peptides are processed and presented by two classical pathways: 
 In MHC class II, phagocytes such as macrophages and immature dendritic cells take up entities by 

phagocytosis into phagosomes—though B cells exhibit the more general endocytosis into endosomes—which 
fuse with lysosomes whose acidic enzymes cleave the uptaken protein into many different peptides. Via 
physicochemical dynamics in molecular interaction with the particular MHC class II variants borne by the 
host, encoded in the host's genome, a particular peptide exhibits immunodominance and loads onto MHC 
class II molecules. These are trafficked to and externalized on the cell surface.[27] 

 In MHC class I, any nucleated cell normally presents cytosolic peptides, mostly self peptides derived from 
protein turnover and defective ribosomal products. During viral infection, intracellular microorganism 
infection, or cancerous transformation, such proteins degraded in the proteosome are as well loaded onto 
MHC class I molecules and displayed on the cell surface. T lymphocytes can detect a peptide displayed at 
0.1%-1% of the MHC molecules. 
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Peptide binding for Class I and Class II MHC molecules, showing the binding of peptides between the alpha-
helix walls, upon a beta-sheet base. The difference in binding positions is shown. Class I primarily makes contact 
with backbone residues at the Carboxy and amino terminal regions, while Class II primarily makes contacts along 
the length of the residue backbone. The precise location of binding residues is determined by the MHC allele.[28] 

Table 2. Characteristics of the antigen processing pathways 

Characteristic MHC-I pathway MHC-II pathway 

Composition of the stable 
peptide-MHC complex 

Polymorphic chain α and β2 
microglobulin, peptide bound to α 

chain 

Polymorphic chains α and β, 
peptide binds to both 

Types of antigen-presenting cells 
(APC) 

All nucleated cells 

Dendritic cells, mononuclear 
phagocytes, B lymphocytes, some 

endothelial cells, epithelium of 
thymus 

T lymphocytes able to respond Cytotoxic T lymphocytes (CD8+) Helper T lymphocytes (CD4+) 

Origin of antigenic proteins 

cytosolic proteins (mostly 
synthetized by the cell; may also 

enter from the extracellular medium 
via phagosomes) 

Proteins present in endosomes or 
lysosomes (mostly internalized 

from extracellular medium) 

Enzymes responsible for 
peptide generation 

Cytosolic proteasome 
Proteases from endosomes and 

lysosomes (for instance, 
cathepsin) 

Location of loading the peptide 
on the MHC molecule 

Endoplasmic reticulum 

Specialized vesicular 
compartment 

Molecules implicated in 
transporting the peptides and 

loading them on the MHC 
molecules 

TAP (transporter associated with 
antigen processing) 

DM, invariant chain 

2.3.5   T lymphocyte recognition restrictions 
 MHC restriction 
In their development in the thymus, T lymphocytes are selected to recognize MHC molecules of the host, but not 
recognize other self antigens. Following selection, each T lymphocyte shows dual specificity: The TCR recognizes 
self MHC, but only non-self antigens. 
MHC restriction occurs during lymphocyte development in the thymus through a process known as positive 
selection. T cells that do not receive a positive survival signal — mediated mainly by thymic epithelial cells 
presenting self peptides bound to MHC molecules — to their TCR undergo apoptosis. Positive selection ensures 
that mature T cells can functionally recognize MHC molecules in the periphery (i.e. elsewhere in the body). 
The TCRs of T lymphocytes recognise only sequential epitopes, also called linear epitopes, of only peptides and 
only if coupled within an MHC molecule. (Antibody molecules secreted by activated B cells, though, recognize 
diverse epitopes—peptide, lipid, carbohydrate, and nucleic acid—and recognize conformational epitopes, which 
have three-dimensional structure.) 
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2.3.6    Role of Leucotrienes in airway inflammation 
IL-4      Eosinophil growth ,increase and decrease T helper cells type 2 and 1 respectively and          increase IgE. 
IL-5 Eosinophil maturation,decrease cellular apoptosis,increase IgE and t helper cells 2 
IL-10 Decrease survival of eosiniphils and TH2 and TH1 and activation of monocytes. 
IL-13 Activate Eosinophils,decrease apoptosis and increase IgE. 
IL15 Growth and differenciation of T- cells 
1L-16 Eosinophil migration and growth factor and chemotaxis of T-cells 
IL-17 T-cell proliferation,activation of fibroblast and epithelial and endothelium cells 
IL-18 Interferon−𝛾 release from TH1 cells , activation of Natural killer cells and monocytes and decrease IgE 
 INF-𝛾    Decrease in TH2 cells and Eosinophil influx after allegen,activation of endothelium and epithelium and 
also macrophages and monocytes ,decrease IgE 

 
Pleiotropic activities of T helper type 2 (Th2) cytokines in allergic asthma. Upon recognition of the antigen and 
activation by antigen presenting cells (APC), naive T-cells differentiate into Th2 cells, a process that is promoted 
by interleukin 4 (IL-4). Activated Th2 cells stimulate B cells to produce IgE antibodies in response to IL-4, and to 
a lower extend to IL-13 or IL-9. IgE binds the high affinity IgE receptor at the surface of mast cells, the 
proliferation and differentiation of which is promoted by IL-9, in synergy with other factors such as fibroblast 
derived mast cell growth factor. At contact with antigen, mast cells release the contents of their granules, including 
histamine, which will induce a bronchospasm, together with newly synthesized prostaglandins and leukotrienes 
(PGD2 and LTC4). Mast cells also release chemotactic factors that contribute to the recruitment of inflammatory 
cells, particularly eosinophils, whose proliferation and differentiation from bone marrow progenitors is promoted 
by IL-5 and IL-9. Finally, epithelial cells up regulate their production of mucus and chemokines in responses to 
Th2 cytokines such as Il-4, IL-13, and IL-9. The presence of the IL-13 receptor at the surface of smooth muscle 
cell suggests that this factor can also directly affect smooth muscle contractility, but this remains to be 
demonstrated. 
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2.3.7  Citric acid cycle 

 
Overview of the citric acid cycle 
The citric acid cycle (CAC) – also known as the TCA cycle (tricarboxylic acid cycle) or the Krebs cycle[1][2] – 
is a series of chemical reactions used by all aerobic organisms to release stored energy through the oxidation of 
acetyl-CoA derived from carbohydrates, fats, and proteins. In addition, the cycle provides precursors of certain 
amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance 
to many biochemical pathways suggests that it was one of the earliest components of metabolism and may have 
originated abiogenically.[3][4] Even though it is branded as a 'cycle', it is not necessary for metabolites to follow 
only one specific route; at least three segments of the citric acid cycle have been recognized.[5] 
The name of this metabolic pathway is derived from the citric acid (a tricarboxylic acid, often called citrate, as the 
ionized form predominates at biological pH[6]) that is consumed and then regenerated by this sequence of reactions 
to complete the cycle. The cycle consumes acetate (in the form of acetyl-CoA) and water, reduces NAD+ to NADH, 
releasing carbon dioxide. The NADH generated by the citric acid cycle is fed into the oxidative phosphorylation 
(electron transport) pathway. The net result of these two closely linked pathways is the oxidation of nutrients to 
produce usable chemical energy in the form of ATP. 
In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion. In prokaryotic cells, such as 
bacteria, which lack mitochondria, the citric acid cycle reaction sequence is performed in the cytosol with the 
proton gradient for ATP production being across the cell's surface (plasma membrane) rather than the inner 
membrane of the mitochondrion. The overall yield of energy-containing compounds from the TCA cycle is three 
NADH, one FADH2, and one GTP.[7] 

 
2.3.8    Discovery 
Several of the components and reactions of the citric acid cycle were established in the 1930s by the research of 
Albert Szent-Györgyi, who received the Nobel Prize in Physiology or Medicine in 1937 specifically for his 
discoveries pertaining to fumaric acid, a key component of the cycle.[8] He made this discovery by studying pigeon 
breast muscle. Because this tissue maintains its oxidative capacity well after breaking down in the "Latapie" mill 
and releasing in aqueous solutions, breast muscle of the pigeon was very well qualified for the study of oxidative 
reactions.[9] The citric acid cycle itself was finally identified in 1937 by Hans Adolf Krebs and William Arthur 
Johnson while at the University of Sheffield,[10] for which the former received the Nobel Prize for Physiology or 
Medicine in 1953, and for whom the cycle is sometimes named (Krebs cycle).[11] 
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2.3.9  Structure 

 
Structural diagram of acetyl-CoA: The portion in blue, on the left, is the acetyl group; the portion in black is 
coenzyme A. 
The citric acid cycle is a key metabolic pathway that connects carbohydrate, fat, and protein metabolism. The 
reactions of the cycle are carried out by eight enzymes that completely oxidize acetate (a two carbon molecule), 
in the form of acetyl-CoA, into two molecules each of carbon dioxide and water. Through catabolism of sugars, 
fats, and proteins, the two-carbon organic product acetyl-CoA (a form of acetate) is produced which enters the 
citric acid cycle. The reactions of the cycle also convert three equivalents of nicotinamide adenine dinucleotide 
(NAD+) into three equivalents of reduced NAD+ (NADH), one equivalent of flavin adenine dinucleotide (FAD) 
into one equivalent of FADH2, and one equivalent each of guanosine diphosphate (GDP) and inorganic phosphate 
(Pi) into one equivalent of guanosine triphosphate (GTP). The NADH and FADH2 generated by the citric acid 
cycle are, in turn, used by the oxidative phosphorylation pathway to generate energy-rich ATP. 
One of the primary sources of acetyl-CoA is from the breakdown of sugars by glycolysis which yield pyruvate 
that in turn is decarboxylated by the pyruvate dehydrogenase complex generating acetyl-CoA according to the 
following reaction scheme: 

CH3C(=O)C(=O)O−pyruvate + HSCoA + NAD+ → 
CH3C(=O)SCoAacetyl-CoA + NADH + CO2 

The product of this reaction, acetyl-CoA, is the starting point for the citric acid cycle. Acetyl-CoA may also be 
obtained from the oxidation of fatty acids. Below is a schematic outline of the cycle: 
 The citric acid cycle begins with the transfer of a two-carbon acetyl group from acetyl-CoA to the four-carbon 

acceptor compound (oxaloacetate) to form a six-carbon compound (citrate). 
 The citrate then goes through a series of chemical transformations, losing two carboxyl groups as CO2. The 

carbons lost as CO2 originate from what was oxaloacetate, not directly from acetyl-CoA. The carbons donated 
by acetyl-CoA become part of the oxaloacetate carbon backbone after the first turn of the citric acid cycle. 
Loss of the acetyl-CoA-donated carbons as CO2 requires several turns of the citric acid cycle. However, 
because of the role of the citric acid cycle in anabolism, they might not be lost, since many citric acid cycle 
intermediates are also used as precursors for the biosynthesis of other molecules.[12] 

 Most of the electrons made available by the oxidative steps of the cycle are transferred to NAD+, forming 
NADH. For each acetyl group that enters the citric acid cycle, three molecules of NADH are produced. The 
citric acid cycle includes a series of oxidation reduction reaction in mitochondria .[clarification needed][13] 

 In addition, electrons from the succinate oxidation step are transferred first to the FAD cofactor of succinate 
dehydrogenase, reducing it to FADH2, and eventually to ubiquinone (Q) in the mitochondrial membrane, 
reducing it to ubiquinol (QH2) which is a substrate of the electron transfer chain at the level of Complex III. 

 For every NADH and FADH2 that are produced in the citric acid cycle, 2.5 and 1.5 ATP molecules are 
generated in oxidative phosphorylation, respectively. 

 At the end of each cycle, the four-carbon oxaloacetate has been regenerated, and the cycle continues.[14]  
The theoretical maximum yield of ATP through oxidation of one molecule of glucose in glycolysis, citric acid 
cycle, and oxidative phosphorylation is 38 (assuming 3 molar equivalents of ATP per equivalent NADH and 2 
ATP per UQH2). In eukaryotes, two equivalents of NADH and four equivalents of ATP are generated in glycolysis, 
which takes place in the cytoplasm. Transport of two of these equivalents of NADH into the mitochondria 
consumes two equivalents of ATP, thus reducing the net production of ATP to 36. Furthermore, inefficiencies in 
oxidative phosphorylation due to leakage of protons across the mitochondrial membrane and slippage of the ATP 
synthase/proton pump commonly reduces the ATP yield from NADH and UQH2 to less than the theoretical 
maximum yield.[18] The observed yields are, therefore, closer to ~2.5 ATP per NADH and ~1.5 ATP per UQH2, 
further reducing the total net production of ATP to approximately 30.[19] An assessment of provides an estimate of 
29.85 ATP per glucose molecule.[20] 
2.4.1 Roles of Iron, copper and Zinc in Nutrition. 
2.4.2  Iron in Diet 
Iron is pervasive, but particularly rich sources of dietary iron include red meat, oysters, lentils, beans, poultry, fish, 
leaf vegetables, watercress, tofu, chickpeas, black-eyed peas, and blackstrap molasses.[5] Bread and breakfast 
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cereals are sometimes specifically fortified with iron.[5] 
Iron provided by dietary supplements is often found as iron(II) fumarate, although iron(II) sulfate is cheaper and 
is absorbed equally well.[135] Elemental iron, or reduced iron, despite being absorbed at only one-third to two-thirds 
the efficiency (relative to iron sulfate),[153] is often added to foods such as breakfast cereals or enriched wheat flour. 
Iron is most available to the body when chelated to amino acids[154] and is also available for use as a common iron 
supplement. Glycine, the least expensive amino acid, is most often used to produce iron glycinate supplements.[155] 
Dietary recommendations 
The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended 
Dietary Allowances (RDAs) for iron in 2001.[5] The current EAR for iron for women ages 14–18 is 7.9 mg/day, 
8.1 for ages 19–50 and 5.0 thereafter (post menopause). For men the EAR is 6.0 mg/day for ages 19 and up. The 
RDA is 15.0 mg/day for women ages 15–18, 18.0 for 19–50 and 8.0 thereafter. For men, 8.0 mg/day for ages 19 
and up. RDAs are higher than EARs so as to identify amounts that will cover people with higher than average 
requirements. RDA for pregnancy is 27 mg/day and, for lactation, 9 mg/day.[5] For children ages 1–3 years 7 
mg/day, 10 for ages 4–8 and 8 for ages 9–13. As for safety, the IOM also sets Tolerable upper intake levels (ULs) 
for vitamins and minerals when evidence is sufficient. In the case of iron the UL is set at 45 mg/day. Collectively 
the EARs, RDAs and ULs are referred to as Dietary Reference Intakes.[156] 

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference 
Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI 
and UL defined the same as in United States. For women the PRI is 13 mg/day ages 15–17 years, 16 mg/day for 
women ages 18 and up who are premenopausal and 11 mg/day postmenopausal. For pregnancy and lactation, 16 
mg/day. For men the PRI is 11 mg/day ages 15 and older. For children ages 1 to 14 the PRI increases from 7 to 11 
mg/day. The PRIs are higher than the U.S. RDAs, with the exception of pregnancy.[157] The EFSA reviewed the 
same safety question did not establish a UL.[158] 

Infants may require iron supplements if they are bottle-fed cow's milk.[159] Frequent blood donors are at risk 
of low iron levels and are often advised to supplement their iron intake.[160] 

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of 
Daily Value (%DV). For iron labeling purposes 100% of the Daily Value was 18 mg, and as of May 27, 2016 
remained unchanged at 18 mg.[161][162] Compliance with the updated labeling regulations was required by 1 January 
2020, for manufacturers with $10 million or more in annual food sales, and by 1 January 2021, for manufacturers 
with less than $10 million in annual food sales.[163][164][165] During the first six months following the 1 January 2020 
compliance date, the FDA plans to work cooperatively with manufacturers to meet the new Nutrition Facts label 
requirements and will not focus on enforcement actions regarding these requirements during that time.[163] A table 
of the old and new adult Daily Values is provided at Reference Daily Intake. 
Deficiency 
Iron deficiency 
Iron deficiency is the most common nutritional deficiency in the world.[5][166][167][168] When loss of iron is not 
adequately compensated by adequate dietary iron intake, a state of latent iron deficiency occurs, which over time 
leads to iron-deficiency anemia if left untreated, which is characterised by an insufficient number of red blood 
cells and an insufficient amount of hemoglobin.[169] Children, pre-menopausal women (women of child-bearing 
age), and people with poor diet are most susceptible to the disease. Most cases of iron-deficiency anemia are mild, 
but if not treated can cause problems like fast or irregular heartbeat, complications during pregnancy, and delayed 
growth in infants and children.[170] 
Excess 
Iron overload 
Iron uptake is tightly regulated by the human body, which has no regulated physiological means of excreting iron. 
Only small amounts of iron are lost daily due to mucosal and skin epithelial cell sloughing, so control of iron levels 
is primarily accomplished by regulating uptake.[171] Regulation of iron uptake is impaired in some people as a 
result of a genetic defect that maps to the HLA-H gene region on chromosome 6 and leads to abnormally low 
levels of hepcidin, a key regulator of the entry of iron into the circulatory system in mammals.[172] In these people, 
excessive iron intake can result in iron overload disorders, known medically as hemochromatosis.[5] Many people 
have an undiagnosed genetic susceptibility to iron overload, and are not aware of a family history of the problem.  
Overdoses of ingested iron can cause excessive levels of free iron in the blood. High blood levels of free ferrous 
iron react with peroxides to produce highly reactive free radicals that can damage DNA, proteins, lipids, and other 
cellular components. Iron toxicity occurs when the cell contains free iron, which generally occurs when iron levels 
exceed the availability of transferrin to bind the iron. Damage to the cells of the gastrointestinal tract can also 
prevent them from regulating iron absorption, leading to further increases in blood levels. Iron typically damages 
cells in the heart, liver and elsewhere, causing adverse effects that include coma, metabolic acidosis, shock, liver 
failure, coagulopathy, adult respiratory distress syndrome, long-term organ damage, and even death.[174] Humans 
experience iron toxicity when the iron exceeds 20 milligrams for every kilogram of body mass; 60 milligrams per 
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kilogram is considered a lethal dose.[175] Overconsumption of iron, often the result of children eating large 
quantities of ferrous sulfate tablets intended for adult consumption, is one of the most common toxicological causes 
of death in children under six.[175] The Dietary Reference Intake (DRI) sets the Tolerable Upper Intake Level (UL) 
for adults at 45 mg/day. For children under fourteen years old the UL is 40 mg/day.[176] 
The medical management of iron toxicity is complicated, and can include use of a specific chelating agent called 
deferoxamine to bind and expel excess iron from the body.[174][177][178] 
COPPER 
Copper is an essential trace element in plants and animals, but not all microorganisms. The human body contains 
copper at a level of about 1.4 to 2.1 mg per kg of body mass.[149] 
Absorption 
Copper is absorbed in the gut, then transported to the liver bound to albumin.[150] After processing in the liver, 
copper is distributed to other tissues in a second phase, which involves the protein ceruloplasmin, carrying the 
majority of copper in blood. Ceruloplasmin also carries the copper that is excreted in milk, and is particularly well-
absorbed as a copper source.[151] Copper in the body normally undergoes enterohepatic circulation (about 5 mg a 
day, vs. about 1 mg per day absorbed in the diet and excreted from the body), and the body is able to excrete some 
excess copper, if needed, via bile, which carries some copper out of the liver that is not then reabsorbed by the 
intestine.[152][153] 
Dietary recommendations 
The U.S. Institute of Medicine (IOM) updated the estimated average requirements (EARs) and recommended 
dietary allowances (RDAs) for copper in 2001. If there is not sufficient information to establish EARs and RDAs, 
an estimate designated Adequate Intake (AI) is used instead. The AIs for copper are: 200 μg of copper for 0–6-
month-old males and females, and 220 μg of copper for 7–12-month-old males and females. For both sexes, the 
RDAs for copper are: 340 μg of copper for 1–3 years old, 440 μg of copper for 4–8 years old, 700 μg of copper 
for 9–13 years old, 890 μg of copper for 14–18 years old and 900 μg of copper for ages 19 years and older. For 
pregnancy, 1,000 μg. For lactation, 1,300 μg.[154] As for safety, the IOM also sets Tolerable upper intake levels 
(ULs) for vitamins and minerals when evidence is sufficient. In the case of copper the UL is set at 10 mg/day. 
Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes.[155] 

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference 
Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI 
and UL defined the same as in United States. For women and men ages 18 and older the AIs are set at 1.3 and 1.6 
mg/day, respectively. AIs for pregnancy and lactation is 1.5 mg/day. For children ages 1–17 years the AIs increase 
with age from 0.7 to 1.3 mg/day. These AIs are higher than the U.S. RDAs.[156] The European Food Safety 
Authority reviewed the same safety question and set its UL at 5 mg/day, which is half the U.S. value.[157] 

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of 
Daily Value (%DV). For copper labeling purposes 100% of the Daily Value was 2.0 mg, but as of May 27, 2016 
it was revised to 0.9 mg to bring it into agreement with the RDA.[158][159] Compliance with the updated labeling 
regulations was required by 1 January 2020, for manufacturers with $10 million or more in annual food sales, and 
by 1 January 2021, for manufacturers with less than $10 million in annual food sales.[160][161][162] During the first 
six months following the 1 January 2020 compliance date, the FDA plans to work cooperatively with 
manufacturers to meet the new Nutrition Facts label requirements and will not focus on enforcement actions 
regarding these requirements during that time.[160] A table of the old and new adult Daily Values is provided at 
Reference Daily Intake. 
Deficiency 
Because of its role in facilitating iron uptake, copper deficiency can produce anemia-like symptoms, neutropenia, 
bone abnormalities, hypopigmentation, impaired growth, increased incidence of infections, osteoporosis, 
hyperthyroidism, and abnormalities in glucose and cholesterol metabolism. Conversely, Wilson's disease causes 
an accumulation of copper in body tissues. 

Severe deficiency can be found by testing for low plasma or serum copper levels, low ceruloplasmin, and low 
red blood cell superoxide dismutase levels; these are not sensitive to marginal copper status. The "cytochrome c 
oxidase activity of leucocytes and platelets" has been stated as another factor in deficiency, but the results have 
not been confirmed by replication.[163] 

Toxicity 
Copper toxicity 
Gram quantities of various copper salts have been taken in suicide attempts and produced acute copper toxicity in 
humans, possibly due to redox cycling and the generation of reactive oxygen species that damage DNA.[164][165] 
Corresponding amounts of copper salts (30 mg/kg) are toxic in animals.[166] A minimum dietary value for healthy 
growth in rabbits has been reported to be at least 3 ppm in the diet.[167] However, higher concentrations of copper 
(100 ppm, 200 ppm, or 500 ppm) in the diet of rabbits may favorably influence feed conversion efficiency, growth 
rates, and carcass dressing percentages.[168] 
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Chronic copper toxicity does not normally occur in humans because of transport systems that regulate 
absorption and excretion. Autosomal recessive mutations in copper transport proteins can disable these systems, 
leading to Wilson's disease with copper accumulation and cirrhosis of the liver in persons who have inherited two 
defective genes.[149] 

Elevated copper levels have also been linked to worsening symptoms of Alzheimer's disease.[169][170] 
Human exposure 
In the US, the Occupational Safety and Health Administration (OSHA) has designated a permissible exposure 
limit (PEL) for copper dust and fumes in the workplace as a time-weighted average (TWA) of 1 mg/m3.[171] The 
National Institute for Occupational Safety and Health (NIOSH) has set a Recommended exposure limit (REL) of 
1 mg/m3, time-weighted average. The IDLH (immediately dangerous to life and health) value is 100 mg/m3.[172] 

Copper is a constituent of tobacco smoke.[173][174] The tobacco plant readily absorbs and accumulates heavy 
metals, such as copper from the surrounding soil into its leaves. These are readily absorbed into the user's body 
following smoke inhalation.[175]  
ZINC 
Nutrition 
Dietary recommendation 
The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended 
Dietary Allowances (RDAs) for zinc in 2001. The current EARs for zinc for women and men ages 14 and up is 
6.8 and 9.4 mg/day, respectively. The RDAs are 8 and 11 mg/day. RDAs are higher than EARs so as to identify 
amounts that will cover people with higher than average requirements. RDA for pregnancy is 11 mg/day. RDA 
for lactation is 12 mg/day. For infants up to 12 months the RDA is 3 mg/day. For children ages 1–13 years the 
RDA increases with age from 3 to 8 mg/day. As for safety, the IOM sets Tolerable upper intake levels (ULs) for 
vitamins and minerals when evidence is sufficient. In the case of zinc the adult UL is 40 mg/day (lower for 
children). Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).[186] 

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference 
Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI 
and UL are defined the same as in the United States. For people ages 18 and older the PRI calculations are complex, 
as the EFSA has set higher and higher values as the phytate content of the diet increases. For women, PRIs increase 
from 7.5 to 12.7 mg/day as phytate intake increases from 300 to 1200 mg/day; for men the range is 9.4 to 16.3 
mg/day. These PRIs are higher than the U.S. RDAs.[204] The EFSA reviewed the same safety question and set its 
UL at 25 mg/day, which is much lower than the U.S. value.[205] 

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of 
Daily Value (%DV). For zinc labeling purposes 100% of the Daily Value was 15 mg, but on May 27, 2016 it was 
revised to 11 mg.[206][207] Compliance with the updated labeling regulations was required by 1 January 2020, for 
manufacturers with $10 million or more in annual food sales, and by 1 January 2021, for manufacturers with less 
than $10 million in annual food sales.[208][209][210] During the first six months following the 1 January 2020 
compliance date, the FDA plans to work cooperatively with manufacturers to meet the new Nutrition Facts label 
requirements and will not focus on enforcement actions regarding these requirements during that time.[208] A table 
of the old and new adult Daily Values is provided at Reference Daily Intake. 
Dietary intake 
Foods and spices containing zinc 
Animal products such as meat, fish, shellfish, fowl, eggs, and dairy contain zinc. The concentration of zinc in 
plants varies with the level in the soil. With adequate zinc in the soil, the food plants that contain the most zinc are 
wheat (germ and bran) and various seeds, including sesame, poppy, alfalfa, celery, and mustard.[211] Zinc is also 
found in beans, nuts, almonds, whole grains, pumpkin seeds, sunflower seeds, and blackcurrant.[212] Plant phytates 
are particularly found in pulses and cereals and interfere with zinc absorption. 

Other sources include fortified food and dietary supplements in various forms. A 1998 review concluded that 
zinc oxide, one of the most common supplements in the United States, and zinc carbonate are nearly insoluble and 
poorly absorbed in the body.[213] This review cited studies that found lower plasma zinc concentrations in the 
subjects who consumed zinc oxide and zinc carbonate than in those who took zinc acetate and sulfate salts.[213] For 
fortification, however, a 2003 review recommended cereals (containing zinc oxide) as a cheap, stable source that 
is as easily absorbed as the more expensive forms.[214] A 2005 study found that various compounds of zinc, 
including oxide and sulfate, did not show statistically significant differences in absorption when added as 
fortificants to maize tortillas.[215] 

Deficiency 
Zinc deficiency 
Nearly two billion people in the developing world are deficient in zinc. Groups at risk include children in 
developing countries and elderly with chronic illnesses.[10] In children, it causes an increase in infection and 
diarrhea and contributes to the death of about 800,000 children worldwide per year.[9] The World Health 
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Organization advocates zinc supplementation for severe malnutrition and diarrhea.[216] Zinc supplements help 
prevent disease and reduce mortality, especially among children with low birth weight or stunted growth.[216] 
However, zinc supplements should not be administered alone, because many in the developing world have several 
deficiencies, and zinc interacts with other micronutrients.[217] While zinc deficiency is usually due to insufficient 
dietary intake, it can be associated with malabsorption, acrodermatitis enteropathica, chronic liver disease, chronic 
renal disease, sickle cell disease, diabetes, malignancy, and other chronic illnesses.[10] 

In the United States, a federal survey of food consumption determined that for women and men over the age 
of 19, average consumption was 9.7 and 14.2 mg/day, respectively. For women, 17% consumed less than the EAR, 
for men 11%. The percentages below EAR increased with age.[218] The most recent published update of the survey 
(NHANES 2013–2014) reported lower averages – 9.3 and 13.2 mg/day – again with intake decreasing with age.[219] 
Symptoms of mild zinc deficiency are diverse.[186] Clinical outcomes include depressed growth, diarrhea, 
impotence and delayed sexual maturation, alopecia, eye and skin lesions, impaired appetite, altered cognition, 
impaired immune functions, defects in carbohydrate utilization, and reproductive teratogenesis.[186] Zinc 
deficiency depresses immunity,[220] but excessive zinc does also.[176] 

Despite some concerns,[221] western vegetarians and vegans do not suffer any more from overt zinc deficiency 
than meat-eaters.[222] Major plant sources of zinc include cooked dried beans, sea vegetables, fortified cereals, soy 
foods, nuts, peas, and seeds.[221] However, phytates in many whole-grains and fibers may interfere with zinc 
absorption and marginal zinc intake has poorly understood effects. The zinc chelator phytate, found in seeds and 
cereal bran, can contribute to zinc malabsorption.[10] Some evidence suggests that more than the US RDA (8 
mg/day for adult women; 11 mg/day for adult men) may be needed in those whose diet is high in phytates, such 
as some vegetarians.[221] The European Food Safety Authority (EFSA) guidelines attempt to compensate for this 
by recommending higher zinc intake when dietary phytate intake is greater.[204] These considerations must be 
balanced against the paucity of adequate zinc biomarkers, and the most widely used indicator, plasma zinc, has 
poor sensitivity and specificity.[223] 
 Zinc toxicity 

Although zinc is an essential requirement for good health, excess zinc can be harmful. Excessive absorption 
of zinc suppresses copper and iron absorption.[199] The free zinc ion in solution is highly toxic to plants, 
invertebrates, and even vertebrate fish.[226] The Free Ion Activity Model is well-established in the literature, and 
shows that just micromolar amounts of the free ion kills some organisms. A recent example showed 6 micromolar 
killing 93% of all Daphnia in water.[227] 

The free zinc ion is a powerful Lewis acid up to the point of being corrosive. Stomach acid contains 
hydrochloric acid, in which metallic zinc dissolves readily to give corrosive zinc chloride. Swallowing a post-1982 
American one cent piece (97.5% zinc) can cause damage to the stomach lining through the high solubility of the 
zinc ion in the acidic stomach.[228] 

Evidence shows that people taking 100–300 mg of zinc daily may suffer induced copper deficiency. A 2007 
trial observed that elderly men taking 80 mg daily were hospitalized for urinary complications more often than 
those taking a placebo.[229] Levels of 100–300 mg may interfere with the utilization of copper and iron or adversely 
affect cholesterol.[199] Zinc in excess of 500 ppm in soil interferes with the plant absorption of other essential 
metals, such as iron and manganese.[100] A condition called the zinc shakes or "zinc chills" can be induced by 
inhalation of zinc fumes while brazing or welding galvanized materials.[131] Zinc is a common ingredient of denture 
cream which may contain between 17 and 38 mg of zinc per gram. Disability and even deaths from excessive use 
of these products have been claimed.[230] 

The U.S. Food and Drug Administration (FDA) states that zinc damages nerve receptors in the nose, causing 
anosmia. Reports of anosmia were also observed in the 1930s when zinc preparations were used in a failed attempt 
to prevent polio infections.[231] On June 16, 2009, the FDA ordered removal of zinc-based intranasal cold products 
from store shelves. The FDA said the loss of smell can be life-threatening because people with impaired smell 
cannot detect leaking gas or smoke, and cannot tell if food has spoiled before they eat it.[232] 

Recent research suggests that the topical antimicrobial zinc pyrithione is a potent heat shock response inducer 
that may impair genomic integrity with induction of PARP-dependent energy crisis in cultured human 
keratinocytes and melanocytes.[233] 

In 1982, the US Mint began minting pennies coated in copper but containing primarily zinc. Zinc pennies 
pose a risk of zinc toxicosis, which can be fatal. One reported case of chronic ingestion of 425 pennies (over 1 kg 
of zinc) resulted in death due to gastrointestinal bacterial and fungal sepsis. Another patient who ingested 12 grams 
of zinc showed only lethargy and ataxia (gross lack of coordination of muscle movements).[234] Several other cases 
have been reported of humans suffering zinc intoxication by the ingestion of zinc coins.[235][236] 

Pennies and other small coins are sometimes ingested by dogs, requiring veterinary removal of the foreign 
objects. The zinc content of some coins can cause zinc toxicity, commonly fatal in dogs through severe hemolytic 
anemia and liver or kidney damage; vomiting and diarrhea are possible symptoms.[237] Zinc is highly toxic in 
parrots and poisoning can often be fatal.[238] The consumption of fruit juices stored in galvanized cans has resulted 
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in mass parrot poisonings with zinc.[57] 
 
3.0   MATERIALS  AND METHOD 
3.1.Experimental design 
Data on covid 19 disease was collected on the internet Worldometer.info/coronavirus/country and data was 
obtained from February to December 15 2020 and Five continents were of interest namely North America, South 
America ,Europe, Asia and Africa and main countries of interest where United states of America, France,United 
Kingdom, China,Brazil and Nigeria. The countries were chosen as case study because of their gross domestic 
product(GDP) and World trade with other Countries and also according to how developed or underdeveloped they 
were.The population per country, incident rates and death associated with each  were reviewed.The United state 
of America had an incident rate of 1,7143942 and France,UK,China,Brazil and Nigeria had 
2391447,1888116,8681821,6974258 and 174132 respectively between February and  15 December 
2020.Mortality rates were alarming for these countries ,which is the major concern the U.S.A had 311073 and 
France,UK,China and Nigeria had 59072,64905, 182854,4634 and 1200   respectively.   
Data was analysed statistically using Analysis of variants,  tables were used to determine percentage  monthly 
incidence, prevalence, morbidity, fatality, mortality rates and population at risk. 
 
4.0  RESULT AND DISCUSSION 
4.1  Result 
 Table I Prevalence rates of Covid 19 in selected countries from February to December 15   2020. 

 USA FRANCE UK CHINA BRAZIL NIGERIA 
FEBRUARY 68 100 23 79824 2 0 
MARCH 197844 52128 22792 81554 5717 135 
APRIL 1108447 129581 155151 82862 85380 627 
MAY 1863739 151753 248925 83001 10162 10162 
JUNE 2747901 164801 283253 83531 25694 25694 
JULY 4766320 187919 303101 84292 45151 45151 
AUGUST 6291051 281025 335873 85048 54008 54008 
SEPTEMBER 7513080 563535 465125 85048 58848 58848 
OCTOBER  9461184 1367625 1011660 85973 62855 62855 
NOVEMBER 13965693 2222488 1629656 85973 67557 67557 
DECEMBER 17143942 2391447 1888116 86758 74132 74132 
       

Source: http;/www.Worldometer.info/coronavirus. 
 
Table II    Percentage population at risk. 

 Total population Prevalence rate Mortality rate Population at Risk 
USA 331891557 17143942 31103 95% 
FRANCE  65339853 2391447 59072 97% 
UK 68049406 1888116 64905 98% 
CHINA 1439323776 8681821 4634 96% 
BRAZIL 213312046 6974258 182854 98% 
NIGERIA 180000000 74132 1200 96% 
     

 
Table III   showing fatality, morbidity and mortality rates in percentages 

 Morbidity rate % Mortality  rate % Fatality rate % 
USA 5.17 0.01 0.18 
FRANCE 3.66 0.9 2.47 
UK 2.77 0.1 3.43 
CHINA 0.006 0.0001 0.05 
BRAZIL 3.26 0.09 2.62 
NIGERIA 0.04 0.0006 1.21 
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Table IV showing incident rates per month from February to December 15 2020 
 USA France UK China Brazil Nigeria 
February 197776 52028 22769 1730 5715 134 
March 910603 77453 132359 1308 79663 492 
April 755292 22172 90774 139 429469 1305 
May 884162 13048 34328 530 893636 8230 
June 2018419 23118 19928 761 1257813 15532 
July 1524731 93106 32692 756 1244603 17457 
August 1222029 282510 129252 0 902685 10857 
September 1948104 804090 546535 925 722019 4840 
October 4504509 854863 617996 0 800673 4005 
November 3178249 168959 258460 785 637980 4704 

 
4.3 Discussion 
Table I shows the beginning of infection in the month of February with China having the highest prevalence due 
to the fact that the first case of  covid 19 was found there but in the month of March the Prevalence of USA became 
more than that of China.Incidence  of this disease has been on the rise till date and it is accompanied by high 
Mortality. 

Table II shows that in the countries in this study ,the population at risk of contacting the disease is 95% to 
98%, this is not a good sign and so warrants urgent measures to curb the menace of this disease because the rate 
of infection is high. 

Table III shows that fatality and mortality of the disease may seem low in most countries  but the disease is 
highly infectious and contagious ,it is  very risky not to quickly devise measures of tackling this disease . Mortality 
has been on the increase in USA, France , UK and Brazil with values of 0.01%,0.9% , 0.1% and 0.09% respectively 
and the fatality rates were on the increase most especially in UK ,France , USA  and Brazil with values of 
3.43%,2.47%, 0.18% and 2.62% respectively.  

Table IV showing the incident rates per month and in the month of February, USA, France , UK 
and Brazil  had relatively low rates but in the month of July and  October the incident rates for the five 

countries increased significantly. It was an intriguing to find that in the months of August and October China had 
no incidents.  The incident rate in Brazil in the month of June was very high .The data was not truly representative. 

Among Clinical signs observed included Anemia,Dyspnea,hypoxia and cellular and tissue degradation which 
are the major problems .Anemia was megaloblstic, hemolyitic and hemorrhagic and whole blood was lost through 
petechial  hemorrhages as a result of Lupus dermatitis and immunologic lupus erythmatosus due to the host 
immune responses to the viral attack. Secondarily, signs of anemia such as dyspnea, edema and dehydration were 
noticed. 

Dehydration and Low packed cell volume indicated the inability of tissues to utilize oxygen and hypoxia 
produces decrease energy resulting in cell membrane depolarization and tissue necrosis,which in effect results in 
cellular and tissue degradation. Anemia observed was firstly Normocytic normochromic and later in late stages of 
the  infection becoming Macrocytic hypochromic anemia,due to the failure of the bone marrow to produce 
sufficient viable red blood cells into peripheral circulation and emaciation seen was as a result of dehydration and 
anorexia. 

Pathologic findings in some of the vital organs such as the Lung ,Liver ,spleen and heart include necrosis and 
degeneration, edema,petechial hemorrhages , hypertrophy .This is so because of the decrease blood volume and 
cells and a decrease in peripheral circulation due to pooling of blood into the heart resulting in edema of the 
extremities especially the legs a phenomenon which is associated with Systemic lupus erythmatosus. Degeneration 
of  the organs result in loss of function for example the liver no  longer metabolise  glucose nor store it and as we 
know glucose is essential for energy production the splenic pulps do not produce red blood cells anymore, and 
with depression of the bone marrow oxygen tissue supply is decreased,Lungs are pneumonic and there maybe 
Bronchopneumonia ,interstitial or embolic pneumonia depending on duration of disease, Patients in most cases 
suffer cardiogenic , anaphylactic and hypovolemic shock, dyspnea (gasping for oxygen) and/ or hypoxia result in 
tissue necrosis and degeneration,loss of function of organs and apoptosis(cell death). 

 
4.4 CONCLUSION 
Anemia, hypoxia and tissue death and dehydration are the major threat in this disease 
Dehydration as a result of fluid and electrolyte loss which makes  packed cell volume appear normal but in actual 
sense there is hemoconcentration leading to a false representation of blood picture. 

Whole Blood, electrolyte fluid therapy and  administration of oxygen might not help much because they do 
not tackle the underlying cause which is the disease.  
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Prophylactically, to prevent covid 19 daily intake of blood tonic and ascorbic acid at required  at 
recommended daily doses are measures which should be tried experimentally pre-infection to encourage tissue 
growth and re-epithelisation and also  to help hasten maturity of the blood cells  and  improve  their immune 
mechanism ,more so ascorbic acid can help a lot in the area of energy generation and build by maintaining and 
improving transmembrane  permeability and action potential to prevent  tissue and cellular degradation by 
histiocytes. 
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