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Abstract 

Melanoma is one of the most life-threatening skin cancer characterized by ineffective therapies and rising 
incidence. Here we applied 1H NMR to acquire details of metabolic rewiring between primary melanocytes and 
murine melanoma cells. A total of 29 metabolites were assigned and identified. The principal component analysis 
(PCA) illustrated a distinct separation along the first component. A constructed orthogonal partial least squares-
discriminant (OPLS-DA) model obtained intrinsic variations as PCA analysis did. The corresponding S-plot and 
loading plot revealed some significant variations of metabolites in melanoma compared with the control group, 
including the obvious increases of isoleucine, leucine, valine, 3-hydroxybutyrate, lactate, alanine, 2-oxoglutarate, 
glutathione, creatine, glycine, tyrosine, phenylalanine, histidine and remarkable decreases of lysine, acetate, n-
acetyl-CH3, n-acetyl cysteine, glutamine, glutamate, methionine, choline, taurine, glucose and formate. The 
down regulation of glucose and the accumulated lactate indicated enhanced aerobic glycolysis for energy 
requirements in melanoma cells. Decreased taurine acted to fight against reactive oxygen species, as evidenced 
by an active glutathione system in melanoma cells. Amino acid profiles altered different from any other cancer 
cells. Tumor-related amino acids identified by NMR might be helping advance the field of therapeutic 
intervention in melanoma.  
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1. Introduction 

Melanocytes produce and store melanin to protect the cells against ultraviolet (UV) radiation and white light 
(Gordon, Mansur, & Gilchrest, 1989). Melanoma is the most aggressive skin cancer originating from 
melanocytes, which accounting for only 5% of all skin cancers while 80% of the deaths. Melanoma is curable if 
recognized and treated by surgical removal at the initial site. However, some patients remain high risk of 
recurrence after definitive surgery . As for other cancers, metastasis is considered the major threat to patient 
survival. Recent studies have shown that more than 90% melanoma patients get mutations in MAPK (Mitogen-
Activated Protein Kinase) pathway, in which BRAF (B-Raf proto-oncogene, serine/threonine kinase), NRAS 
(NRAS proto-oncogene, GTPase) and NFI (Neurofibromatosis type 1) genes are mostly common changed (; 
Andersen et al., 1993; Curtin et al., 2005). To our knowledge, spatial and temporal information about specific 
metabolite increases and decreases also effectively complements gene expression and proteome studies, 
investigating metabolic alterations and identifying specific molecular biomarkers are critical for diagnosing 
patients and improving therapeutic efficiency in melanoma.  

Cancer cells reprogram their metabolic pathways to synthetize an expanding biomass for dynamic stresses and 
proliferating (Colombino et al., 2012; Olivares, Däbritz, King, Gottlieb, & Halsey, 2015). Aerobic glycolysis was 
firstly observed in cancers by Otto Warburg in the 1920s (Cantor & Sabatini, 2012). The ‘Warburg Effect’ 
discovered that tumor relies on a high rate of glycolysis even under normal oxygen conditions, producing an 
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acidic extra-cellular environment (Warburg, Wind, & Negelein, 1927). Although clear mechanisms are still 
elusive, some evidences have shown that cell populations emerging from enhanced aerobic glycolysis get a 
significant growth superiority, as they alter surrounding acidosis environment to promote destruction of adjacent 
normal cells, acceleration of angiogenesis and degradation of the extracellular matrix their environment 
(Gatenby & Gawlinski, 1996; Vander Heiden, Cantley, & Thompson, 2009). Furthermore, glutamine is required 
to feed tricarboxylic acid cycle (TCA) as an alternative carbon source in tumors (Gatenby, Gawlinski, Gmitro, 
Kaylor, & Gillies, 2006; Zaidi et al., 2013). Malignant cells rapidly adapt to nutrient limitation by resetting their 
metabolism, another observation indicated that glucose-deprived melanoma cells heavily rely on acetate 
metabolism for survival (Cairns, Harris, & Mak, 2011). Despite a long and substantial history of study, the 
complex association between disturbed metabolism and uncontrolled proliferation remains an elusive area of 
investigation. Thus, understanding how melanoma cells obtain energy and maintain survival is essential for the 
establishment of appropriate therapies and diagnostic approaches.  

Metabolomics allows the simultaneous and valid quantification of thousands of different metabolites within a 
biological system using sensitive and specific technologies (Lakhter et al., 2016). Nuclear Magnetic Resonance 
(NMR) provides an unbiased approach in a rapid and cost-effective manner. The analysis of NMR metabolomics 
datasets is typically conducted in two phases: spectral preprocessing and multivariate analyses including 
principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) methods which 
can be used to construct classification models or for biomarker discovery. Combined with statistical analysis, the 
growing accessibility of this approach is playing a substantial role in monitoring metabolic perturbations of 
endogenous low molecular weight metabolites, providing a new insight into physiological and pathological 
processes, the metabolic interactions, drug safety and efficacy assessment, disease diagnosis, and toxicity 
screening (Wishart, 2016). B16F10 cell line is one of the most used cell lines in melanoma originated from a 
tumor generated in C57BL/6 mice, representing a highly metastatic stage of melanoma (Sinclair et al., 2010). Up 
to now, several studies have compared metabolic profiles between melanoma and non-melanoma lesions in 
patients (Cillo, Dick, Ling, & Hill, 1987; Fedele, Galdos-Riveros, Jose de Farias e Melo, Magalhães, & Maria, 
2013; Feng, Isern, Burton, & Hu, 2013), and metabolic profiling of human melanocyte and melanoma cell lines 
using GC-MS has been reported (Scott et al., 2011; Wang, Hu, Feng, Liu, & Hu, 2014). However, there is still no 
study concerning metabolites and relevant pathways alterations between primary melanocytes isolated from 
C57BL/6 mice and B16F10 melanoma cell lines with a same background. 

The purpose of the study is to evaluate specific metabolic pathways associated with proliferative melanoma cells 
in attempting to identify the role of NAA for this terminal disease. An overall comparison of multiple 
metabolites allowed us to evaluate overall metabolic response characteristics of the two cell types. The results 
would provide new biomarkers and contribute to a deeper knowledge of the underlying molecular processes in 
melanoma. 

 

2. Materials and Methods 

2.1 Cell culture 

B16F10 murine melanoma cells were obtained from Nanjing KeyGen Biology China (Nanjing, China). Primary 
melanocytes were isolated from C57BL/6 mice by Shanghai EK-Bioscience Biological Technology Co., Ltd 
(Shanghai, China). The two cells were cultured in complete RPMI 1640 medium (Sigma, St. Louis, MO) 
containing 10% fetal bovine serum, 100 IU/ml penicillin, and 100 μg/ml streptomycin. The cells were 
maintained in an incubator flushed with 5% CO2 at 37 ℃. The cell culture medium was refreshed every two days. 
Two cells were continuously observed by using the inverted microscope, for comparison of the cells morphology 
and proliferation. 

2.2 Cell Metabolites Extraction and Preparation 

Metabolites were extracted from cells in accordance with the reported protocols (Beckonert et al., 2007; Kim et 
al., 2017). Prior to metabolite isolation, cells were seeded in 60 mm diameter culture dishes with six independent 
replicates. Each sample contained about 5×106 cells. After 24 h, each dish was washed with 1 mL pre-cold PBS 
for three times, quenched with 2 mL ice-cold acetonitrile/water (1:1；v/v), and harvested with a cell scraper into 
a pre-cold Eppendorf tube in ice. Cell suspensions were homogenized and kept on ice for 10 min for better 
extraction before centrifugation at 12,000 g for 10 min at 4 ℃. The aqueous acetonitrile extract solutions were 
frozen at −80 °C overnight and lyophilized under vacuum at -60 ℃ with a freeze dryer(BenchTop K, VirTis). 
The obtained extracts were stored at −80 °C for NMR analysis. 
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2.3 1H NMR Spectroscopy 

All NMR protocols referred to M.H.Li et al (Cuperlovic-Culf, Ferguson, Culf, Morin, & Touaibia, 2012; Li et al., 
2018), the dried residue was dissolved in 550 µL D2O phosphate buffer (0.2 M, pH 7.4) containing 0.05% (w/v) 
TSP as a referencing chemical shift (δ0.0). After centrifugation at 12,000 g for 10 min at 4 ℃, the clear 
supernatant was pipetted into a 5 mm bruker NMR tube.  

NMR spectra were recorded on a Bruker AVANCE III 500 MHz NMR spectrometer at 298 K. A modified 
transverse relaxation-edited Call–Purcell–Meiboom–Gill (CPMG) sequence (90(τ-180-τ) n-acquisition) with a 
total spin-echo delay (2nτ) of 40 ms was used in the spectroscopy. 1H NMR spectra were measured with 128 
scans and collected into 32 K data points with a 10 000 Hz spectral width, and acquisition time of 3.28 s. In the 
end, Fourier transformation was applied to the spectra after multiplication of the FIDs (free induction decays) 
with an exponential weighting function corresponding to a line-broadening of 0.5 Hz. 

2.4 Spectra Processing and Data Analysis 

NMR spectra obtained were firstly processed using Bruker TopSpin software (version 2.1) with global phase 
correction, baseline correction and alignment. MestReC (3.7.4, Mestrelab Research SL) was used to export 1H 
NMR spectra to ASCII files for importing into R software (http: //cran.r-project. org/) to analyze data. Water 
signal and affected regions from 4.25 to 5.6 ppm were discarded before binning spectrum into 0.005 ppm width 
between 0.7 and 8.6 ppm for statistical analysis (Xing et al., 2018). The remaining spectra were normalized, 
mean-centered and pareto-scaled for further analysis. 

Principal component analysis (PCA)-an unsupervised analysis method, was first implemented to get a general 
overview of the group classification. A supervised orthogonal partial least squares-discriminant analysis (OPLS-
DA) was then performed to discard irrelevant systematic signals and pick up major features between two groups. 
The generated score plot showed the discrimination of categories, loadings plots and s-plot identified markedly 
altered metabolites that contributed to the discrimination. The validity of the models was repeatedly verified by 
two methods, a two-fold cross validation method and a 2000 times permutation test. The results were able to 
reveal the fitness and confirm the predictability of the supervised analysis comparatively. 

2.5 Metabolites Peak Assignments and Statistical Analysis 

Metabolites were assigned in accordance with online metabolome databases, such as Madison Metabolomics 
Consortium Database (MMCD) (De Meyer et al., 2008) and Human Metabolome Database (HMDB) (Cui et al., 
2008), and verified by Chenomx NMR Suite 7.5 (Chenomx Inc., Edmonton, Canada). Two-dimensional NMR 
techniques TOCSY was also used to ensure metabolites assignments. Metabolites fold changes and associated p-
values were calculated and corrected by BH (Benjamini Hochberg) method. 

2.6 Pathway Analysis and Visualization 

Potential biomarkers were assessed according to variable significance in the OPLS-DA model. Significantly 
altered metabolites and topology information were parsed into graph models using the KEGG database in 
metaboanalyst 4.0 pathway analysis-MetPA (www.metaboanalyst.ca) (Wishart et al., 2013). The schematic 
diagram of the overall metabolites and pathways affected in melanoma cells was visualized by ChemBioDraw 
Ultra 14.0. 

 

3. Results 

3.1 Morphological Characteristics of Cells 

Representative morphology of primary melanocytes (A) and melanoma cells (B) are exhibited in Figure 1. The 
primary melanocytes isolated from C57BL/6 mice were slender with more dendrites and presented in disperse 
distribution. The cells took longer about 3 days to generate and would die within 10 generations. Conversely, the 
melanoma cells were short and full and tended to get together, conferring a significant growth advantage. 
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Figure 1. Representative morphology of primary melanocytes (A) and melanoma cells (B), scale bar=100 µm  

3.2 1H NMR Spectra of Cells 

Typical 1H NMR spectra recorded from the primary melanocytes (MC) and melanoma cells (MA) are shown in 
Figure 2, and the assigned metabolites are listed in Table 1. Absolute metabolic modifications were exhibited for 
invasion and proliferation in cancer cells. In this study, 29 metabolites were identified and quantified, including 
the higher concentrations of isoleucine, leucine, valine, 3-hydroxybutyrate, lactate, alanine, 2-oxoglutarate, 
glutathione, creatine, glycine, tyrosine, phenylalanine, histidine and lower concentrations of lysine, acetate, n-
acetyl CH3, n-acetyl cysteine, glutamine, glutamate, methionine, choline, taurine, glucose and formate. 

 

 
Figure 2. Typical 500 MHz 1H NMR spectra of cell extracts obtained from melanoma cells and primary 
melanocytes. Metabolites: 1, Isoleucine; 2, Leucine; 3, Valine; 4, 3-Aminoisobutyrate; 5, 3-Hydroxybutyrate; 6, 
Lactate; 7, Alanine; 8, Lysine; 9, Acetate; 10, N-acetyl-CH3; 11, N-acetyl cysteine; 12, Glutamine; 13, 
Glutamate; 14, Succinate; 15, 2-Oxoglutarate; 16, Glutathione; 17, Methionine; 18, Dimethylamine; 19, Creatine; 
20, Choline; 21, Taurine; 22, Methanol; 23, Glucose; 24, Glycine; 25, ATP; 26, Phenylalanine; 27, Tyrosine; 28, 
Formate; 29, Histidine. 
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Table 1 Assignments of 1H NMR signals for endogenous metabolites in the cells and their fold change valuesb 
and associated p-valuesc. 

 Metabolites Assignmentsa FoldChangeb Pvaluec 

1 Isoleucine 0.92(t), 1.01(d), 1.46(m),1.96(m),3.66(d) 0.98 *** 

2 Leucine 0.94(d), 0.96(d), 1.71(m), 3.73(m) 0.26 *** 

3 Valine 0.99(d), 1.04(d),2.26(m) 0.56 *** 

4 3-Aminoisobutyrate 1.16(d) 0.19  

5 3-Hydroxybutyrate 1.18(d) 0.63 *** 

6 Lactate 1.32(d), 4.12(q) 2.64 *** 

7 Alanine 1.48(d), 3.77(q) 1.7 *** 

8 Lysine 1.72(m), 1.91(m), 3.00(t), 3.76(t) -0.79 *** 

9 Acetate 1.92(s) -0.46 * 

10 N-Acetyl CH3 2.01(s) -2.73 *** 

11 N-Acetyl cysteine 2.06(s) -1.67 *** 

12 Glutamine 2.16(m),2.45(m),3.77(t) -1.19 *** 

13 Glutamate 2.05(m),2.34(m),3.77(t) -1.43 *** 

14 Succinate 2.38(s) 0.14  

15 2-Oxoglutarate 2.42(t) 1.39 *** 

16 Glutathione 2.18(m), 2.55(m), 2.95(m) 0.29 ** 

17 Methionine 2.14(s), 2.63(t) -1.29 *** 

18 Dimethylamine 2.74(s) 1.39 *** 

19 Creatine 3.04(s),3.93(s) 0.55 * 

20 Choline 3.21(s),3.50(m),4.05(m) -2.82 *** 

21 Taurine 3.26(t),3.42(t) -1.78 *** 

22 Methanol 3.36(s) -0.15  

23 Glucose 3.4-3.95 (m), 4.65(d),5.24(d) -1.09 *** 

24 Glycine 3.56(s) 2.07 *** 

25 ATP 6.13(d),8.27(s),8.54(s) 0.06  

26 Phenylalanine 7.33(m),7.38(m),7.43(m) 0.66 *** 

27 Tryosine 6.90(d),7.20(d) 1.29 *** 

28 Formate 8.44(s) -1.52 *** 

29 Histidine 7.14 (s), 7.92 (s) 1.78 * 

a Multiplicity: singlet (s), doublet (d), triplet (t), quartets (q), multiplets (m). 

b Color coded according to log2 (fold change) transformation, red indicated the increased and blue represented 
the decreased concentrations of metabolites extracted from melanoma cells compared to primary melanocytes.  

c P-Values corrected by BH (Benjamini Hochberg) methods were calculated based on a parametric Student’s t-
test or a nonparametric MannWhitney test (dependent on the conformity to the normal distribution). * P < 0.05, 
** P < 0.01, *** P < 0.001. 

Color bar   

3.3 Multivariate Statistical Analysis of 1H NMR Spectra 

PCA was first applied to compare the samples spectra (Figure 3). The two groups separated clearly, suggesting 
that the two have disparate pathways. To search details in metabolite alterations, OPLS-DA was then performed 
between the two categories. The OPLS-DA score plot (Figure 4A) showed well separation similar to PCA results. 
And the corresponding S-plot (Figure 4B) exhibited differential metabolites modified with corresponding shapes 
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and colors. The more significant contributions of the metabolite to the group separation, the further distance 
showed from the origin. Lactate and N-acetyl-CH3 showed the most contribution to the group distinction. 
Metabolic alternations were color-coded based on the correlation coefficient significance in loading plots; a red 
signal suggested a more important contribution to the class separation than a blue signal. Loading plots (Figure 
4C and 4D) of the two groups presented concentration metabolites, including lower concentrations of lysine, 
acetate, n-acetyl-CH3, n-acetyl cysteine, glutamine, glutamate, methionine, choline, taurine, glucose and formate, 
while isoleucine, leucine, valine, 3-hydroxybutyrate, lactate, alanine, 2-oxoglutarate, glutathione, creatine, 
glycine, tyrosine, phenylalanine, histidine show higher concentrations in melanoma cells. Both two-fold cross 
validation method testing results (Figure 4E) and 2000 times permutation test results (Figure 4F) exhibited high 
R2, Q2 and accuracy, indicating the well fitness and prediction of the model. 

 
Figure 3. PCA scores plot (A) of metabolic profiles between the melanoma and primary melanocytes (n = 6). 

Symbols represent the primary melanocytes group (black filled circle) and melanoma group (red filled square) 
respectively. 

 

 
Figure 4. OPLS-DA score plot (A), S-plot (B) and color-coded coefficient loading plots (C and D), a twofold 
cross-validation test result (E) and the parametric result(t test)(F) based on 1H NMR data from cerebral extracts 
of metabolic profiles between the melanoma cells and primary melanocytes. Metabolites that contributed to 
group separation were visualized and color-coded according to the absolute correlation coefficient of each 
variable with each group. Color was coded according to the fold change in metabolites, red indicated a more 
significant change than blue signals. Abbreviations: Lysine(Lys); Formate(For); Arginine(Arg); N-Acetyl 
CH3(NAc); Glucose(Glc); Methonine(Met); Choline(Cho); Taurine(Tau); Glutamine(Glm); Glutamate(Glu); 
Valine(Val); Glycine(Gly); Lactate(Lac); Alanine(Ala); Creatine(Cre); Phenylalanine(Phe); Tyrosine(Tyr); 
Isoleucine(Ile); 2-Oxoglutarate(2-OG); 3-Aminoisobutyrate(3Ab); 3-Hydroxybutyrate(3Hb); 
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Dimethylamine(DMA); N-Acetyl cysteine(NAC). 
 
3.4 Pathway Analysis 

As showed in Table 1, the metabolites between primary melanocytes and melanoma varied a lot. Based on 
selected metabolites in table1, the result performed in MetPA was presented in two parts, graphical output 
(Figure 5) and Table S1 containing all analysis results. Disturbed pathways contained glutamine and glutamate 
metabolism, valine, leucine and isoleucine biosynthesis, phenylalanine, tyrosine and tryptophan metabolism, 
alanine, asparate and glutamate metabolism, glutathione metabolism, taurine and hypotaurine metabolism. 
Glutamine and glutamate metabolism is the furthest pathway from the pathway enrichment analysis and is also 
significant in the pathway topological analysis. According to the altered metabolites and pathway analysis, a 
schematic chart concerning the details was constructed (Figure 6), including glycolysis, glutaminolysis, acetate 
metabolism, amino acids metabolism, as well as oxidative equilibrium. 

 
Figure 5. Bubbles plots of altered metabolic pathways in melanoma cells compared with primary melanocytes. 
Bubbles area was proportional to the impact of each pathway, with color denoting the significance from the 
highest in red to the lowest in white. 
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Figure 6. Schematic diagram of the perturbed metabolic pathways detected by 1H NMR analysis showing the 
interrelationship of the identified metabolic pathways. Arrows (“↑↓”) in different colors represented the notable 
increase or decrease of metabolites in the melanoma group. 
 

4. Discussion 

The comparative approach in the research helps to demonstrate significant metabolic variances potentially linked 
to melanoma proliferation. Notable findings have included that the discovery of altered flux in energy 
metabolism containing glycolysis and glutaminolysis, disturbed amino acid metabolism and redox equilibrium 
were found in melanoma cells (Figure. 6). 

4.1 Energy Metabolism 

Under normal conditions, most mammalian cells generate energy by means of the TCA and electron transport 
respiratory chain in the mitochondria, with the minimal fermentation of lactate. While in tumors, upregulated 
glycolysis and acid resistance get a potent growth advantage in unconstrained cell populations, resulting in 
subsequent proliferation and invasion. As expected, the significantly decreased level of glucose and the 
accumulated lactate in melanoma cells showed enhanced aerobic glycolysis in figure 6, which was consistent 
with the Warburg effect. The increased rate of glucose uptake was directly used to support biomass accumulation 
and provide carbon precursors for anabolic synthesis in melanoma cells. An elevated level of lactate may 
promote melanoma invasion as reported (Chong et al., 2018). What’s more, increased alanine and glycine were 
produced from intermediates, confirming that melanoma cells prefer anabolic glycolysis for additional products.  

Glutamine has been known as another energy source in tumor cells recently. Glutamine is an important 
mitochondrial substrate, and cells can convert glutamine-derived glutamate into 2-oxoglutarate to fuel the TCA 
cycle for more ATPs (Gatenby et al., 2006). What’s more, glutamine provides a nitrogen for nucleotides and 
amino acids biosynthesis. Evidence also showed that c-Myc oncogene is an important driver of glutamine 
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utilization, and its expression is important in suppressing senescence and maintaining activation of BRAF or 
NRAS mutations in melanoma cell lines (Son et al., 2013). The figure 5 demonstrated that glutamine and 
glutamate metabolism is the most significant pathway, the sharply decreased glutamine could indicate an 
excellent ability to switch to glutamine for production of TCA metabolites in melanoma cells, proving that 
melanoma relied on glutamine for growth and proliferation by glutaminolysis, as validated by elevated 2-
oxoglutarate in functional TCA cycle in melanoma cells. 

Choline is originated from phospholipid and a precursor of betaine (DeBerardinis & Cheng, 2010). Choline 
showed a disturbed manner in many cancers and has been identified as a biomarker of cell proliferation (Ueland, 
2011). The decreased choline in the melanoma cells may be utilized to generate more betaine to fight against 
oxidative stress. Creatine and phosphocreatine played an important role in cellular energy buffering and transport 
(Patra et al., 2012; Ying et al., 2013). Elevated level of creatine suggested a disturbed energy metabolism in 
melanoma cells. 

4.2 Amino Acids Metabolism 

Amino acids are important metabolic regulators, and altered amino acids were highlighted in different kinds of 
cancers (Deminice et al., 2016; Tsun & Possemato, 2015). Many reports showed that certain amino acids 
transporters were up regulated in cancer, especially L-type amino acid transport (Gu et al., 2015; Ikotun et al., 
2013).  

Significant increase of valine, leucine and isoleucine (branched chain amino acids, BCAAs) was observed in 
melanoma cells. In clinic, BCAAs were used to spare protein and normalize respiratory quotients (Ohshima et al., 
2016). The increased levels of BCAAs in tumor cells suggested that cells uptake more BCAAs from 
environment to meet demands of increased protein synthesis. Arginine is an amino acid which provides 
precursors for protein synthesis and intermediates in the urea cycle. Arginine was highly required in rapid growth 
periods like inflammation, organ dysfunction and tumor growth (Fernstrom, 2005). Melanomas were found no 
ability to synthesize arginine for the urea cycle enzyme arginosuccinate synthetase deficiency (Morris, 2007). 
The marked decreased level of arginine proved that melanoma cells were dependent on arginine called arginine 
auxotrophy. Thus, cell death induced by arginine deprivation is a potential cancer therapy approach to be 
explored in clinic (Dillon et al., 2004).  

Alanine is another end point of glycolysis acted as a substrate composed of proteins. Alanine is converted from 
pyruvate via alanine transaminase as the standard marker of glycolytic activity in cancer cells. Alanine over 
output in melanoma cells is attributed to the need for excreting excess nitrogen resulting from glutamine 
utilization and accelerated synthesis from glucose. The result consisted with previous reports where increased 
production and excretion of alanine is a metabolic marker of melanoma (Filipp et al., 2012). Glycine provides 
two carbon atoms and a nitrogen atom in the purine biosynthesis. It is also a substrate of glutathione, which 
maintains intracellular redox balance mainly (Scott et al., 2011). Thus, disturbed glycine metabolism on cancer 
metabolomics was reported associated with constant cell proliferation (Amelio, Cutruzzolá, Antonov, Agostini, 
& Melino, 2014). In the study, significant increased level of glycine was shown in melanoma cells, indicating 
that cancer cells antagonize glycine uptake and biosynthesis to meet demands of purine production and maintain 
a high proliferation rate. 

Tyrosine and phenylalanine are aromatic amino acids. Inefficient function of mitochondrial may cause the 
impaired aromatic amino acids metabolism. Increased aromatic amino acids were found in tissues of patients 
with gastro esophageal cancer, melanoma cells were also found with increased tyrosine and phenylalanine, 
revealing melanoma cells got decoupling of mitochondrial TCA activity as reported (Locasale, 2013). Moreover, 
melanin is formed from tyrosine, so melanoma cells absorbed more tyrosine in accordance with increased 
synthesis of melanin (Wiggins, Kumar, Markar, Antonowicz, & Hanna, 2015). 

4.3 Redox Equilibrium 

Reactive oxygen species (ROS) were regarded as a group of diatomic oxygen produced from mitochondrial 
electron leakage or NADPH oxidases (Krzyściak, 2011). Mitochondrial ROS contribute to the accumulation of 
additional mutations that promote metastatic behavior and amplify the tumorigenic phenotype. The general 
marker of high oxidative stress in cancer metabolism has been well recognized (Kang, Lee, & Lee, 2015). 
Therefore, a set of ‘antioxidant’ mechanisms that are expressed in various subcellular compartments are 
mediated to scavenge high ROS in cancer cells. The degradation of hydroperoxides is achieved initially by 
enzymes that supply electrons to reduce them to water. GSH redox system was commonly utilized as an 
antioxidant defense mechanism, where glutathione (GSH) and oxidized glutathione (GSSG) converted to each 
other under the control of glutathione peroxidase (GPx) and glutathione reductase (GR). The equilibrium 
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between the two will regulate the level of ROS in cells (Tong, Chuang, Wu, & Zuo, 2015). Elevated level of 
GSH has been found in many tumor cells including melanoma cells. In this study, the increased GSH indicated 
the activated system to regulate redox in melanoma cells, maintaining cancer cells growth advantage as reported 
(Carretero et al., 1999; Traverso et al., 2013).  

Taurine, as the most abundant free amino acid in cells, plays several roles in essential pathways, including bile 
acids conjugation, membrane mobilization and maintenance of calcium homeostasis. Specially, Taurine has been 
reported to affect the activities and expression of antioxidant enzymes, and it has also been demonstrated that to 
attenuate superoxide generation by improving the function of the electron transport chain (Carretero et al., 2001). 
The marked low level of taurine clearly showed oxidative stress during melanoma cells growth. 

 

5. Conclusion 

In short, this is the first study to apply an NMR-based metabolomics approach to investigate the metabolic 
pathway variations between murine melanoma cells and primary melanocytes isolated from C57BL/6 mice. The 
results showed that disturbed energy metabolism, amino acid metabolism and oxidative stress in melanoma cells 
compared with primary melanocytes. Under the proliferation stress, the glycolytic phenotype accompanied by 
decreased level of glucose and abundant lactate fermentation, is necessary for evolution of invasive melanoma 
cells. Constitutive mobilized glutamine and lipids is likely to be an adaptation to energy demands in melanoma 
cells. The relatively low oxygen utilization rate in tumor cells may cause oxidative stress and mitochondria 
damage in cancer cells. Decreased levels of taurine and active GSH redox system indicated that they were 
employed to fight against the severe oxidative stress occurred in the melanoma cells. What’s more, plenty of 
amino acids were transported for biomass during the melanoma proliferation. These evolutionary alterations 
effectively explain the remarkable growth advantage in melanoma cells. The study implicated that the 
combination of NMR technique with appropriate statistical analyses is a potent tool to identify a large number of 
various metabolites and depicture the metabolic profiling of organisms, providing valuable information for 
metabolic pathway distinctions under different conditions. 
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