The Cyclic Decomposition of the Factor Group cf $\left(D_{n} \times C_{3}, Z\right) / \overline{\mathrm{R}}\left(D_{n} \times C_{3}\right)$ When n is an Odd Number

Kareem Abass Layith AL-Ghurabi
Babylon University College of Education Department of Mathematics
Email:kareemalghurabi@yahoo.com

Abstract

Let D_{n} be the dihedral group, C_{3} be the cyclic group of order 3 and $D_{n h}$ is the direct product group of D_{n} and C_{3} (i.e. $\left.D_{n} \times C_{3}\right)$. Let $\operatorname{cf}\left(D_{n} \times C_{3}, Z\right)$ be the abelian group of Z-valued class functions of the group $D_{n} \times C_{3}$. The intersection $\operatorname{cf}\left(D_{n} \times C_{3}, Z\right)$ with the group of all generalized characters of $D_{n} \times C_{3}$ which is denoted by $R\left(D_{n} \times C_{3}\right)$

 , is a normal subgroup of $\operatorname{cf}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}, \mathrm{Z}\right)$ denoted by$$
\bar{R}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}\right) \text {, then factor group } \operatorname{cf}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}\right) \text { is a finite abelian group denoted by } \mathrm{K}\left(\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}\right) .
$$

The problem of determining the cyclic decomposition of the group
$K\left(D_{n} \times C_{3}\right)$ seem to be untouched.
The aim of this paper is to find the cyclic decomposition of this group.
We find that when n is an odd number such that $n=\prod_{i=1}^{m} p_{i}^{\alpha_{i}}$, where all $p_{i}{ }^{\prime} S$ are distinct primes , then

1. Introduction

We can use The general features of the representation theory of finite group G over the complex numbers were discovered by Ferdinand Geory Frobenius in the years before 1900 Later on the modular representation theory of Richard Brauer was developed.

Representation theory is a tool which reduces group theortic problems into problems in linear algebra which is a very well-understood theory. As the representation theory is a very useful method to study abstract groups , it may be hard to deal with it when the order of the finite group is too large Fortunately this is not the case in the character theory which is used to study groups via their representations the theory of invariant factors to obtain the direct sum of the cyclic Z-module of orders the distinct invariant factors of $\equiv^{*}(\mathrm{G})$ to find the cyclic decomposition of $K(G)$.In1982 M.S.Kirdar[4] studied the $K\left(C_{n}\right)$.In 1994 H.H. Abass[2]studied the $K\left(D_{n}\right)$ and found $\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right)$.In 1995 N.R. Mahamood [5] studied the factor group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$.In 2005 N.S. Jasim [6] studied the factor group $\operatorname{cf}(\mathrm{G}, \mathrm{Z}) / \bar{R}(G)$ for the special linear group $\operatorname{SL}(2, \mathrm{p})$.

In this paper we study $\mathrm{K}\left(\boldsymbol{D}_{\boldsymbol{n}} \times \boldsymbol{C}_{3}\right)$ and find $\equiv^{*}\left(\boldsymbol{D}_{\boldsymbol{n}} \times \boldsymbol{C}_{3}\right)$ when n is an odd number .

2. Preliminaries

In this section we present some basic concepts of representation theory, character theory, the Dihedral group D_{n} and the group $D_{n} \times \boldsymbol{C}_{3}$ which will be used in later chapters
Definition (1.1):[1]
The set of all $l \times l$ non-singular matrices over the field F forms a group under the operation of matrix multiplication which is called the general linear group of the dimension n over the field F, denoted by GL ($n, \mathrm{~F}$).
Definition (1.2): [1]
A matrix representation of a group G is a group homomorphism T of G into $\mathrm{GL}(l, \mathrm{~F}), l$ is called the degree of matrix representation T.
Definition (1.3): [1]
The trace of an $l \times l$ matrix is the sum of the main diagonal elements, denoted by $\operatorname{tr}(\mathrm{A})$.

Journal of Biology and Medical Sciences - JBMS

An Open Access International Journal published by University of Babylon, Iraq Vol. 12013

Example (1.4):

Consider the symmetric group S_{3} of order 6 , define $T: S_{3} \rightarrow G L(3, C)$ as follows :
$\boldsymbol{T}((1))=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \boldsymbol{T}\left((\mathbf{1 2)})=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \boldsymbol{T}((13))=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]\right.$
$\boldsymbol{T}((23))=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \boldsymbol{T}((\mathbf{1 2 3}))=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \boldsymbol{T}((132))=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

T is a matrix representation of the group S_{3} of degree 3 .

Theorem (1.5):[1]
Let $T_{1}: G_{1} \rightarrow G L\left(V_{1}\right)$ and $T_{2}: G_{2} \rightarrow G L\left(V_{2}\right)$ be two irreducible representations of the groups G_{1} and G_{2} respectively, then $T_{1} \otimes T_{2}$ is irreducible representations of the group $G_{1} \times G_{2}$.
Definition (1.6): [3]
Let T be a matrix representation of a group G over the field F , the character χ of a matrix representation T is the mapping $\chi: \mathrm{G} \rightarrow \mathrm{F}$ defined by $\chi(\mathrm{g})=\operatorname{Tr}(\mathrm{T}(\mathrm{g}))$ for all $\mathrm{g} \in \mathrm{G}$ where $\operatorname{Tr}(\mathrm{T}(\mathrm{g}))$ refers to the trace of the matrix $\mathrm{T}(\mathrm{g})$ and $\chi(1)$ is the degree of χ.
Remark (1.7):
(i)A finite group G has a finite number of conjugacy classes and a finite number of distinct irreducible character, the group character of a group representation is constant on a conjugacy class, the values of irreducible characters can be written as a table whose columns are the conjugacy class and rows the value of irreducible characters on each conjugacy class, this table of the group G, denoted by $\equiv(\mathrm{G})$.
(ii) If $\mathrm{G}=\mathrm{C}_{\mathrm{n}}=<r>$ is the cyclic group of order n generated by r.If $\omega=\mathrm{e}^{2 \pi i / n}$ is the primitive n -th root of unity, the
$\equiv\left(\mathrm{C}_{\mathrm{n}}\right)=$

CL_{α}	1	r	r^{2}	\cdots	r^{n-1}
$\left\|C L_{\alpha}\right\|$	1	1	1	\cdots	1
$\left\|C_{G}\left(C_{\alpha}\right)\right\|$	n	n	n	\cdots	n
χ_{1}	1	1	1	\cdots	1
χ_{2}	1	ω	ω^{2}	\cdots	ω^{n-1}
χ_{3}	1	ω^{2}	ω^{4}	\cdots	ω^{n-2}
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
χ_{n}	1	ω^{n-1}	ω^{n-2}	\cdots	ω

Definition (1.8):[3]
Let χ and ψ as characters of a group G, then :

1. The sum of characters is defined by:

$$
\left(\chi^{+} \psi\right)(\mathrm{g})=\chi(\mathrm{g})+\psi(\mathrm{g}) \quad, \text { for all } \mathrm{g} \in \mathrm{G}
$$

2. The product of characters is defined by : $(\chi \cdot \psi)(\mathrm{g})=\chi(\mathrm{g}) \cdot \psi(\mathrm{g})$, for all $\mathrm{g} \in \mathrm{G}$.

Theorem (1.9):[3]
Let $\mathrm{T}_{1}: \mathrm{G}_{1} \rightarrow \mathrm{GL}(\mathrm{n}, \mathrm{K})$ and $\mathrm{T}_{2}: \mathrm{G}_{2} \rightarrow \mathrm{GL}(\mathrm{m}, \mathrm{K})$ are two matrix representations of the groups G_{1} and G_{2}, χ_{1} and χ_{2} be two characters of T_{1} and T_{2} respectively, then the character of $T_{1} \otimes T_{2}$ is $\chi_{1} \chi_{2}$.
Definition (1.10): [1]
A rational valued character θ of G is a character whose values are in the set of integers Z , which is $\theta(\mathrm{g}) \in \mathrm{Z}$, for all $\mathrm{g} \in \mathrm{G}$.
Proposition (1.11):[4]

Journal of Biology and Medical Sciences - JBMS

An Open Access International Journal published by University of Babylon, Iraq Vol. 12013

The rational valued characters $\theta_{i}=\sum_{\sigma \in \operatorname{Gal}\left(Q\left(\chi_{i}\right) / Q\right)} \sigma\left(\chi_{i}\right) \quad$ form basis for $\bar{R}_{(\mathrm{G}), \text { where } \chi_{i} \text { are the }}$ irreducible characters of G and their numbers are equal to the number of all distinct Γ - classes of G .

3. The factor group $K(G)$

In this section, we study the factor $\mathrm{K}(\mathrm{G})$ and discuss the cyclic decomposition of the factor groups $\mathrm{K}\left(\mathrm{C}_{\mathrm{n}}\right)$ and $K\left(D_{n}\right)$.

Definition (2.1):[4]

Let M be a matrix with entries in a principal ideal domain R , a k -minor of M is the determinate of $\mathrm{k} \times \mathrm{k}$ sub matrix preserving rows and columns order.
Definition (2.2):[4]
A k -th determinant divisor of M is the greatest common divisor
(g.c.d) of all the k-minors of M . This is denoted by $\mathrm{D}_{k}(\mathrm{M})$.

Lemma (2.3):[4]
Let M, P and W be matrices with entries in a principal ideal domain R , if P and W are invertible matrices, then $\mathrm{D}_{k}(\mathrm{PM} \mathrm{W})=\mathrm{D}_{k}(\mathrm{M})$ modulo the group of unites of R .
Theorem (2.4): [4]
Let M be an 1×1 matrix entries in a principal ideal domain R , then there exists matrices P and W such that:
1- P and W are invertible.
2- $\mathrm{PMW}=\mathrm{D}$.
3- D is diagonal matrix.
4-if we denote $\mathrm{D}_{i i}$ by d_{i} then there exists a natural number m ;
$0 \leq \mathrm{m} \leq 1$ such that $\mathrm{j}>\mathrm{m}$ implies $\mathrm{d}_{j}=0$ and $\mathrm{j} \leq \mathrm{m}$ implies $\mathrm{d}_{j} \neq 0$
and $1 \leq \mathrm{j} \leq \mathrm{m}$ implies $\mathrm{d}_{j} \mid \mathrm{d}_{j+1}$.

Definition (2.5):[4]

Let M be a matrix with entries in a principal ideal domain R be equivalent to a matrix $\mathrm{D}=\mathrm{diag}\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots\right.$ $\left., \mathrm{d}_{m}, 0,0, \ldots, 0\right\}$ such that $\mathrm{d}_{j} \mid \mathrm{d}_{j+1}$ for $1 \leq \mathrm{j}<\mathrm{m}$.

We call D the invariant factor matrix of M and $d_{1}, d_{2}, \ldots, d_{m}$ the invariant factors of M. Theorem (2.6):[4]

Let K be a finitely generated module over a principal ideal domain R , then K is the direct sum of a cyclic submodules with an annihilating ideal $\left\langle\mathrm{d}_{1}>,<\mathrm{d}_{2}>, \ldots,<\mathrm{d}_{m}>, \mathrm{d}_{j}\right| \mathrm{d}_{j+1}$ for $\mathrm{j}=1,2, \ldots, \mathrm{~K}-1$.

Proposition(2.7):[4]

Let A and B be two non-singular matrices of the rank n and m respectively, over a principal ideal domain R . Then the invariant factor matrices of $\mathrm{A} \otimes \mathrm{B}$ equals $\mathrm{D}(\mathrm{A}) \otimes_{\mathrm{D}}(\mathrm{B})$, where $\mathrm{D}(\mathrm{A})$ and $\mathrm{D}(\mathrm{B})$ are the invariant factor matrices of A and B respectively .
Theorem(2.8):[4]
Let H and L be p_{1}-group and p_{2}-group respectively, where p_{1} and p_{2} are distinct primes. Then, $\equiv \#^{*}(H \times$ $\mathrm{L})=\equiv^{*}(\mathrm{H}) \otimes \otimes \equiv^{*}(\mathrm{~L})$.
Remark (2.9):[4]
Suppose $\operatorname{cf}(\mathrm{G}, \mathrm{Z})$ is of the rank l, the matrix expressing the \bar{R} (G) basis in terms of the $\operatorname{cf}(\mathrm{G}, \mathrm{Z})=\mathrm{Z}^{l}$ basis is $\equiv{ }^{*}(\mathrm{G})$.

Hence by theorem (2.4),we can find two matrices P and Q with a determinant ± 1 such that P . $\equiv^{*}(\mathrm{G}) . \mathrm{Q}$ $=\mathrm{D}\left(\equiv^{*}(\mathrm{G})\right)=\operatorname{diag}\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots \ldots \ldots, \mathrm{~d}_{l}\right\}$,

$$
\mathrm{d}_{\mathrm{i}}= \pm D_{i}\left(\equiv^{*}(\mathrm{G})\right) / \pm D_{i-1}\left(\equiv^{*}(\mathrm{G})\right) .
$$

this yields a new basis for \bar{R} (G) and $\operatorname{Cf}(\mathrm{G}, \mathrm{Z}),\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . ., \mathrm{v}_{l}\right\}$ and
$\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \ldots \ldots, \mathrm{u}_{l}\right\}$ respectively with the property $\mathrm{v}_{j}=\mathrm{d}_{j} \mathrm{u}_{j}$.

Journal of Biology and Medical Sciences - JBMS

An Open Access International Journal published by University of Babylon, Iraq Vol. 12013

Hence by theorem (2.6) the Z-module $\mathrm{K}(\mathrm{G})$ is the direct sum of cyclic submodules with annihilating ideals $<\mathrm{d}_{1}>,<\mathrm{d}_{2}>, \ldots,<\mathrm{d}_{l}>$.
Theorem (2.10) : [4]
Let p be a prime number, then :

$$
\mathrm{K}(\mathrm{G})=\oplus \sum_{i=1}^{s} C_{d_{i}} \text { such that } \mathrm{d}_{\mathrm{i}}= \pm D_{i}\left(\equiv^{*}(\mathrm{G})\right) / \pm D_{i-1}\left(\equiv^{*}(\mathrm{G})\right)
$$

Theorem (2.11):[4]

$$
|\mathrm{K}(\mathrm{G})|=\operatorname{det}\left(\equiv^{*}(\mathrm{G})\right)
$$

Proposition (2.12):[4]
The rational valued characters table of the cyclic group $\mathrm{C} p^{s}$ of the rank $\mathrm{s}+1$ where p is a prime number
which is denoted by $\left(\equiv^{*}\left(\mathrm{C} p^{s}\right)\right)$, is given as follows:

Γ-classes	[1]	$\left[\mathrm{r}^{p^{s-1}}\right.$	$\left[\mathrm{r}^{p^{s-2}}\right]$	$\left[\mathrm{r}^{p^{s-3}}\right]$	\ldots	$\left[\mathrm{r}^{p^{2}}\right]$	$\left[\mathrm{r}^{p}\right]$	[r]
θ_{1}	$\mathrm{p}^{s-1}(\mathrm{p}-1)$	$-\mathrm{p}^{s-1}$	0	0	\ldots	0	0	0
θ_{2}	$\mathrm{p}^{s-2}(\mathrm{p}-1)$	$\mathrm{p}^{s-2}(\mathrm{p}-1)$	$-\mathrm{p}^{s-2}$	0	\ldots	0	0	0
θ_{3}	$\mathrm{p}^{s-3}(\mathrm{p}-1)$	$\mathrm{p}^{s-3}(\mathrm{p}-1)$	$\mathrm{p}^{s-3}(\mathrm{p}-1)$	$-\mathrm{p}^{s-3}$	\ldots	0	0	0
!	!	!	!	!	\ddots	!	!	!
θ_{s-1}	$\mathrm{p}(\mathrm{p}-1)$	$\mathrm{p}(\mathrm{p}-1)$	$\mathrm{p}(\mathrm{p}-1)$	$\mathrm{p}(\mathrm{p}-1)$	\cdots	$\mathrm{p}(\mathrm{p}-1)$	-p	0
θ_{s}	p-1	p-1	p-1	p-1	\ldots	p-1	p-1	-1
θ_{s+1}	1	1	1	1	\cdots	1	1	1

where its rank s+1 represents the number of all distinct Γ-classes.
Example (2.13):
Consider the cyclic group C_{49} by using table (2.3), we can find the rational valued characters table of C_{49} as follows:

$$
\equiv^{*}\left(\mathrm{C}_{49}\right)=\equiv^{*}\left(\mathrm{C}_{7^{2}}\right)=
$$

Γ-classes	$[1]$	$\left[r^{7}\right]$	$[r]$
θ_{1}	42	-7	0
θ_{2}	6	6	-1
θ_{3}	1	1	1

Remark (2.14):

In general, for $\mathrm{n}=\mathrm{p}_{1}^{\alpha 1} \cdot \mathrm{p}_{2}^{\alpha 2} \ldots . \mathrm{p}_{m}^{\alpha m}$ where g.c.d $\left(\mathrm{p}_{i}, \mathrm{p}_{j}\right)=1$, if $\mathrm{i} \neq \mathrm{j}, \mathrm{p}_{i}$'s are prime numbers and $\alpha_{i} \in Z^{+}$, then we have the following formula :

$$
\equiv^{*}\left(\mathrm{C}_{\mathrm{n}}\right)=\equiv^{*}\left(\mathrm{C} p_{1}^{\alpha 1}\right) \otimes \equiv^{*}\left(\mathrm{C} p_{2}^{\alpha 2}\right) \otimes \ldots \otimes \equiv^{*}\left(\mathrm{C} P_{m}^{\alpha m}\right)
$$

Proposition (2.14):[4]
If p is a prime number, then

$$
\mathrm{D}\left(\equiv^{*}\left(\mathrm{C}_{\mathrm{p}}^{\mathrm{s}}\right)\right)=\operatorname{diag}\left\{\mathrm{p}^{\mathrm{s}}, \mathrm{p}^{\mathrm{s}-1}, \ldots \ldots, \mathrm{p}, 1\right\}
$$

Remark (2.15):[4]
For $\mathrm{n}=\mathrm{p}_{1}^{\alpha 1} \cdot \mathrm{p}_{2}^{\alpha 2} \ldots . \mathrm{p}_{m}^{\alpha m}$ where p_{i} 's are distinct primes and $\alpha_{i} \in Z^{+}$, then : $\mathrm{D}\left(\equiv^{*}\left(\mathrm{C}_{n}\right)\right)=\mathrm{D}\left(\equiv^{*}(\mathrm{C}\right.$

Journal of Biology and Medical Sciences - JBMS

An Open Access International Journal published by University of Babylon, Iraq Vol. 12013

$$
\left.\left.p_{1}^{\alpha 1}\right)\right) \otimes \mathrm{D}\left(\equiv^{*}\left(\mathrm{C} p_{2}^{\alpha 2}\right)\right) \otimes \ldots \otimes \mathrm{D}\left(\equiv^{*}\left(\mathrm{C} P_{m}^{o m}\right)\right)
$$

Theorem (2.16) :[4]
Let p be a prime number, then :

$$
\mathrm{K}\left(\mathrm{C}_{\mathrm{p}}^{\mathrm{s}}\right)=\oplus \sum_{i=1}^{s} C_{P^{i}}
$$

Example(2.17):-

$$
\mathrm{K}\left(\mathrm{C}_{25}\right)=\mathrm{K}\left(\mathrm{C}_{5^{2}}\right)=\mathrm{C}_{5} \oplus \mathrm{C}_{5^{2}}
$$

Proposition(2.18):[4]
Let $\mathrm{n}=\prod_{i=1}^{k} P_{i}^{a_{i}}$, where p_{i} 's are distinct primes and $a_{i} \in Z^{+}$,then :
$\mathrm{K}\left(\mathrm{C}_{\mathrm{n}}\right)=\oplus \sum_{i=1^{\prime}}^{k}\left(\oplus \sum K\left(C_{P_{i}^{a_{i}}}\right)\right)\left[\prod_{\substack{j \neq i \\ j=1}}^{k}\left(a_{j}+1\right)\right]$ time .
Example(2.19) :
To find the cyclic decomposition of group $\mathrm{K}\left(\mathrm{C}_{15435}\right)$
$\mathrm{K}\left(\mathrm{C}_{15435}\right)=\mathrm{K}\left(\mathrm{C}_{3}{ }^{2} .7^{3} .5\right)=\underbrace{K\left(C_{3^{2}}\right) \oplus} \quad \cdots \quad \cdots \quad \oplus K\left(C_{3^{2}}\right)$

$$
(3+1) \cdot(1+1) \text { times }
$$

$\oplus \underbrace{K\left(C_{7^{3}}\right) \oplus \quad \cdots \quad \cdots \quad \oplus K\left(C_{7^{3}}\right)}$
$(2+1) \cdot(1+1)$ times
$\oplus \underbrace{K\left(C_{5}\right) \oplus \quad \cdots \quad \cdots \quad \oplus} \underbrace{} \underbrace{\left(C_{5}\right)}$

$$
(2+1) \cdot(3+1) \text { times }
$$

$$
=\oplus_{i=1}^{8} K\left(C_{3}^{2}\right) \oplus_{i=1}^{6} K\left(C 7^{3}\right) \oplus_{i=1}^{12} K\left(C_{5}\right)
$$

$$
=\oplus_{i=1}^{8} \mathrm{C}_{3}{ }^{2} \oplus_{i=1}^{8} \mathrm{C} 3 \oplus_{i=1}^{6} \mathrm{C} 7^{3} \oplus_{i=1}^{6} \mathrm{C} 7^{2} \oplus_{i=1}^{6} \mathrm{C} 7 \oplus_{i=1}^{12} \mathrm{C} 5
$$

Definition (2.20): [3]
For a fixed positive integer $\mathrm{n} \geq 3$,the dihedral group $\boldsymbol{D}_{\boldsymbol{n}}$ is a certain non- abelian group of the order 2 n . In general can write it as:

$$
\mathrm{D}_{\mathrm{n}}=\left\{S^{j} r^{k}: 0 \leq \mathrm{k} \leq \mathrm{n}-1,0 \leq \mathrm{j} \leq 1\right\}
$$

which has the following properties :

$$
r^{n}=1, S^{2}=1, S r^{k} S^{-1}=r^{-k}
$$

. Definition $D_{n} \times C_{3(2.21)}:[3]$
The group $\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}$ is the direct product group $\mathrm{D}_{\mathrm{n}} \times \mathrm{C}_{3}$, where C_{3} is a cyclic group of the order 3 consisting of elements $\left\{1, r^{*}, r^{*}\right\}$ with $\left(r^{*}\right)^{2}=1$.It is order 4 n .
So the group $D_{n} \times C_{3}$ is the direct product group $D_{n} \times C_{3}$, then the order of $D_{n} \times C_{3}$ is $6 n$.

Journal of Biology and Medical Sciences - JBMS

An Open Access International Journal published by University of Babylon, Iraq Vol. 12013

Lemma (2.22):[2]
The rational valued characters table of D_{n} when n is an odd number is given as follows:

Where 1 is the number of Γ - classes of C_{n}.
Example (2.23):
To find the rational valued characters table of D_{49}, From example (2.13), we obtain $\equiv{ }^{*}\left(\mathrm{C}_{49}\right)$ and by using lemma (2.22), we have.

$$
\equiv^{*}\left(\mathrm{D}_{49}\right)=\equiv^{*}\left(\begin{array}{ll|lll|l|}
\hline 7^{2}
\end{array}\right)=\begin{array}{|ccccc|}
\hline \Gamma \text {-classes } & {[1]} & {\left[r^{7}\right]} & {[r} & \\
\hline
\end{array}
$$

Table (2.10)

$=$| Γ-classes | $[1]$ | $\left[r^{7}\right]$ | $[r]$ | $[\mathrm{S}]$ |
| :---: | :---: | :---: | :---: | :---: |
| θ_{1} | 42 | -7 | 0 | 0 |
| θ_{2} | 6 | 6 | -1 | 0 |
| θ_{3} | 1 | 1 | 1 | 1 |
| θ_{4} | 1 | 1 | 1 | -1 |

Proposition(2.24):[2]

$$
\mathrm{D}\left(\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right)\right)=\left[\begin{array}{c|c}
D\left(\equiv^{*}\left(C_{n}\right)\right) & 0 \\
\hline 0 & -2
\end{array}\right] \text { Where } \mathrm{D}\left(\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right)\right) \text { and } \mathrm{D}\left(\equiv^{*}\left(\mathrm{C}_{\mathrm{n}}\right)\right)
$$

are the invariant factors matrices of $\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right)$ and $\equiv^{*}\left(\mathrm{C}_{\mathrm{n}}\right)$ respectively .
Theorem(2.25) :-[7]
If n is an odd number ,then :

$$
\equiv^{*}\left(\mathrm{D}_{\mathrm{nh}}\right)=\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right) \otimes \equiv^{*}\left(\mathrm{C}_{2}\right) .
$$

Theorem(2.26) :- [7]
For a fixed positive odd integer n such that $n=p_{1}^{\alpha 1} \cdot p_{2}^{\alpha 2} \cdots p_{m}^{\alpha m}$ where $p_{1}, p_{2}, \ldots, p_{m}$ are distinct primes and $\alpha_{1}, \alpha_{2}, . ., \alpha_{m}$ are positive integers, then ;

$$
\mathrm{K}\left(\mathrm{D}_{\mathrm{nh}}\right)=\oplus_{i=1}^{2} \mathrm{~K}\left(\mathrm{D}_{\mathrm{n}}\right) \stackrel{\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)-2}{\oplus_{i=1}} \quad \mathrm{C}_{2} \oplus \mathrm{~K}\left(\mathrm{C}_{4}\right)
$$

Example(2.27):-
To find $K\left(D_{15435 h}\right)$

Journal of Biology and Medical Sciences - JBMS

An Open Access International Journal published by University of Babylon, Iraq Vol. 12013
$\mathrm{K}\left(\mathrm{D}_{\mathrm{nh}}\right)=\oplus_{i=1}^{2} \mathrm{~K}\left(\mathrm{D}_{\mathrm{n}}\right) \stackrel{\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)-2}{\oplus_{i=1}} \quad \mathrm{C}_{2} \oplus \mathrm{~K}\left(\mathrm{C}_{4}\right)$.
$\mathrm{K}\left(\mathrm{D}_{15435 \mathrm{~h}}\right)=\mathrm{K}\left(\mathrm{D}_{3}^{2} \cdot 7^{3} \cdot 5 \mathrm{~h}\right)=\oplus_{i=1}^{2} \mathrm{~K}\left(\mathrm{D} 3^{2} .7^{3} \cdot 5\right){ }_{i=1}^{22} \mathrm{C}_{2} \oplus \mathrm{~K}\left(\mathrm{C}_{4}\right)$.

3. The Main Results

In this section we find the general form of the rational valued characters table of the group $\boldsymbol{D}_{n} \times \boldsymbol{C}_{3}$ (when n is an odd number).
Theorem(3.1) :-
If n is an odd number, then :

$$
\equiv^{*}\left(\boldsymbol{D}_{n} \times \boldsymbol{C}_{3}\right)=\equiv^{*}\left(\mathrm{D}_{\mathrm{n}}\right) \quad \equiv^{*}\left(\mathrm{C}_{3}\right)
$$

Proof:-
From proposition (2.24) we have
$P\left(D_{\text {nh }}\right) \cdot M\left(D_{\text {nh }}\right) \cdot W\left(D_{\text {nh }}\right)=\operatorname{diag}\{2,2,2, \ldots,-2,1,1,1\}=\left\{d_{1}, d_{2}, \ldots \ldots \ldots \ldots\right.$,

$$
\begin{aligned}
& \mathrm{d}^{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)-1\right)}, \mathrm{d}^{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1}, \mathrm{~d}^{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)}, \\
& \left.\mathrm{d}^{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)+1} \mathrm{~d}^{2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)+2}\right\} .
\end{aligned}
$$

By theorem (2.25) we get

$$
\begin{array}{cc}
\quad 2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1 \\
\operatorname{AC}\left(\mathrm{D}_{\mathrm{nh}}\right)= \\
2\left(\left(\alpha_{1}+1\right) \cdot\left(\alpha_{2}+1\right) \cdots\left(\alpha_{m}+1\right)\right)-1 \\
= & \bigoplus_{i=1} \\
=\quad
\end{array}
$$

From theorem(2.6) we have :

References

[1] C.Curits and I.Reiner ,"Methods of Representation Theory with Application to Finite Groups and Order " , John wily\& sons, New York, 1981.
[2] H.H. Abass," On The Factor Group of Class Functions Over The Group of Generalized Characters of D_{n} ", M.Sc thesis, Technology University,1994.
[3] J. P. Serre, " Linear Representation of Finite Groups " ,Springer- Verlage, 1977.
[4] M.S. Kirdar , " The Factor Group of The Z-Valued Class Function Modulo The Group of The Generalized Characters ", Ph.D. thesis, University of Birmingham, 1982 .
[5] N. R. Mahamood " The Cyclic Decomposition of the Factor Group $\operatorname{cf}\left(\mathrm{Q}_{2 \mathrm{~m}}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{Q}_{2 \mathrm{~m}}\right)$ ", M.Sc. thesis, University of Technology, 1995.
[6] N. S. Jasim, " Results of The Factor Group $\operatorname{cf}(\mathrm{G}, \mathrm{Z}) / \bar{R}(\mathrm{G})$ ", M.Sc. thesis, University of Technology, 2005.
[7] M. S. Mahdi, " The Cyclic Decomposition of The Factor Group $\quad \operatorname{cf}\left(\mathrm{D}_{\mathrm{nh}}, \mathrm{Z}\right) / \bar{R}\left(\mathrm{D}_{\mathrm{nh}}\right)$ when n is an odd number", M.Sc. Thesis, University of Kufa, 2008.

