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Abstract 

Due to its overreliance on rainfed agriculture, Zambia’s agricultural sector is vulnerable to climatic risks. Although 
researchers have recommended Climate-Smart Agriculture innovations as an effective panacea to the problem, 
there is a nascent empirical literature supporting how seasonal climate forecast use informs the adoption of these 
innovations. Therefore, this study aimed to address this gap. Using the Multivariate Probit (MVP) estimation 
framework, the results indicate that these innovations are complementary. Additionally, demographic factors, such 
as household member size, age, and education, influenced adoption decisions. Other factors that have a positive 
impact on innovation uptake include social networking, financial inclusion, and access to extension services. 
Geographical and climate considerations were pivotal in shaping adoption decisions, as demonstrated by the 
differences in agroecological zones and climate variability, which influenced the suitability of different innovations. 
A shared observation of this study is that seasonal climate forecasts and financial incentives positively impact 
adoption. We contribute to an enhanced understanding of the factors that drive the adoption of these agricultural 
innovations in Zambia. In addition, the findings will inform policymakers on implementing policies geared 
towards interventions that encourage farmers to use complimentary portfolios through training and education 
programs, social networking, information dissemination, and financial inclusion. 
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1. Introduction 

Now more than ever, climate variability and change have severely affected agriculture and rural livelihoods across 
low and middle-income countries (LMICs), especially in Africa (Mulungu et al., 2021; Serdeczny et al., 2017). 
This is attributed to smallholder farmers’ reliance on rainfed agriculture, low welfare levels, poor institutional 
arrangements, and a lack of early warning systems, making it challenging to manage extreme weather outcomes 
(Lohmann & Lechtenfeld, 2015; Nguyen et al., 2018; Trisos et al., 2022). With over 55% of the labor force 
absorbed in agriculture, rural livelihoods remain threatened (Trisos et al., 2022). Thus, providing climate 
information (CI), such as demand-driven seasonal climate forecasts, could assist smallholder farmers in responding 
to climate risks and curb food and nutrition insecurity more effectively (Zougmoré & Ndiaye, 2015). Climate 
information is a catalyst in promoting the adoption of climate smart agricultural practices which offer long term 
solutions for enhancing agricultural sustainability and food security under changing climate (Li et al., 2023). 

In Zambia, Clarkson et al. (2021) observed that the country’s demand for climate information is growing, as it 
underscores the importance of long-term planning and addressing immediate concerns. Through the Zambia 
Meteorological Department (ZMD) and other private partners, smallholder farmers in the country are empowered 
with access to real-time climate information to reduce their reliance on indigenous knowledge of weather 
forecasting, which is unreliable. This practice is envisioned to reduce farmers’ welfare and resilience, and in the 
long run achieve sustainable development as accorded by Sustainable Development Goals one, two, eight, nine, 
and thirteen that address poverty, hunger, economic growth, innovation, and climate change, respectively (UNDP, 
2020). Carr and Onzere (2017) noted that climate information services (CIS) have enormous potential to halt the 
damaging effects of climate variability and reduce vulnerability in rural farming communities. Additionally, Trisos 
et al. (2022) opine that demand-driven CIS, along with climate literacy, would foster households’ decisions to 
respond to climate-induced risks by adopting climate-smart practices that would enhance the farmer’s capacity to 
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adapt to climate threats and smoothen their farm operations (Partey et al., 2020).  

Providing accurate and precise climate information reduces the exposure and vulnerability of farming communities 
to extreme incidences of climate variability (Agyekum et al., 2022). Much as the country has demonstrated the 
relevance of providing climate information to farming communities, deep rooted technological and managerial 
aspects constrain Zambia’s efforts. IFPRI (2023) notes challenges such as inadequate hydro-metrological 
infrastructure, funding limitations, limited technical and technological capacities, and low integration of climate 
change in key sectors. 

The benefits of CI have been well-documented in the literature. With CI, smallholder farmers can decide on short 
and long term decisions such as appropriate crop choices, change planting dates, and strategize when to use 
synthetic and organic fertilizers (Agyekum et al., 2022; Hansen, 2023; Roudier et al., 2014; Vaughan & Dessai, 
2014). Therefore, in the long run, farmers would reduce their planting time, potentially generate higher yields, and 
improve their livelihoods, including nutrition, because of their consistency in the decision-making process. For 
instance, in a study conducted in Burkina Faso on cowpea and sesame production, researchers established that 
enhanced access to CI contributed to the adoption of CSA, as rural farmers changed their farming locations and 
plot sizes, while using fewer inputs in response to climate risks (Ouédraogo et al., 2015). Additionally, the CI 
encourages crop and livestock diversification and the adoption of other livelihood options among rural farmers 
(Hansen et al., 2016; Mulwa & Visser, 2020). Mapanje et al. (2020) also showed that smallholder farmers accessing 
tailored CI services had higher household income in Zimbabwe. 

Notwithstanding benefits of CI, there is a dearth of empirical studies linking the effects of seasonal climate forecast 
use to CSA adoption (Djido et al., 2021). Some studies have focused on the drivers of climate information use 
(Muema et al., 2018; Oyekale, 2015), and there is limited literature that attempts to connect climate information 
and CSA adoption. McKune et al. (2018) investigated the link between CI services, CSA practices, and household 
food security in Kenya and Senegal. The authors found that farmers could not directly associate their adoption of 
CSA practices with CI because of the high coverage of climate information services (CIS) in the study regions. In 
a different study based on a recursive bivariate probit (RBP) regression technique conducted in Upper West Ghana, 
the authors observed that the use of weather and CI services hastened the uptake of water management, pest-
resistant crops, and multiple cropping practices (Djido et al., 2021). In using RBP, Owusu et al. (2020) did not 
establish a relationship between CI and climate change adaptation measures among smallholder farmers in the 
upper-west of Ghana. 

However, these studies (Djido et al., 2021; McKune et al., 2018; Owusu et al., 2021) overlooked the 
complementarity or substitutability of CSA practices, because typical rural farmers usually use and combine more 
than one practice on their farmlands to handle natural resources and deal with biophysical risks (Teklewold et al., 
2013). In Malawi, Mulwa et al. (2017) used a multivariate probit technique to understand barriers to adaptation to 
climate change, which addressed complementarity/substitutability. However, their study used self-reported 
drought records to capture how farmers responded to climatic effects. According to Nguyen and Nguyen (2020), 
such records introduce biases in analyzing smallholder farmers’ coping strategies when responding to climate 
shocks because of their endogenous nature (self-reported records). In addition, they used a set of different 
adaptation mechanisms to measure farmers’ responses to climate stressors. Given that there is no silver bullet when 
applying CSA methods because they are specific to prevailing local conditions (Sova, et al., 2018), this allows for 
further investigation. 

Therefore, this study evaluates the influence of climate information on the adoption of CSA practices among rural 
smallholder farmers. Specifically, we address the following questions: First, are there discrepancies between 
household-reported shocks and constructed weather shocks? Second, are the CSA adoption portfolio complements 
or substitutes? Finally, does climate information and weather shocks influence CSA adoption in rural households 
among smallholder farmers in Zambia? 

In this paper, our main novel contribution to the literature is as follows. Using the multivariate probit (MVP) 
estimation framework, this is the first study to establish the relationship between seasonal climate forecast use and 
different climate-smart adaptation options, which allows capturing the complementarity and substitutability of 
these options. This is an interesting policy issue because smallholder African farming usually focuses on 
maximizing land use by taking advantage of different portfolios of practices, which could complement or substitute 
each other to mitigate risks (Kassie et al., 2015). We depart from Mulwa et al. (2017), who establish this correlation 
by considering access to climate information. The household’s decision to access this information does not suggest 
using it unless it is tailored to meet its needs (Ziervogel & Calder, 2003). Other researchers, such as Djido et al. 
(2021) and Owusu et al. (2021), have only focused on the causal-effect relationship between climate information 
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use and farm adaptation options. In addition, in both studies, the types of climate information were aggregated 
during estimation, creating challenges in understanding the existing relationship between seasonal climate forecast 
use and the respective adaptation strategies. Second, we used weather data shocks to ascertain their influence on 
the outcomes of interest because they attenuate biases and enhance precision during estimation. We extend the 
existing empirical literature that compares self-records and weather data (see Mulungu & Kilimani, 2023; Nguyen 
& Nguyen, 2020) by further disaggregating weather shocks into drought and flood shocks to gain more insight 
into reporting, which could be essential in policy debates. Furthermore, no other empirical studies focusing on this 
theme have considered our outcome variables, thus enabling the authors to contribute to the growing literature.  

The remainder of this paper is structured as follows: material and methods, results and discussion, conclusions, 
and recommendations.       

 

2. Materials and Methods 

2.1 Data sources, sampling techniques, and construction of weather shocks 

This study used rural agricultural livelihood survey data collected by the Indaba Agricultural Policy Research 
Institute (IAPRI) in collaboration with the Zambia Statistics Agency (ZSA) and other partners. These data were 
collected in 2019, immediately after Zambia’s agricultural season, and a 2010 census sampling frame was adopted. 
We use a stratified two-stage sampling technique, where the initial stage requires identifying the Standard 
Enumeration Area (SEA), the smallest administrative area consisting of at least 30 farming households. In the 
second phase, all listed farming households are stratified into categories A to C based on the total crop area, 
availability of particular crops, number of animals such as chickens, cattle, and goats, and income sources for the 
household. A system sampling method was then used to choose 20 agricultural farming households across the 
strata (A, B, and C), targeting 7,241 farming households in different study sites as indicated in Figure 1 (IAPRI, 
2019). 

 
Figure 1. Distribution of the study sites 

Source: Data from RALS (2019) 

We merged the survey data with weather data, particularly the Climate Hazards Group Infrared Precipitation 
CHIRPS, using geo-referenced coordinates (GIS) to generate climate variables. Our study used satellite weather 
shocks because they are exogenous, whereas household-reported shocks are considered endogenous and are 
associated with inconsistent reporting biases (Nguyen & Nguyen, 2020). We also adapted Mulungu and Kilimani's 
(2023) approach to check the robustness of the constructed drought/flood shocks with household-reported shocks 
across farming seasons. The study generated weather shocks using the Standard Precipitation Index (SPI), as it is 
accurate in forecasting extreme weather occurrences and is highly associated with yields compared to other 
drought-monitoring indices (Mulungu & Kilimani, 2023; Vicente-Serrano et al., 2012). Since the SPI has varying 
time scales, we calibrated the SPI at <0.5 and >0.5, standard deviations off the 35-year long-run average to 
represent drought and flood risks for a specific year. 
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Correlation analysis was used to ascertain the disparities between respondent-reported drought/flood shocks and 
constructed drought/flood shocks across different seasons. To quantify the distinctions between drought or flood 
shocks reported by households and those we constructed, we assessed the agreement (disagreement) proportion of 
self-reported drought or flood shocks and constructed droughts or floods from the rainfall data. Because several 
tests, including the predictive (positive/negative) values, odds ratio, and kappa statistics, can be used to determine 
the proportion of agreement and disagreement (Nguyen & Nguyen, 2020), we used kappa statistics for its wide 
applicability in different fields, such as medicine and social sciences (Kennedy et al., 2010; Kriegsman et al., 1996; 
Mulungu & Kilimani, 2023). The test was calibrated using different scales. For example, a kappa (k) value less 
than 0.40 means poor-fair agreement, moderate agreement is 0.41 to 0.60, substantial agreement (0.61-0.81), near-
perfect agreement is 0.81- 1, and a kappa value with a negative sign indicates disagreement (Machón et al., 2013; 
Mulungu & Kilimani, 2023). 

2.2 Econometric estimation strategy 

Agricultural households often encounter a range of CSA options to optimize land use. These options, in our case, 
include agroforestry (A), crop rotation (C), intercropping (I), minimum tillage (M), and drought-resistant seed 
varieties (D), which can be combined in various ways to maximize expected utility while mitigating risks 
associated with climate change. However, employing a univariate probit (logit) model involves estimating five 
separate probit/logit equations, disregarding the potential correlations and interdependencies among these practices. 
This fails to estimate the interrelationship caused by identical unobservable factors among these practices, resulting 
in biased and inefficient parameter estimates (Greene, 2012; Gujarati, 2015; Kassie et al., 2015). Therefore, 
employing a multivariate probit (MVP) model acknowledges the presence of correlated binary responses to 
multiple practices, enabling us to capture our CSA portfolio simultaneously (Hahn & Soyer, 2005). As a result, the 
MVP model helps identify complementary or substitute practices that occur when there is a positive or negative 
association in the equations’ error terms (Khanna, 2001). Mathematically, the model is specified as: 
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  (k A,C, D, I, M)  …………………………………………… (1) 

where i indexes the identification of the smallholder farmer, 1 1iy   if the farmer used agroforestry in their plots, 

and 0 otherwise. 2 1iy  , if the farmer used crop rotation (0 is otherwise); 3 1/ 0iy  , if the farmer used a 

drought-resistant variety (0 otherwise); 4 1/ 0iy  , if the farmer practiced intercropping on their farms; 

5 1/ 0iy  , if the farmer adopted minimum tillage (i.e., zero tillage, planting basins, and ripping); ix is the vector 

of covariates influencing the uptake of CSA portfolio; k denotes the vector of unidentified parameter estimates 

( 1, 2,3, 4,5)k  , and   denotes the residuals. 

To estimate the influence of seasonal climate forecasts on various CSA portfolios, we adapted a multivariate probit 
model, as specified in equation 2, to test the underlying hypothesis: 

1i ik k iky x   
…………………………………………………………………………       … (2) 

Where 1( 1....,5)iy k  reflects the five CSA portfolios adopted by the farmer, ikx shows the vector of 

covariates influencing the farmers’ decision-making, k indicates the vector of unmeasured parameters, and ik
represents the residuals. This study assumes that the stochastic residuals ( 1...k m  options) are multivariate and 
normally distributed around zero, and the variance is normalized to unity, rendering the symmetric variance-
covariance matrix to be specified as follows (equation 3): 
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 ……………………………………………………             (3) 

Where   indexes the pairwise correlation coefficients of the stochastic error terms for any paired system 

equations. If there is a relationship in the residuals, then the matrix’s off-diagonal values will be nonzero, implying 
that equation 2 is an MVP model. On the other hand, if the value of   is positive, our CSA portfolios are 

complements, and the converse implies substitutes. Therefore, we use a simulated maximum likelihood approach 
to obtain the parameter estimates in equation 2. This study’s independent explanatory variables were drawn from 
previous adoption studies on agriculture practices, including household characteristics (Ng’ombe et al., 2014, 
2017), institutional factors (Kassie et al. 2015; Khonje et al., 2018). Other institutional factors include social 
network variables, which include farmer group, savings group, and kinship ties (Mulwa et al., 2017), location 
characteristics such as distances (Manda et al., 2015), and climatic variables such as agroecological zones, rainfall 
variability, and weather shocks (Ngoma et al., 2016). 

 

3.0 Results and Discussion 

3.1 Differences between self-reported shocks and satellite weather shocks 

Table 1 shows the level of agreement and disagreement between self-reported drought or flood shocks and 
weather-constructed drought or flood risks for four consecutive agricultural seasons from to 2015/2016 to 
2018/2019. The results indicate that the kappa statistics are very low for both drought and flood shocks. Our 
findings suggest that drought risk experiences in the 2015-2016 season had the highest level of agreement (0.0670), 
whereas disagreement in drought experiences was lowest at -0.0017 in the 2017-2018 farming season. On the other 
hand, flood shock agreement was highest in the 2018-2019 season at 0.0510 and lowest at 0.0139 during the 2015-
2016 season, indicating very poor agreement between self-reported drought or flood shocks and satellite drought 
or flood shocks. These results suggest that there are still differences between self-reported drought or flood shocks 
and weather records. These findings corroborate those of Nguyen and Nguyen (2020), whose yearly and regional 
kappa statistics ranged between 0.03-0.13 and -0.15-0.14, respectively. In addition, Mulungu and Kilimani (2023) 
reported low kappa statistics after comparing majority – objectively defined shocks (0.042) with self-reported 
objectively defined shocks in Malawi. On the contrary, a study in medicine by Machón et al. (2013) found 
moderate and substantial kappa statistics ranging from 0.35 and 0.75, respectively. 

3.2 Detecting the presence of multicollinearity 
As part of the pre-estimation test, we tested for multicollinearity among the variables that could affect farmers’ 
decision-making process in the model (multivariate probit). There are several techniques for detecting 
multicollinearity in the data, such as a higher r-squared with fewer significant t-ratios, higher pairwise corrections 
among the observed covariates, and high Variance Inflation factor (VIF) values exceeding an absolute value of 10 
(rule of thumb) (Gujarati, 2015; Gujarati, 2003). Following Okello (2021), this study used the variance inflation 
factor (VIF) on continuous covariates to measure multicollinearity and pairwise correlations on dummy and/or 
categorical variables. As indicated in Table 2, the VIF for each observed continuous variable was less than 10, 
suggesting that multicollinearity among the continuous variables was absent. 
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Table 12: Agreement or disagreements between self-reported drought/flood shocks and constructed 
drought/flood shocks 

Farming season  Satellite weather shocks  

Nature of shocks Self-reported Yes No Kappa 

Drought 2018-2019 Yes 1,823 2,627 -0.0172 

 No 1,196 1,595  

Drought 2017-2018 Yes 11 3,055 -0.0017 

 No 21 4,154  

Drought 2016-2017 Yes 3 1,424 -0.0046 

 No 29 5,785  

Drought 2015-2016 Yes 421 611 0.0670 

 No 1,900 4,309  

Floods 2018-2019 Yes 269 799 0.0510 

 No 1,192 4,981  

Floods 2017-2018 Yes 517 390 0.0348 

 No 3,107 3,227  

Floods 2016-2017 Yes 428 362 0.0148 

 No 3,246 3,205  

Floods 2015-2016 Yes 94 552 0.0139 

 No 849 5,746  

Note: Self-reported refers to households reporting the occurrence of drought or flood shocks. Satellite weather shocks refer to drought and 
flood shocks generated from the SPI using rainfall data. 

Kappa (k) formula: (2(hk-ij))/((h+i)(i+k)+(j+k)(h+j)) 

 
Table 13: Variance Inflation Factor (VIF) for observed continuous predictor variables 

Variable VIF 1/VIF 

Age 1.04 0.96371 

Household member number 3.23 0.30961 

Prime age (15-59) 3.24 0.30865 

Farm income 1.00 0.99819 

Productive assets 1.00 0.99758 

Farm size (Hectares) 1.00 0.99919 

Distance to Boma (Km) 1.91 0.52238 

Distance to markets (Km) 2.03 0.49287 

Distance to agricultural camp (Km) 1.32 0.75894 

Rainfall variability 1.01 0.99373 

Mean VIF 1.68   
 
3.3 Variables, measurements, and summary statistics 
Table 3 shows the explanatory variables used in the multivariate probit model during the analysis and how the 
variables were measured. In addition, it shows the summary statistics of the general sample that adopted smart 
climate practices. Regarding the uptake of climate smart resilient practices, 64%, 49%, 42%, 40%, and 11% of the 
households practiced intercropping (I), agroforestry (A), crop rotation (C), used drought-resistant seed varieties 
(D), and minimum tillage (M) on their farms, respectively. The results showed that most smallholder farmers used 



Journal of Biology, Agriculture and Healthcare                                                                                                                                www.iiste.org 

ISSN 2224-3208 (Paper)  ISSN 2225-093X (Online)  

Vol.14, No.1, 2024 

 

81 

intercropping (64%), whereas minimum tillage (11%) was the least practiced among the farmers. A plausible 
explanation could be that intercropping is a conventional method that farmers have practiced for a long time and 
has become a part of their lifestyle. Smallholder farmers might also perceive intercropping as a channel to achieve 
food diversity, which is critical for enhancing food and nutrition security in farming households. At the same time, 
farmers perceive minimum tillage as a labor-intensive method, causing hurdles in adopting the practice entirely. 
As shown in Table 2, the average age of the households involved in agricultural activities that are climate resilient 
is 52 years. This is attributed to the level of experience that comes with old age in farm management. This finding 
is supported by Ng’ombe et al. (2017), who observed that elderly farmers embraced more conservation farming as 
a result of amassing adequate wealth, both socially and physically, thereby enabling them to meet their needs. 
Table 2 also shows that the average size of a farming household was five, and about three people were in their 
productive ages, suggesting that there could be scarce labor availability in rural households to execute farm 
management activities related to adopting these practices. 
 

Table 14:Variables, measurements, and summary statistics for means and standard deviations 
Variables Measurement Mean SD 
Dependent variables    
Agroforestry 1 if hh adopted A, 0 otherwise 0.49 0.50 
Crop rotation 1 if hh adopted C, 0 otherwise 0.42 0.49 
Intercropping 1 if hh adopted I, 0 otherwise 0.64 0.48 
Drought-resistant variety 1 if hh adopted D, 0 otherwise 0.40 0.49 
Minimum Tillage 1 if hh adopted M, 0 otherwise 0.11 0.32 
Independent variables    
Age Years 52.0 14.3 
Household members number 5.30 2.46 
Prime age (15-59) number 3.09 1.82 
Household head education 0=none, 1=primary level, 2=secondary level, 3=college, 

4=university 
1.65 0.68 

Household head married 1 if Married, 0 otherwise 0.76 0.43 
Female head 1 if household is female, 0 otherwise 0.24 0.43 
Female decision-maker 1 if female, 0 otherwise 0.086 0.28 
Farm income Zambian Kwacha 49574.6 1017261.4 
Productive assets Zambian Kwacha 45570.0 616814.1 
Phone 1 if Yes, 0 otherwise 0.71 0.46 
Television 1 if Yes, 0 otherwise 0.27 0.44 
Access to radio 1 if Yes, 0 otherwise 0.57 0.50 
Access to financial credit 1 if Yes, 0 otherwise 0.20 0.40 
Farm size (Hectares) Hectares 5.47 15.6 
Agriculture extension 1 if Yes, 0 otherwise 0.85 0.36 
Farmer group 1 if Yes, 0 otherwise 0.52 0.50 
Savings group 1 if Yes, 0 otherwise 0.13 0.34 
Kinship 1 if Yes, 0 otherwise 0.48 0.50 
Distance to government offices 
(Km) 

Kilometers 38.8 34.1 

Distance to markets (Km) Kilometers 24.1 30.7 
Distance to agricultural camp 
(Km) 

Kilometers 13.2 23.0 

Agroecological zone (AEZ) 0=AEZ I, 1=AEZ II, 2=AEZ III 1.28 0.67 
Use of weather forecast 1 if Yes, 0 otherwise 0.32 0.47 
Rainfall variability proportion 0.50 0.40 
Drought riskt 1 if Yes, 0 otherwise 0.42 0.49 
Flood riskt 1 if Yes, 0 otherwise 0.20 0.40 
Flood riskt-1 1 if Yes, 0 otherwise 0.50 0.50 
Drought riskt-2 1 if Yes, 0 otherwise 0.0044 0.066 
Flood riskt-2 1 if Yes, 0 otherwise 0.51 0.50 
Flood riskt-3 1 if Yes, 0 otherwise 0.13 0.34 
Drought riskt-3 1 if Yes, 0 otherwise 0.32 0.47 

Sample Size (n)  7241  
Note: ZMK = Zambian Kwacha currency; $ 1 = ZMK13.24 exchange rate at survey time. 
 
The majority (76%) of household heads, who are primarily the main decision-makers, were married and went 
through formal education, mainly secondary education, implying that households with a higher level of literacy 
and awareness of climate resilient practices would understand, articulate, and use smart climate practices to 
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improve their productivity and mitigate climate extremes. Gikonyo et al. (2022) provides evidence to prove that 
formal education had positive significant influence on adoption of CSA practices among smallholder farmers in 
Kenya while Asante et al. (2024) confirms that one-year increase in education of the married household head 
increases probability of adoption of a combination of CSAs among smallholders in Ghana. 
 
On average, smallholder farmers have a household income equivalent to ZMK 49 574.6 and ZMK45 570.0 in 
productive assets. Regarding communication devices, 71%, 51%, and 27% owned phones, radio, and television, 
respectively. This indicates that resource-endowed households can purchase important devices for information 
delivery services related to smart climate practices and climate change. Regarding access to financial incentives, 
only 20% of smallholder households that adopted CSA had formal access to credit. Financial access enables 
farmers to purchase inputs, such as seed varieties with drought-resistant traits, fertilizers, and other equipment to 
foster their adoption of sustainable practices. Additionally, financial inclusion enables smallholder farmers to 
invest in more expensive practices. 
 
The average size of cultivated land was five hectares, showing that this study targeted smallholder farmers 
susceptible to the changing climate. This result is confirmed by Chapoto and Chisanga (2016), who found that 
over 90% of smallholder farmers in Zambia possessed less than five hectares of farmland. Alidu et al. (2022) also 
observed that most smallholder farming households that adopted climate adaptation practices owned 
approximately 2 ha of cultivated land in Ghana. 
 
Most (85%) of the farmers surveyed received extension services, which aligns with the findings of (Alidu et al., 
2022; Anang et al., 2021; Anang et al., 2020), who noted that most smallholder farmers accessed extensive services 
on various innovative agricultural strategies to support the adoption of climate-smart practices and productivity. 
As suggested by Manda et al. (2016), extension services play a vital role in increasing the adoption of CSAs 
because they expose smallholder farmers to information related to new technologies, input delivery, and credit. 
Social capital is important for spurring the uptake of agricultural innovations among smallholder farming 
households. Over 50% of the farmers belonged to farmer groups, and 48% and 13% were associated with kinship 
ties and savings groups, respectively. Kassie et al. (2013) opined that belonging to social networks is crucial in 
facilitating information exchange, making it easier to access farming inputs and overcome credit limitations. 
 
The average distances to the district center (Boma), markets, and agricultural camps were 38.8 km, 24.1 km, and 
13.2 km, respectively. These distances are associated with transaction costs, market access, smallholder access to 
new agrarian innovations, financial institutions, and information exchange (Kassie et al., 2013; Manda et al., 2015). 
Rainfall variability was equivalent to 50%, and only 32% of smallholder households used seasonal weather 
forecasts to mitigate weather shocks during the 2018-2019 season. Additionally, weather shocks ranged from 51% 
to 0.4% in the past four consecutive farming seasons (2018/2016 to 2016/2016). 
 
3.4 Correlation analysis of the response variables 
Rural farmers are usually faced with deciding to pursue more than one CSA practice in their agricultural activities, 
suggesting that a correlation exists between the CSA portfolios of their choice. Using a pairwise correlation 
approach, we tested for associations in the residuals of the five CSA usage equations. Table 4 shows that the seven 
paired correlation coefficients in the residuals of the MVP model were statistically significant, indicating that the 
practices were interdependent. Additionally, these results lend credence to the idea that the residuals of the CSA 
equations are associated. The LR test [(Chi2(10) = 435.641, Prob>chi2 = 0.000)] results of the null hypothesis of 
independent residuals of the five equations (minimum tillage, crop rotation, intercropping, agroforestry, and 
drought-tolerant seed variety) were rejected, justifying the use of the multivariate probit model rather than the 
univariate probit model. We also find that the coefficients are positive, indicating that the portfolios are 
complementary. 
 

Table 15:Correlation coefficient parameter estimates for Multivariate Probit (MVP) 
Climate Smart 
practices 

Minimum 
Tillage 

Crop 
Rotation 

Intercropping Agroforestry Drought-Resistant 
seed variety 

Minimum Tillage 1     
Crop Rotation 0.121*** 1    
Intercropping 0.040* 0.136*** 1   
Agroforestry 0.171*** 0.208*** 0.242*** 1  
Drought-Resistant 
seed variety 

0.017 0.001 0.010 0.038** 1 

Note: *, **, and *** reflect the 10%, 5%, and 1% significance levels, respectively.  
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3.5 The influence of the use of seasonal climate forecast and weather shocks on the adoption of CSA practices 
Table 5 shows the parameter estimates obtained by estimating the multivariate probit regression using the 
maximum-likelihood approach. We found the Wald test [(Wald chi2(155) = 1945.19; Prob > chi2 = 0.0000)] 
significant by rejecting the null hypothesis that the coefficients belonging to each regression are jointly equal to 
zero, implying that the model used in our study fits the data well. For robustness checks, we also estimated five 
separate probit equations for minimum tillage, crop rotation, intercropping, agroforestry, and drought-resistant 
seed variety along with the multivariate probit to confirm if the parameter estimates are similar to those of the 
multivariate probit.   

Table 16:Determinants of CSA practices 
Variables Multivariate Probit results Probit results 
 MT CR IT AG DT MT CR IT AG DT 
Age 0.0005 

(0.0014) 
-0.0027** 
(0.0011) 

-0.0022* 
(0.0011) 

-0.0019* 
(0.0011) 

0.0010 
(0.0011) 

0.0005 
(0.0014) 

-0.0026** 
(0.0011) 

-0.0023** 
(0.0011) 

-0.0019* 
(0.0011) 

0.0010 
(.0012) 

Household members -0.0204 
(0.0148) 

-0.0014 
(0.0111) 

-0.0215* 
(0.0117) 

-0.0080 
(0.0112) 

-0.0043 
(0.0117) 

-0.0207 
(0.0150) 

-0.0016 
(0.0112) 

-0.0210* 
(0.0115) 

-0.0078 
(0.0111) 

-0.0045 
(0.0117) 

Prime age (15-59) 0.0050 
(0.0198) 

-0.0149 
(0.0154) 

0.0138 
(0.0159) 

0.0030 
(0.0153) 

0.0181 
(0.0160) 

0.0055 
(0.0206) 

-0.0144 
(0.0154) 

0.0135 
(0.0158) 

0.0036 
(0.0152) 

0.0184 
(0.0160) 

Education -0.0259 
(0.0354) 

-0.0430 
(0.0269) 

-0.0309 
(0.0276) 

-0.0626** 
(0.0265) 

0.0188 
(0.0277) 

-0.0282 
(0.0350) 

-0.0416 
(0.0268) 

-0.0319 
(0.0276) 

-0.0627* 
(0.0266) 

0.0195 
(0.0279) 

Married 0.0896 
(0.0834) 

0.0959 
(0.0643) 

0.0838 
(0.0689) 

-0.0026 
(0.0637) 

0.0293 
(0.0664) 

0.0929 
(0.0840) 

0.0969 
(0.0644) 

0.0782 
(0.0658) 

0.0060 
(0.0641) 

0.0310 
(0.0677) 

Female head 0.1074 
(0.0836) 

0.0050 
(0.0641) 

0.0483 
(0.0693) 

0.0279 
(0.0635) 

0.0438 
(0.0664) 

0.1064 
(0.0829) 

0.0055 
(0.0644) 

0.0443 
(0.0659) 

0.0378 
(0.0641) 

0.0453 
(0.0677) 

Female decision-maker 0.0700 
(0.0739) 

0.0330 
(0.0578) 

-0.0174 
(0.0604) 

0.0005 
(0.0577) 

-0.0199 
(0.0607) 

0.0686 
(0.0748) 

0.0328 
(0.0579) 

-0.0201 
(0.0596) 

-0.0051 
(0.0575) 

-0.0202 
(0.0605) 

Farm income -0.0405** 
(0.0170) 

-
0.0409*** 
(0.0136) 

-0.0240* 
(0.0141) 

-
0.0637*** 
(0.0136) 

0.0155 
(0.0141) 

-0.0404** 
(0.0177) 

-
0.0416*** 
(0.0135) 

-0.0238* 
(0.0138) 

-
0.0631*** 
(0.0135) 

0.0156 
(0.0143) 

Productive assets 0.0250 
(0.0157) 

0.0225* 
(0.0120) 

0.0021 
(0.0125) 

0.0357*** 
(0.0119) 

-0.0113 
(0.0124) 

0.0238 
(0.0158) 

0.0225* 
(0.0120) 

0.0026 
(0.0123) 

0.0352*** 
(0.0119) 

-0.0114 
(0.0125) 

Phone 0.0385 
(0.0514) 

-0.0712* 
(0.0394) 

-0.1371*** 
(0.0412) 

-0.0017 
(0.0392) 

-0.0108 
(0.0411) 

0.0384 
(0.0522) 

-0.0715* 
(0.0393) 

-
0.1391*** 
(0.0409) 

-0.0042 
(0.0392) 

-0.0110 
(0.0410) 

Television 0.0422 
(0.0539) 

-0.0010 
(0.0409) 

-0.0017 
(0.0420) 

0.0155 
(0.0408) 

0.0576 
(0.0422) 

0.0439 
(0.0538) 

-0.0039 
(0.0409) 

-0.0023 
(0.0423) 

0.0138 
(0.0407) 

0.0568 
(0.0428) 

Radio -0.0501 
(0.0454) 

-0.0443 
(0.0349) 

-0.0349 
(0.0363) 

0.0090 
(0.0349) 

0.0324 
(0.0365) 

-0.0490 
(0.0462) 

-0.0440 
(0.0350) 

-0.0318 
(0.0362) 

0.0094 
(0.0348) 

0.0324 
(0.0366) 

Access to financial credit 0.1650*** 
(0.0489) 

0.1355*** 
(0.0389) 

0.1423*** 
(0.0413) 

0.1481*** 
(0.0390) 

-0.0950** 
(0.0410) 

0.1676*** 
(0.0486) 

0.1360*** 
(0.0389) 

0.1437*** 
(0.0413) 

0.1490*** 
(0.0388) 

-0.0961** 
(0.0411) 

Farm size (Hectares) 0.0029*** 
(0.0011) 

0.0043*** 
(0.0014) 

-0.0041*** 
(0.0012) 

0.0012 
(0.0011) 

-0.0018* 
(0.0010) 

0.0028*** 
(0.0010) 

0.0045*** 
(0.0012) 

-
0.0038*** 
(.0012) 

0.0012 
(0.0009) 

-0.0018* 
(0.0011) 

Agriculture extension 0.1580*** 
(0.0614) 

0.2776*** 
(0.0447) 

0.1690*** 
(0.0444) 

0.1619*** 
(0.0438) 

0.0784* 
(0.0457) 

0.1609*** 
(0.0622) 

0.2749*** 
(0.0446) 

0.1694*** 
(0.0440) 

0.1595*** 
(0.0437) 

0.0781* 
(0.0461) 

Farmer group -0.0095 
(0.0426) 

0.0894*** 
(0.0325) 

0.0800** 
(0.0335) 

0.0613* 
(0.0324) 

-0.0356 
(0.0338) 

-0.0089 
(0.0426) 

0.0897*** 
(0.0325) 

0.0791** 
(0.0336) 

0.0618* 
(0.0322) 

-0.0356 
(0.0338) 

Savings group 0.0589 
(0.0596) 

0.0904** 
(0.0460) 

0.1902*** 
(0.0488) 

0.0205 
(0.0459) 

0.0424 
(0.0483) 

0.0559 
(0.0597) 

0.0945** 
(0.0460) 

0.1938*** 
(0.0490) 

0.0295 
(0.0460) 

0.0423 
(0.0483) 

Kinship 0.0223 
(0.0402) 

0.1030*** 
(0.0310) 

0.0954*** 
(0.0319) 

0.0501 
(0.0308) 

-0.0352 
(0.0323) 

0.0209 
(0.0408) 

0.1035*** 
(0.0309) 

0.0903 
(0.0320) 

0.0462 
(0.0307) 

-0.0350 
(0.0323) 

Distance to Boma (Km) -0.0002 
(0.0008) 

-
0.0017*** 
(0.0006) 

0.0011* 
(0.0006) 

0.0014** 
(0.0006) 

0.00002 
(0.0006) 

-0.0003 
(0.0008) 

-
0.0017*** 
(0.0006) 

0.0011* 
(0.0006) 

0.0013** 
(0.0006) 

0.00001 
(0.0006) 

Distance to markets 
(Km) 

0.00009 
(0.0009) 

-0.0003 
(0.0007) 

0.0011 
(0.0007) 

-
0.0019*** 
(0.0007) 

0.0009 
(0.0007) 

0.0001 
(0.0009) 

-0.0003 
(0.0007) 

0.0011 
(0.0007) 

-
0.0018*** 
(0.0007) 

0.0009 
(0.0007) 

Distance to agricultural 
camp (Km) 

0.0007 
(0.0010) 

0.0010 
(0.0008) 

-0.0012 
(0.0008) 

-0.0000 
(0.0008) 

0.0021*** 
(0.0008) 

0.0007 
(0.0010) 

0.0010 
(0.0008) 

-0.0012 
(0.0008) 

-0.00003 
(0.0008) 

0.0021*** 
(0.0008) 

Agroecological zone 
(AEZ) 

-
0.1980*** 
(0.0305) 

0.0642*** 
(0.0245) 

0.0175 
(0.0255) 

-0.0334 
(0.0245) 

0.1100*** 
(0.0253) 

-
0.1957*** 
(0.0325) 

0.0611** 
(0.0249) 

0.0209 
(0.0251) 

-0.0356 
(0.0245) 

0.1092*** 
(0.0259) 

Use of weather forecast -0.0062 
(0.0443) 

0.0107 
(0.0338) 

0.1412*** 
(0.0355) 

0.0739** 
(0.0337) 

0.0502 
(0.0352) 

-0.0070 
(0.0441) 

0.0135 
(0.0338) 

0.1427*** 
(0.0352) 

0.0776** 
(0.0336) 

0.0500 
(0.0352) 

Rainfall variability -
0.2433*** 
(0.0846) 

-
0.2479*** 
(0.0660) 

0.3190*** 
(0.0690) 

0.0603 
(0.0658) 

-
0.2884*** 
(0.0724) 

-
0.2419*** 
(0.0910) 

-
0.2516*** 
(0.0686) 

0.3177*** 
(0.0690) 

0.0450 
(0.0669) 

-0.2890*** 
(0.0709) 

Drought riskt -
0.1514*** 
(0.0491) 

-0.0514 
(0.0362) 

-0.0966*** 
(0.0372) 

-
0.2299*** 
(0.0361) 

-
0.7482*** 
(0.0378) 

-
0.1548*** 
(0.0491) 

-0.0494 
(0.0365) 

-
0.0988*** 
(0.0375) 

-
0.2244*** 
(0.0361) 

-0.7475*** 
(0.0380) 

Flood riskt 0.0370 
(0.0566) 

-0.0283 
(0.0448) 

-
0.2050**** 
(0.0472) 

-
0.2491*** 
(0.0446) 

0.1320*** 
(0.0454) 

0.0429 
(0.0571) 

-0.0279 
(0.0447) 

-
0.2131*** 
(0.0460) 

-
0.2429*** 
(0.0443) 

0.1324*** 
(0.0446) 

Flood riskt-1 0.4043 
(0.2678) 

-0.0148 
(0.1772) 

-0.3427* 
(0.2050) 

-0.0820 
(0.1805) 

0.2416 
(0.1923) 

0.4209 
(0.2618) 

-0.0198 
(0.1823) 

-0.3274 
(0.2092) 

-0.0859 
(0.1821) 

0.2455 
(0.1873) 

Drought riskt-2 -0.2745 
(0.2994) 

-0.3943* 
(0.2336) 

-0.1536 
(0.2338) 

0.1846 
(0.2370) 

-0.2474 
(0.2405) 

-0.2567 
(0.3020) 

-0.3924 
(0.2420) 

-0.1469 
(0.2380) 

0.1790 
(0.2383) 

-0.2474 
(0.2328) 

Flood riskt-2 -0.0442 
(0.2686) 

0.1717 
(0.1774) 

0.2468 
(0.2052) 

0.0003 
(0.1808) 

-0.3027 
(0.1927) 

-0.0566 
(0.2627) 

0.1822 
(0.1826) 

0.2310 
(0.2094) 

0.0162 
(0.1823) 

-0.3054 
(0.1875) 

Flood riskt-3 0.2040*** 
(0.0591) 

-0.0782* 
(0.0476) 

0.1605*** 
(0.0479) 

0.0527 
(0.0468) 

0.2796*** 
(0.0497) 

0.2038*** 
(0.0598) 

-0.0710* 
(0.0475) 

0.1638*** 
(0.0477) 

0.0571 
(0.0470) 

0.2795*** 
(0.0493) 

Drought riskt-3 0.0881* 
(0.0473) 

-0.0499 
(0.0360) 

0.6473*** 
(0.0387) 

0.0889** 
(0.0360) 

0.3781*** 
(0.0370) 

0.0842* 
(0.0481) 

-0.0495 
(0.0361) 

0.6487*** 
(0.0383) 

0.0921*** 
(0.0359) 

0.3788*** 
(0.0367) 

Constant -
1.0772*** 
(0.2162) 

-0.0847 
(0.1677) 

0.2249 
(0.1746) 

0.3747** 
(0.1675) 

-0.4137** 
(0.1734) 

-
1.0780*** 
(0.2215) 

-0.0810 
(0.1686) 

0.2248 
(0.1725) 

0.3653** 
(0.1673) 

-.4160** 
(0.1772) 

LR test for independent equations: ρ21  =   ρ31  =  ρ41  =  ρ51  =  ρ32  =  ρ42  =  ρ52  =  ρ43  =  ρ53  =  ρ54  =  0; 
chi2 (10) = 435.641   Prob > chi2  =  0.0000 
Wald chi2 (155)  =    1945.19; Prob > chi2     =     0.0000 

Note: The 10% (p<0.1), 5% (p<0.05), and 1% (p<0.01) significance levels are indexed by *, **, and ***, 
respectively. ρ=rho; ZMK=Zambian Kwacha currency; $1=ZMK13.24 exchange rate. 
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The results in Table 5 show that the household head’s age had a negative and significant influence on crop rotation, 
intercropping, and agroforestry adoption in Zambia. This could be because crop rotation and intercropping are 
relatively traditional methods, and farmers are turning to newer agricultural innovations and technologies because 
their mindset is adaptive and not difficult to change. This result aligns with those of Hong et al. (2020) and Kassie 
et al. (2013), who find that younger farmers are less likely to adopt intercropping because they are risk-averse and 
willing to embrace improved and profitable innovations. In addition, younger farmers can provide the necessary 
labor to enhance productivity using improved technologies. This result contradicts the findings of Tufa et al. 
(2023), who found that farmer age influenced the likelihood of adopting intercropping crop rotation in Zambia, 
Zimbabwe, and Malawi. They noted a significant positive association between farmer’s age and crop rotation in 
Zimbabwe and Malawi, while age and intercropping showed a significant and positive relationship in Malawi and 
Zambia. This is because crop rotation and intercropping are considered old practices that are part of conventional 
farming. For agroforestry, the high cost and the time taken to receive dividends from adopting the practices are 
long, and this is crucial in the farmer’s decision-making regarding its adoption. However, Bandi et al. (2022) 
observed that farmers whose age ranges between 51-60 years more likely to adopt agroforestry in the Democratic 
Republic of Congo (DRC) because they were more committed to other aspects of agroforestry such as apiforestry, 
entomoforestry and sylvopasture which do not require drudgery.  
 
Household size, which proxies for labor availability, negatively influences intercropping adoption, denoting that 
smallholder households with more family members are less likely to practice intercropping. A plausible 
explanation for this low adoption could be that countries like Zambia, with vast land coupled with lower population 
density, limit labor availability — a stand-in for high labor prices — affecting the probability of adopting CA 
practices, including intercropping (Ngoma et al., 2021). In addition, it could suggest that household members 
engage in off-farm employment or have high opportunity costs (Ngoma et al., 2016). However, Ng’ombe et al. 
(2017) found a positive correlation between CA and household size. They concluded that having more family 
members in their productive age was pivotal in carrying out CA practices that were drudgery in nature. In 
Zimbabwe, a similar study by Pedzisa et al. (2015) found no relationship and called for improved methods of 
measuring family labor. Another study that reported inconclusive results was that by Jaleta et al. (2016) in Ethiopia.  
 
Furthermore, being an educated head of the household reduced the chances of using agroforestry. With higher 
levels of education, farmers can understand the concepts of various agricultural innovations and make informed 
decisions to embrace and use technology. This result is not in line with Bandi et al. (2022) and Nyamweya and 
Moronge (2019), who found that the education level of the household head positively and significantly influences 
the adoption of agroforestry. However, the authors further noted that formal education alone was not a necessary 
and sufficient condition to increase agroforestry adoption, but that providing adequate farmer training on the 
practice would bolster its adoption. 
 
Table 5 displays that income negatively and significantly influences the adoption of minimum tillage, crop 
rotation, intercropping, and agroforestry among rural smallholder farmers. The reasonable explanation could be 
that smallholder farmers may perceive these options as low-level strategies and, therefore, may prefer to invest in 
other livelihood strategies that cushion climate-induced risks. Also, farmers may encounter other non-monetary 
issues affecting their cash outlays. These results are incoherent with those of Uddin et al. (2016), who finds farm 
income to have a positive and significant association with conservation agriculture, like minimum tillage in 
Bangladesh. In Zambia, Lungu (2019) observed a similar influence on crop rotation, suggesting that wealthier 
households adopted crop rotation. Also, Chichongue et al. (2020) and Nyamweya and Moronge (2019) revealed 
that better off-farm income earning households went for intercropping and agroforestry, respectively, because 
having more household income translated to more disposable incomes, which could be used for investments in 
agroforestry, including intercropping. Also, the authors added that farmers with higher earnings could purchase 
different agroforestry innovations and use them to diversify their livelihoods further. 
 
As expected, we found significant positive effects of productive assets on crop rotations and agroforestry. This 
result departs from that of Zulu-Mbata et al. (2016), who found that households’ productive assets negatively 
influenced the adoption of conservation agriculture. We also find that farmers with financial incentives are more 
likely to use CSAs. Credit access allows cash-strapped smallholder farmers to acquire farming equipment and 
inputs such as fertilizer and seeds. Zulu-Mbata et al. (2016) noted that both dis(non)-adoption of CSAs was largely 
due to farmers’ liquidity challenges. Therefore, fostering loan access is crucial to scale up CSA adoption. These 
findings are consistent with (Ng’ombe et al., 2014; Zulu-Mbata et al., 2016). However, we observed that farmers 
with access to credit encountered immediate concerns rather than investing more in drought-tolerant seed varieties.  
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Household farm size positively and significantly influenced the adoption of minimum tillage and crop rotation. 
However, it reduces the likelihood of adopting intercropping and drought-tolerant seeds among smallholder 
farmers. Ngoma et al. (2021) and Tufa et al. (2023) observed that farm size had an indeterminate effect on CSA 
adoption, depending on the type of agricultural innovation. In addition, it might enable smallholder farmers with 
large farms to practice minimum tillage and crop rotation while maintaining or reducing the use of intercropping 
or drought-tolerant seeds to spread the risk of crop failure. 
 
Extension services reflect the number of times a smallholder farmer is in contact with extension agents, and this 
variable is expected to have a positive influence on adoption (Manda et al., 2015). This study found that farmers’ 
access to extension services influences CSA adoption. Thus, the farmer’s frequency of contact with extension 
agents had a positive and significant influence on adopting all practices of interest. This suggests that farmers are 
exposed to information on CSA practices, input delivery, and credit access, resulting in increased adoption. These 
findings conform to (Anik et al., 2021; Aryal et al., 2018; Danso-Abbeam, 2022; Igberi et al., 2022; Obeng, E., A. 
Weber, 2014), who reported the positive influence of extension services on minimum tillage, crop rotation, 
intercropping, agroforestry, and drought-tolerant varieties across different countries. On the other hand, Tufa et al. 
(2023) found that extension services did not have a significant relationship with minimum tillage, and they 
attributed it to poor delivery services from extension agents and farmers’ lack of confidence in their skills. 
 
The results in Table 5 also illustrate that adopters of crop rotation, intercropping, and agroforestry were members 
of the farmers’ associations. Those with savings group membership and kinship ties practiced crop rotations. Thus, 
being a member of these social groups increases their probability of using these portfolios. It is imperative to note 
that the coefficient of the savings group had the highest effect under intercropping because the farmers were more 
coordinated and had a revolving fund, making it easier to access credit to buy inputs and hire labor. As suggested 
by Negi et al. (2020), social networks are important enablers for delivering information related to improved 
technological innovations required for agricultural growth. This finding corroborates Mulimbi et al. (2019), who 
reported that group membership influenced CSA uptake among poor smallholder farmers and concluded that not 
only do these groups bring social capital, but they also serve as a basic foundation for learning, discussions, and 
sharing information in communities with low extension services. 
 
Some households living in places distant from district centers and markets were less likely to adopt crop rotation 
and agroforestry, respectively, as this could be a result of the high transaction costs and limited access to markets 
that act as a source of inputs or technological innovation. For households that observed a positive and significant 
association between distance (i.e., distance to district centers and extension service) and the CSA practice under 
consideration, a plausible explanation could be that the smallholder farmers were staying closer to the district 
centers and extension offices and possibly could access the markets and learn from their neighbors through peer 
influence. This result was consistent with (Tufa et al., 2023). 
 
Zambia’s agroecological zones (AEZ) affect smallholder farmers’ uptake of minimum tillage, crop rotation, and 
drought-tolerant seed varieties. Belonging to a particular agroecological zone other than zone one (AEZ 1) reduced 
the household’s likelihood of using minimum tillage. At the same time, there are existing positive influences on 
the adoption of crop rotation and drought-tolerant varieties. Unlike crop rotation and drought-tolerant varieties, 
the low minimum tillage uptake indicates that the households were situated in AEZ III, which receives rainfall 
above 1000 mm. Minimum tillage is used cautiously in high-rainfall regions, as this practice is more suitable in 
stress-related conditions (World Bank, 2019).  Ng’ombe et al. (2014) suggested that conservation farming (i.e., 
minimum tillage and crop rotation) is suitable for AEZ I and II, as these regions are associated with inadequate 
rainfall and frequent droughts in Zambia. In contrast, the World Bank (2019) showed that drought-tolerant seed 
varieties can adapt to different environments, such as dry or wet conditions, suggesting that they perform better 
across different agroecological zones.  
 
Furthermore, seasonal climate forecasts potentially influence the adoption of intercropping and agroforestry. 
Households that used climate information were more likely to adopt these practices as their adaptation strategies 
because intercropping and agroforestry are important for soil health, producing diversified foods, and increasing 
crop yields, which are needed for sustainable agricultural growth and climate risk mitigation. The study results 
agree with those of Mulwa et al. (2017), who noted that households accessing climate-related information were 
expected to use different adaption strategies, as they underscored the importance of making climate information 
available to smallholder farmers. Djido et al. (2021) found similar results in Ghana. However, the findings of 
McKune et al. (2018) were inconclusive. 
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The study reported that high rainfall variability decreased the probability of adopting minimum tillage, crop 
rotation, and drought-tolerant varieties, except for intercropping, denoting that adopting these practices is site-
specific, as variations in rainfall differ across regions in Zambia. As Ngoma et al. (2021) asserted, rainfall 
variability exposes households to weather shocks, such as drought and flood extremes. Therefore, conservation 
agriculture is a potential enabler for managing climate risks (Michler et al., 2019). 
 
Furthermore, weather shocks, particularly droughts experienced in the 2018/2019 agricultural season, reduced the 
likelihood of farmers practicing minimum tillage, intercropping, agroforestry, and drought-tolerant varieties. This 
could be attributed to the farmers’ past experiences and anxieties about climate effects, making them adopt newer 
innovations to reduce climate risk. In addition, it could result from the site specificity of these practices, suggesting 
that CSA adoption is not a one-size-fits-all phenomenon. This result does not agree with the findings of Thierfelder 
et al. (2015), who observed that the components of conservation agriculture and drought-tolerant varieties 
performed better under stress conditions. Furthermore, the results revealed that households experiencing floods in 
different parts of the country during the 2018/2019 farming seasons were least likely to embrace intercropping and 
agroforestry, except for drought-tolerant seed varieties. The World Bank (2019) supported these results, 
confirming that drought-tolerant seed varieties produce better results under flood-risk conditions. 
 
Following El Niño weather conditions during the 2015/2016 farming season in Zambia, smallholder farming 
households adopted minimum tillage, intercropping, agroforestry, and drought-tolerant seed varieties. Affected 
households were most likely to use these practices. Our results indicated a positive and significant correlation 
between droughts experienced in the 2015/2016 season and CSA adoption (i.e., minimum tillage, intercropping, 
agroforestry, and drought-resistant seed variety). On the other hand, households experiencing floods during the 
same period (i.e., the 2015/2016 agricultural season) went for minimum tillage, crop rotation, intercropping, and 
drought-tolerant seed varieties. Unlike crop rotation, we showed a positive relationship between flood risk and 
other practices such as minimum tillage, intercropping, and drought-tolerant seed varieties. Adopting the CSA 
technologies considered in our study suggests that smallholder farmers were aware of them and their role in 
attenuating the impacts of the changing climate, which could affect food security. These findings are supported by 
Gjengedal (2016), who reported that smallholder farmers’ awareness of changes in weather conditions leads them 
to embrace CA practices. In addition, the FAO (2017) revealed that adopting CSA innovations in light of climate 
change can bolster productivity and reduce vulnerability. These findings disagree with those of Chichongue et al. 
(2020), who found negative and significant effects of the changing climate on minimum tillage and intercropping. 
In contrast, the opposite was true for the crop rotation. Their study attributed this negative relationship to farmers’ 
lack of awareness of changing weather patterns and climate change. 
 
4.0 Conclusion and Recommendations 
This study explored the determinants of climate smart practices using a nationally representative survey and 
rainfall data. Using kappa statistics, we found poor agreement between self-reported household data and weather 
shocks, suggesting that smallholder farmers should be trained to identify and report climate-related shocks more 
effectively through standard reporting techniques to enhance the reliability of self-reported data. This study further 
rejects the null hypothesis of independence between farming practice choice decisions. Therefore, we adopted an 
alternative hypothesis and employed a multivariate probit model. We found that CSA practices were 
complementary, implying that farmers should adopt at least one farming strategy in their activities. This paints a 
realistic picture of smallholder farmers’ thought processes in making farm decisions, which is crucial for policy 
direction. Hence, policymakers should devise action-oriented strategies that encourage farmers to adopt 
complementary packages to optimize their utility in response to climate stressors. 

The overall understanding of agricultural resilience and sustainability under the face of climate change often draws 
attention and varying opinions. The study establishes concrete evidence in relation to the adoption and use of 
climate smart agricultural innovations among rural smallholder farmers in Zambia. Key socioeconomic factors 
such as age and marital status of the household head, income, access to credit, education level, social capital, 
access to agricultural extension services, agroecological factors, seasonal climate forecasts and weather shocks 
impact the adoption behaviour of smallholder farmers in relation to CSA innovations. 

The government and relevant stakeholders should invest in strengthening financial inclusion in rural areas to foster 
access to credit for smallholder farmers, enabling them to have more access to the farm inputs, technology, and 
equipment necessary to improve their uptake of these practices. Farmer education and training on various 
technologies are still needed while emphasizing their potential benefits regarding productivity and climate change. 
In addition, these training programs should be tailored to target different groups of smallholder farmers depending 
on their education levels. The government and other organizations should put concerted efforts into forming and 
empowering savings groups in rural areas, farmer associations, marketing groups, and other relevant social 
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network groups, because developing such platforms is necessary to support increased access to credit, asset stocks, 
sharing information, and collective action, which is vital for enhanced adoption. 

The study findings should be interpreted with caution because of the cross-sectional nature of the data used in the 
analysis. Therefore, we recommend longitudinal studies to capture farmers’ choice adoption behavior over time. 
Further, future studies should use different climate-smart practices using more recent country-level data to gain a 
broader understanding of farmers’ choices towards other practices. 
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