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Abstract 

The AI delivery system in Ethiopia constrained with various technical, infrastructural and financial problems and 

thus it is said to be inefficient in terms of genetics and productivity improvement. A study conducted in 2017,2018 

and 2019 in Amhara, Oromia, Southern Nations Nationalities and Peoples (SNPP) and Tigray regional states of 

the country to provide information on the impact of farmers’ and AI technicians characteristics that influence the 

adoption, utilization and efficiency of Artificial Insemination (AI) technology in Ethiopia. The overall mean age 

of AI technicians in the four studied regions was about 35 years. The total number of AI technicians in 2017/18 

was 1,293 of which 93 (7.2%) were female. The engagement of women in the AI delivery system increased in 

2017/18 from 1.8% to 7.2%. About 42% of the total AI technicians considered in this study trained for 45 days 

while the other 22%, 32%, and 7% trained for a period of three, six and nine months, respectively. AI technicians 

in the four study regions served as AI technician for an average of 8.17 years. Experience of AI technicians was 

positively correlated with the number of inseminations during regular (r=0.144), peak (r=0.159*) and off 

(r=0.219**) seasons. However, it was found to be negatively correlated with service per conception (r=-0.034). 

The average dairy farming household’s family size in the four studied regions was 6.18 persons per household. 

Total household income, income from livestock sale and livestock products was significantly different (p<0.05) 

among the four regions.  
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INTRODUCTION 

In a country, such as Ethiopia, where there is huge cattle population, the dairy sector can significantly contribute 

to the wellbeing of the dairying households, the nutrition of consumers, and the economy of the country at large. 

However, the sector is challenged by technical, infrastructural and policy constraints (Wytze et al., 2012). With 

the available about 60.4 million heads of cattle and 6.7 million dairy cows (CSA, 2018), the country couldn't be 

self-sufficient in milk production, rather it has been investing significant sum of foreign currency for importing 

milk and milk products. Though it is now close to six decades since crossbreeding activities were started in 

Ethiopia, the proportion of both hybrid and exotic breeds is not greater than 2% out of 60.4 million heads of cattle 

(CSA, 2018). This is an indication for the inefficient AI service delivery system in the country.  

The success of AI can ultimately be measured by the increase in the number of crossbred dairy animals and 

an increase in milk production (Ntombizakhe, 2002). Numerous factors mentioned by several scholars for the 

inefficiency of AI delivery system in the country. The major ones include: lack of the necessary inputs and 

equipment, unreliable supply of liquid nitrogen, poor quality of semen, lack of basic equipment, inadequate 

infrastructure, and poor coordination and management system. Lack of motivation and high turnover rate of AI 

technicians, lack of incentives, lack of recognition for AI technicians, intermittent service delivery system which 

is off during off working-hours during weekdays, weekends and holidays are also important factors. Moreover, 

lack of proper record-keeping at the farm level can also be considered as an important factor affecting the country's 

dairy breed improvement endeavors (Desalegn et al., 2009; Gebregiorgis et al., 2016; Tessema and Atnaf, 2015; 

Zerihun et al., 2013). As indicated by Pankaj and Nayaran (2016), knowledge on factors affecting the adoption of 

agricultural technologies will help in enhancing the process of need-based and demand-driven technology 

generation and then facilitate the adoption of technologies. There are a number of factors that influence the extent 

of adoption of technology such as characteristics or attributes of technology; the adopters, which is the object of 

change; the change agent (extension worker, professional); and the socio-economic, biological, and physical 

environment in which the technology take place (Audrey, 2014). On top of this, it is believed that farmers’ and AI 

technicians’ characteristics have significant impact on the adoption, utilization and efficiency of AI technology. 

However, such characteristics are not well studied and documented. Therefore, the objective of this study is to 

identify major farmers’ and AI technicians’ characteristics that can influence AI technology adoption and 

utilization, and to provide information and recommendations that help to revise the current policy in relation to 

crossbreeding activity.   
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MATERIALS AND METHODS 

Study Areas  

The study was conducted in four major regions of the country namely Amhara, Oromia, Southern Nations 

Nationalities and Peoples (SNNP) and Tigray Regions. These regions were purposively selected due to their long 

experience in AI service delivery and their potential for dairy production. About 16.1 million, 24.4 million, 11.9 

million and 4.8 million cattle reported to be available in Amhara, Oromia, SNNP and Tigray regions, respectively 

(CSA, 2018).   

 

Study Method 

The study was mainly conducted using a face to face interview method with both farmers and AI technicians using 

a structured questionnaire. 

AI technicians survey was conducted in July 2017 and in March 2019 with randomly selected sample AI 

technicians operating in Amhara, Oromia, SNNP and Tigray regions. A total of 161 AI technicians from the four 

regions (49 from Amhara, 53 from Oromia, 36 from SNNP and 23 from Tigray regions) were randomly selected 

and interviewed using a structured questionnaire to collect the required qualitative and quantitative data.   

In July 2018, a survey was conducted with farmers from the four target regions: Amhara, Oromia, SNNP and 

Tigray regions. Sample farmers were randomly selected from a list of farmers who received AI from October 2016 

to June 2018. The sample size was determined using the following formula as stated in (Guilford and Frucher, 

1973). 

 n = N/(1+Ne2) 

Where: 

n is the required sample,  

N is the population size and  

e is the level of precision (10%) 

Thus, a total of 419 farmers from the four regions (Amhara = 106, Oromia = 104, SNNP = 105 and Tigray 

104) was randomly selected and interviewed on the issues related to dairy farming household characteristics and 

dairy cattle farm management practices and AI technology utilization.  

 

Data Analysis 

Primary data collected from AI technicians and farmers through the survey tools entered in Microsoft Excel and 

Statistical Package for Social Science (SPSS) version 20 (SPSS, 2011). For data analysis, both SPSS and Statistical 

Analysis System (SAS - Version 9) (SAS, 2004) were used based on the type of variable. For quantitative data, 

the General Linear Model (GLM) of the SAS was used and means within the same category were separated using 

the Least Significant Difference (LSD) for those F tests that declared significance (P<0.05).  

 

RESULTS AND DISCUSSION 

Characteristics of AI Technicians  

The success of AI service is influenced by factors related to the inseminator, the environment, and the animal to 

be inseminated. Age, educational status, training and experience of AI technicians are among factors related to AI 

technicians that can influence the efficiency of insemination services. Thus, it is pertinent to assess these 

characteristics and correlate them with some AI service performance indicators.  

  

Gender of AI technicians 

Of the total 1,361 AI technicians available in the four regions in 2016/17 only 1.76% were female. Only in Amhara 

region, higher proportion (8%) of women AI technicians engaged in the AI service delivery system. The proportion 

of women increased to 7.2% in 2017/18 through the financial and technical support from Land O’Lakes 

International Development Fund–Public-Private Partnership for Artificial Insemination Delivery (PAID) project 

following gender barrier analysis conducted in 2016. Though much efforts made to increase the involvement of 

women in AI service delivery, the increase shown in 2017/18 was not significant. This demonstrates AI service is 

predominantly men’s job in the studied regions and the country at large. It is beyond the scope of this study to 

identify factors that hinder women in the AI service delivery system. However, previous research results (published 

and unpublished) demonstrated that cultural, religious and biological factors play a significant role in hindering 

women from engaging themselves in AI service delivery system. AI service by women AI technicians is not 

culturally appreciated as it is dealing with reproductive organs. It is believed in most communities that women 

lack the required physical fitness to properly perform AI and related services. Extended maternity leave provided 

to them during pregnancy and after birth prevent women AI technicians from continuously delivering AI service 

Land O’Lakes (2016, Unpublished). A study conducted by Peter et al. (1992) suggested that female AI technicians 

had significantly more musculoskeletal disorders due to AI work and thus they have higher probability to be off 

from their job as it takes longer time to recover from this problem and this biological difference can be an evidence 
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for the low level of women engagement in AI service delivery system apart from the socio-cultural problems. Low 

level of women engagement in the AI service delivery is reported in the Philippines (Ybañez et al., 2017) where 

only 8% of AI technicians were female in 2015. According to a report by Galv med (2011), nearly all artificial 

insemination technicians in Africa were men.  

 

Age of AI Technicians 

The average age of AI technicians in Amhara, Oromia, SNNP and Tigray regions was 31.69, 35.43, 35.72 and 

37.52 years, respectively with an overall mean age of about 35 years. The age of AI technicians was significantly 

(p <0.05) lower (31.69 years) in Amhara region than in the other three regions among which no significant 

difference (p>0.05) existed. According to OECD (2019), the working-age population is defined as those aged 

between 15 and 64. As per this definition, the mean age of AI technicians in the present study falls in the middle 

of the working-age group. This clearly shows that AI technicians available in the four regions can perform their 

duties and responsibilities without age-related difficulties. Correlation analysis revealed that age was positively 

correlated with duration of training (r=0.387**), experience of AI technicians (r=0.667**), number of inseminations 

per day during regular (r=0.163*), peak (r=0.144) and off (r=0.165*) seasons.  

Age is not the only parameter for effective AI service delivery system, gender, experience, health and 

educational status of AI technicians are among factors that can influence the efficiency of AI service. The mean 

age of AI technician reported in the present study agrees with other research reports conducted on the 

characteristics of AI technicians in Philippines (Ybañez et al., 2017), Algeria (Souames et al., 2015) and Sri Lanka 

(Alexander et al., 1998) where that majority of AI technicians fall between 20 and 40 years of age.  

 

Educational Status of AI Technicians 

The majority (48.45%) of AI technicians were diploma (10th or 12th grade plus two or three years of training) 

holders whereas 29.19% were first-degree holders (in any discipline) and 19.88% were certified either as AI 

technician with a period of up to 9 months training or with other kind of short term (less than one year) pieces of 

training from vocational and technical schools (Table 1). In Tigray and SNNP regions, almost 95% of the AI 

technicians had a diploma and above levels of education. This figure in Amhara and Oromia regions was 49% and 

85%, respectively.  

Table 1. Educational status of AI technicians in Amhara, Oromia, SNNP and Tigray regions (2017) 

 N Secondary Education  Certificate  Diploma  Degree and above 

Amhara 49 - 25 (51.02) 19 (38.78) 5 (10.20) 

Oromia 53 4 (7.55) 4 (7.55) 22 (41.51) 23 (43.40) 

SNNP 36 - 2 (5.56) 23 (63.59) 11 (30.56) 

Tigray 23 - 1 (4.35) 14 (60.87) 8 (34.78) 

Total 161 4 (2.48) 32 (19.88) 78 (48.45) 47 (29.19) 

Numbers in parenthesis are percentages 

In March 2019, a similar survey was conducted with AI technicians to further investigate and understand the 

change in their level of education over time. The survey was also aimed at understanding whether AI technicians’ 

diploma or degree level of education is related to livestock science. Only 3 (5%) of 56 AI technicians with degree 

and diploma level of education studied livestock-related science in Amhara region, 37 (47%) of 78 in Oromia 

region, 22 (45%) of 49 in SNNP region and 19 (38%) of 50 in Tigray region. Overall, 35% of AI technicians (19 

of 50) with degree and diploma level had livestock-related educational background.  

As shown in Table 2 below there was no significant change in the level of education from 2016 to 2019 except 

in Amhara region where a significant number of AI technicians transited from certificate to diploma level. This 

might be related to the high turnover rate of AI technicians as they may not be remained in their position once 

upgraded their education. This is further confirmed in the present study that only 35% of AI technicians with 

degree and diploma level of education (28% from the total) studied livestock-related science. If they don’t study 

livestock-related science, they will look for another job and leave their AI duty. Upgrading the educational level 

of AI technicians in livestock-related sciences can be considered as one way of keeping them in their AI service 

delivery position. A higher proportion of AI technicians who attended some level of college studies is reported in 

the Philippines (Ybañez, 2017). 

The education level of AI technicians was negatively correlated with the number of insemination services per 

day per AI technician during regular season (r=-0.135) and peak season (r=-0.062) for AI service. This clearly 

shows experience rather than education can significantly affect the performance of AI technicians. Therefore, 

maintaining experienced AI technicians in their service delivery position have paramount importance to bring the 

desired result in the crossbreeding program being implemented in the country.  
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Table 2. Educational status of AI technicians in Amhara, Oromia, SNNP and Tigray regions (2019) 

Regions N Secondary Education Certificate  Diploma  Degree and above 

Amhara 86 2 (2.33) 28 (32.56) 53 (61.63) 3 (3.49) 

Oromia 86  - 8 (9.30) 41 (47.67) 37 (43.02) 

SNNP 66 -  17 (25.76) 27 (40.91) 22 (33.33) 

Tigray 51  - 1 (1.96) 32 (62.75) 18 (35.29) 

Total 289 2 54 (18.69) 153 (52.94)  80 (27.68) 

Numbers in parenthesis are percentage 

 

AI Technicians’ Training  

The duration of AI technicians’ training ranged from 45 days to nine months (Table 3). About 42% of the total AI 

technicians considered in this study trained for 45 days; while the other 22%, 32%, and 7% of them were trained 

for a period of three, six and nine months, respectively. In Amhara, the highest (47%) proportion of AI technicians 

were trained for six months, however, in the remaining three regions, the highest proportion of AI technicians were 

trained for only 45 days. Only 6% and 17% of AI technicians in Oromia and Tigray regions were trained for nine 

months. No one was trained for 9 months as AI technician in SNNP region.  

Table 3. Duration of AI technicians training in Amhara, Oromia, SNNP and Tigray regions 

Region 45 days Three months Six months Nine months Total 

Amhara 4 (8.16) 22 (44.90) 23 (46.94) - 49 

Oromia 36 (67.92) 4 (7.55) 10 (18.87) 3 (5.66) 53 

SNNP 19 (52.78) 2 (5.56) 15 (41.67) - 36 

Tigray 8 (34.78) 7 (30.43) 4 (17.39) 4 (17.39) 23 

Total 67 (41.61) 35 (21.74) 52 (32.30) 7 (4.35) 161 

Numbers in parenthesis are percentage 

The National Artificial Insemination Center (NAIC) has been serving as the major AI technicians’ training 

center since its establishment in 1981. Currently, the training is being given regionally by regional Artificial 

Insemination centers in Amhara, Oromia, SNNP and Tigray regions and Agricultural, Technical, Educational and 

Vocational Training (ATVET) Institutes. About 12% of Amhara, 34% of Oromia, 19% of SNNP and 96% of 

Tigray AI technicians were trained at NAIC. On the other hand, 67% of Amhara and 55% of Oromia AI technicians 

got AI training at regional AI centers. The proportion of AI technicians trained at ATVETs in Amhara, Oromia, 

SNNPR and Tigray regions was 20%, 11%, 81% and 4%, respectively with the average value being 29%.  

The present study confirms that the presence of a wide difference in the duration of training in AI technique 

which was ranged from 45 days to 9 months and most AI technicians (42%) in the four regions trained for 45 days 

(6 weeks). The wide variability in the training duration might be related to the absence of standard AI training 

curriculum at a national level for decades.  There was no accredited institute in the country following a uniform 

module for AI training to produce efficient AI technicians. However, with the support of a Land O’Lakes – PAID 

project, the existing training curriculum was reviewed, upgraded and distributed nationally to be used as a standard 

curriculum in the AI technicians’ training. The duration of training in this standard curriculum is 45 days. Though 

there is a wide difference in the duration of AI training, it seems enough when compared with other countries’ 

training duration such as Uganda where the training lasts 2 to 12 weeks (Camilla, 2013). The duration still cannot 

be considered as a single factor that results in skilled and efficient AI technicians. The relationship between the 

duration of training and performance of AI technicians is not established in the present study as it is beyond the 

scope of the study. However, it is vital to establish such relationship which can help to revise the training duration 

if there is a positive or negative correlation. Accreditation of training institutes will play a significant role in 

producing skilled AI technicians. Therefore, training institutes need to be accredited by the concerned body.  

Apart from the duration of training, due emphasis should be given to the criteria used to select candidate AI 

technicians for AI training. Previous knowledge on the anatomy and physiology of female cattle reproductive 

system determines the duration. Competing 12th grade, 10th grade with level I, level II or level III technical 

education in the ATVETs were the primary criteria used in regional bureaus to select candidate AI technicians. 

Such candidates might take a longer time to understand the anatomy and physiology of female cattle reproductive 

system. This knowledge should be taken into consideration while fixing the duration of the AI training. In some 

parts of the continent and other parts of the world, veterinary background is still considered as criteria while 

selecting candidate AI technicians. Such candidates might complete the training within a short period (sometimes 

two to four weeks) as they can easily understand the physiology of the female reproductive system.  

Regional AI centers were found to be the major training site for AI technicians in Amhara and Oromia regions. 

About 96% of AI technicians in Tigray region trained at NAIC. In SNNP 80% of the AI technicians trained at 

ATVETs. This clearly shows there is no specific place and standard assigned for AI and related trainings.  This is 

confirmed by visiting the training sites which is conducted during the data collection period. The number of 
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animals to be used for practical AI training purpose was not standardized. The number of animals determined by 

the availability of both budget and the required type of animals in the market. The training sites did not have 

similar capacity in terms of AI training facilities and equipment. They were not fully equipped with AI training 

materials especially of modern facilities.  This lack of uniformity might create a significant difference in the 

performance of AI technicians. Thus, it is required to equip the training sites with all required facilities and inputs 

including live animals for practical training purposes. Regional training centers are currently equipped with 

training dummy cows which can significantly minimize the required number of animals for practical purpose. 

Generally, all the processes and procedures in the AI training need to be standardized across the country.  

 

Experience of AI Technicians 

One of the major factors for the success of AI service delivery system is the experience of AI technicians. As the 

experience increases efficiency significantly improves. AI technicians in Amhara, Oromia, SNNP and Tigray 

regions served as AI technicians for 6.6, 7.8, 9.7 and 10 years, respectively with an overall average experience of 

8.2 years. No significant difference (p>0.05) was observed in the experience of Amhara and Oromia region AI 

technicians. Similarly, the experience among Oromia, SNNP and Tigray region AI technicians was not significant 

(p>0.05). The experience of Amhara region AI technicians was significantly lower (p<0.05) than SNNP and Tigray 

region technicians. The maximum (21 years) experience was observed in SNNP region. Experience of AI 

technicians was positively correlated with the number of inseminations during regular (r=0.144), peak (r=0.159*) 

and off (r=0.219**) seasons. However, it was found to be negatively correlated with service per conception (r=-

0.034). 

The analysis confirms that age was positively correlated with the experience of AI technicians. This does 

mean as AI technicians remain in their position for years, they will become more experienced in their position. 

However, the turnover rate of AI technicians in Ethiopia was high as understood from FGDs conducted with 

regional bureau staff. The positive correlation between age and experience can be interpreted in terms of efficiency 

of AI technicians as experienced AI technicians can be efficient in their service delivery. The positive correlation 

between age and experience in this study agrees with previous research reports that indicated experienced 

technicians performing better than the non-experienced AI technicians (Senger et al., 1984; Roque, 2011; Souames 

et al., 2015; Kinyua, 2016; Ybañez et al., 2017). Thus, strategies need to be designed and implemented to motivate 

and retain AI technicians in their position and further studies should identify factors contributing to the high turn-

over rate of AI technicians in the country. 

AI technicians in the four studied regions served for an average of 8.2 years. The present study also 

demonstrates that the experience of AI technicians was positively correlated with the number of inseminations 

during regular (r=0.144) peak (r=0.159*) and off (r=0.019**) seasons. The average experience of AI technicians 

reported in this study seems relatively agrees with the report of Alexander et al. (1998) but lower when compared 

to research report conducted in Uganda where majority of AI technicians had about 11 to 15 years of experience 

(Camilla, 2013) in AI service delivery system. However, the positive correlation reported in this study agrees with 

Souames et al, (2015) where they reported similar relationships in Algeria which was explained by a significantly 

higher number of AI services performed by experienced AI technicians when compared with the non-experienced 

AI technicians.  

In contrary to the positive relationship between experience and the number of AI services, the present study 

demonstrates a negative correlation (r=-0.034) between experience and service per conception. This might be 

related to the problem of lack of enough data on the status of AI services provided to client farmers. If follow up 

visits properly undertaken to check the outcome of AI services provided, the correlation between experience of AI 

technicians and service per conception would be different from the present result. Therefore, further research is 

needed to establish a relationship between experience and service per conception.  

 

AI Technicians’ Job Satisfaction  

AI technicians were interviewed with the intention of understanding whether they are satisfied with their job and 

the salary they were being paid, if they had plan to change their job and if they were delivering off-hour (especially 

night-time) services when requested. Accordingly, about 99% of the technicians in the four regions (100%, in 

Amhara, SNNPR and Tigray regions and 96% in Oromia) reported that they like their job but only 8.75% of the 

technicians (2% in Amhara, 11% in Oromia, 17% in SNNPR and 4% in Tigray) were satisfied with their monthly 

salary.  

About 33% of the technicians (26% in Amhara, 42% in Oromia, 9% in SNNPR and 65% in Tigray) had plan 

to change their job due to various reasons with the major ones being the very low monthly salary they earn, and 

demotivating carrier structure implemented in their respective regions. The highest (65.2%) number of AI techs 

planning to change their job was reported in Tigray region. On average, 38% of technicians complained that they 

were forced to accomplish other assignments given by their respective woredas with the highest (70%) proportion 

being in the Oromia region.  
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About one third (33%) of the technicians were not satisfied with their job and thus had plan to change their 

position due to various reasons most importantly of the minimum salary rate and demotivating carrier structure 

implemented in their respective regions. Unavailability of the required equipment and inputs especially of 

motorbike and fuel were among the challenges could demotivate AI technicians to stay in their job. The present 

data demonstrates the degree of AI technicians’ turnover rate. As they become more educated, they will look for 

a better job with relatively high income. The highest (65%) job dissatisfaction rate was reported in Tigray region. 

This might be related to their better level of education as compared to other regions. Unlike other studied regions 

about 95% of the technicians in Tigray region were educated to diploma and above level in livestock production 

or other disciplines thus they were in search of other better positions in their office or outside. Higher-level job 

dissatisfaction than the present finding reported by Zerihun et al. (2013) in Amhara region where 99% of AI 

technicians were dissatisfied with their job as AI technician.   

 

Characteristics of Farmers 

The adoption of agricultural technologies is influenced by age, education level and gender of the farmer, household 

income, farm size, farming experience, frequency of contact with extension or source of information. Therefore, 

it is pertinent to collect relevant data and evaluate these characteristics as it is believed that they can affect the 

adoption of AI as a breeding technology.  

 

Gender of Farmers 

About 26% and 74% of participated farmers in the interview in the four regions were female and male, respectively, 

which is also average values for the four regions combined. These figures for Oromia, SNNP and Tigray regions 

were 14% and 86%, 46% and 54%, and 17% and 83%, respectively. 

The overall proportion of male-headed dairy households (74%) was much higher than that of female-headed 

dairy households (26%). In most parts of the country, it is a norm that the household is represented by the husband 

if he is alive, otherwise the household is represented by the wife in the absence of her husband due to various 

reasons. Though the contribution of women in terms of dairy cattle husbandry and management is significant in a 

dairy household, their role in the process of household-related decision making in the male-headed households 

was insignificant.  

No significant difference observed in the present study between male and female farmers in terms of the 

number of years that they use AI technology for breeding purpose. However, gender is thought to be among the 

major factors which influence technology adoption, especially of agricultural technologies. However, previous 

research reports showed mixed evidence regarding the role of gender in the process of technology adoption. For 

instance, Doss and Morris (2001) and Fleming and Yala (2001) didn’t see gender difference in the adoption rate 

of improved maize technology in Ghana and coffee production technology in Papua Guinea, respectively. Bisanda 

& Mwangi, (1996) on the other hand, observed a strong relationship between gender and technology adoption. 

Abdallah (2011), on the other hand, reported a negative relationship between AI adoption and gender in Tanzania 

where women farmers had a better adoption rate.    

  

Age of Farmers 

The age of dairy farming household heads was significantly different (P<0.0001) among the four regions with the 

highest age (45.62 years) recorded in Tigray region and the lowest (40.38 years) in Oromia. The average age of 

farmers for Amhara and SNNP regions was 47.16 and 45.21, respectively with an overall average age of 45.62 

years. No significant difference observed in the age of SNNP and Amhara region dairy farming household heads.  

The average age of farmers reported in this study is not high rather it is in the working-age group. As indicated 

in Adesiina and Baidu-Forson (1995), Dehninet et al. (2014); McNamara et al., 1991; Peter et al. (2012); and 

Quddus (2012) age of farmers is among the most important variable which is believed to negatively influence 

adoption of agricultural technologies. Age is also said to be a primary latent characteristic in the decision-making 

process for technology adoption. The younger generation is better educated, more flexible and exposed to 

technology-related information and thus believed to try and adopt agricultural technologies more quickly than 

older ones. This is mainly because older farmers are conservative and may not want to take risk by trying out a 

new technology (Audrey, 2014; Peter et al., 2012). Feder et al. (1985) indicated that as the age of farmers increased 

farmers will become more reluctant to adopt new technologies. This contradicts findings by Abdallah (2011) and 

Kaaya et al. (2005) who reported a positive relationship between age and AI technology adoption and Joseph and 

Ango, (2014) who reported a non-significant relationship between the two variables. The average age of farmers 

reported in the present study is comparable with other reports such as Quddus (2012) who reported 57% of dairy 

farmers in Bangladesh belonged to 30-49 years of age and Potdar et al. (2018) who reported an average age of 

farmers 41 years in India.   
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Educational Status of Farmers 

About 81%, 58%, 62% and 82% of the household heads attained primary level education or below in Amhara, 

Oromia, SNNP and Tigray regions, respectively. The proportion of farmers who attained secondary level of 

education in Amhara, Oromia, SNNP and Tigray regions was 12%, 28%, 23% and 17.5%, respectively with an 

overall average of 20%. Similarly, about 7%, 14%, 15% and 1% of farmers completed either technical education 

or above in Amhara, Oromia, SNNP and Tigray regions, respectively with an overall average of 9%.  

Nearly 30% of farmers were non-educated or illiterate in the four studied regions. This confirms that dairying 

is being practiced by non-professionals using the traditional way. However, dairying can be used as a source of 

income to the household in addition to improving household nutrition if proper dairy husbandry and management 

system is applied. Previous research reports indicated that education level of farmers has significant effect on 

technology adoption as it creates a favourable mental attitude for the acceptance of new practices especially of 

information-intensive and management-intensive practices and it can reduce the amount of complexity perceived 

in a technology thereby increasing a technology’s adoption (Abdallah, 2011; Borden et al., 2017; Kayaa et al., 

2005; Waller et al., 1998; Caswell et al., 2001; Joseph and Ango, 2014; Pankaj and Nayaran, 2016; Sime et al., 

2014). The more educated farmers were more likely to adopt the recommended technology. Quddus, (2012) also 

reported that secondary and higher educated farmers were nearly 10 times more likely to adopt improved 

technologies compared to illiterate farmers in Bangladesh. Therefore, the low level of livestock-related technology 

adoption such as AI technology in the studied regions might be related to the education level of farmers. Strategies 

need to be designed to improve the technology adoption rate by educating farmers to a certain level.  

 

Family Size  

Very high significant difference (P<0.0001) observed in the family size among the four regions (Table 4). The 

average dairy farming household’s family size in the four studied regions was 6.18 persons per household with the 

highest (6.9) and lowest (5.34) in SNNP and Amhara regions, respectively. The average number of male household 

members in the four regions was 3.21 while the female was 3.05.   

Table 4. Family size of dairy farming households in Amhara, Oromia, SNNP and Tigray Regions 

Region N Male 

Mean±SE 

Female 

Mean±SE 

Total 

Mean±SE 

Amhara 103 2.91±.013b 2.55±0.14b 5.34±0.24b 

Oromia 104 3.62±0.22a 3.30±0.19a 6.79±0.35a 

SNNP 104 3.39±0.15a 3.51±0.14a 6.90±0.21a 

Tigray 101 2.92±0.14b 2.85±0.14b 5.71±0.21b 

Total 412 3.21±0.08 3.05±0.08 6.18±0.13 

Means with different superscripts in the same column are significantly different (p<0.05) 

The overall average number of male and female household members was 3.21 and 3.05 per household, 

respectively. Family size has a direct relationship with labor availability required for agricultural activities of the 

household such as dairying. The average family size reported in the present study is higher than the CSA 1994 

census report of 4.8 (CSA, 1999). Mixed relationship observed between family size and AI technology adoption 

reported in previous studies. Dehninet et al., (2014) observed a positive relationship between the two variables. 

However, a negative relationship between family size and technology adoption reported in Oromia region, Ethiopia 

(Sime et al., 2014). Abdallah (2011) and Joseph and Ango, (2014), on the other hand, did not observe a significant 

difference between adopters and non-adopters taking family size as factor. The report of Borden et al. (2012) 

revealed big families (6-7 members) tend to use AI technology and small families (up to three members) preferred 

to use natural service.  

 

Dairy Households Income  

Total household income, income from off-farm activities as well as from livestock related sources in the four 

regions is summarized in Table 5 below. Very high significant difference (P<0.0001) observed in income from 

off-farm activities among the four regions with a mean income of 2,111.72 ETB per household per month. Total 

household income, income from sale of livestock and livestock products was also significantly different (p<0.05) 

among the four regions. The highest income (5,500 ETB) per household per month from livestock sale and 

livestock products was recorded in Tigray region whereas the least (1,284 ETB) was in Amhara region.  
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Table 5. Income (Mean ETB±SE) from different sources per household per month (July 2018) in Amhara, Oromia, 

SNNP and Tigray regions 

Region N Total Off-farm  Livestock Sale Livestock Products 

Amhara 106 5686.07±385.75b 2535.55±264.91NS 1866.28±172.80b 1284.23±169.20b 

Oromia 104 6424.30±404.78ab 2303.65±308.39NS 2721.90±233.83a 1398.76±137.77a 

SNNP 105 8019.97±1160.25a 1778.76±233.88NS 2026.63±232.59b 4214.57±962.06b 

Tigray 104 7324.67±441.08ab 1823.94±281.93NS 2725.58±208.19a 2775.14±223.08a 

Total 419 6860.89±342.33 2111.72±137.09 2332.12±107.87 2417.05±259.11 

Since household income is related to the income tax issue, farmers might not tell their actual income. Thus, 

it is expected that the actual average monthly total income might be higher than the reported figure. Since it is 

beyond the scope of this study, we didn’t use different methodological approaches to examine and know the actual 

household income. Though income is not the only variable of interest to examine factors affecting the adoption 

level of AI technology, the present study confirms a significant positive correlation (0.195) between total monthly 

family income and number of years that a dairying household have been used AI technology. It is also confirmed 

in this study that dairying was among the major source of income for the dairying households in the studied regions. 

Previous research reports also indicated that household income has a positive relationship with the adoption of 

agricultural technologies (Watcharaanantapong et al., 2014; Walton et al., 2010). Investing in new and innovative 

technologies carry higher entry costs and more risk than already established technologies (Diederen et al., 2003). 

Income in most cases has a relationship with the affordability of inputs and other costs. As indicated in Kayaa et 

al. (2005) AI cost has a negative relationship with AI technology adoption in Uganda. Dehninet et al. (2014) Peter 

et al. (2012) and Sime et al. (2014) reported a negative relationship between off-farm income and AI technology 

adoption and a positive relationship between income from sale of dairying and AI technology adoption. AI is much 

labor-intensive than the use of bull as AI requires significant time and labor to observe and detect cows in heat and 

to take the necessary action following the heat. However, this may not be a case in Ethiopia as AI service is highly 

subsidized by the government.  

 

Size of Cattle and Other Livestock Species  

Very high significant difference (P<0.0001) was observed in the number of heifers, and male and female calves 

owned per household among the four regions (Table 6) with highest number of heifers (1.28) in SNNP, male (1) 

and female (1) calves in SNNP and Oromia regions, respectively. Significant difference (p<0.05) also observed in 

milking cows, dry cows and total cattle herd size among regions with the highest cattle herd size (7.21) being 

recorded in the Oromia region.  

Table 6. Cattle herd size (Mean±SE) of the dairy farming households in Amhara, Oromia, SNNP and Tigray 

regions 

Region N Total cattle Milking cows Dry cows Heifers Female calves Male calves 

Amhara 105 5.50±0.29b 1.25±0.11ab 0.69±0.07b 0.62±0.07b 0.88±0.09ab 0.78±0.07b 

Oromia 104 7.21±0.51a 1.63±0.13b 1.44±0.15a 1.28±0.13a 0.86±0.11ab 1.02±0.10a 

SNNP 104 4.88±0.65b 1.73±0.32a 1.00±0.17b 1.06±0.15a 0.99±0.19a 0.52±0.08c 

Tigray 103 4.72±0.32b 1.08±0.12b 0.92±0.12b 0.72±0.09b 0.57±0.08b 0.45±0.08c 

Total 416 5.58±0.28 1.42±0.10 1.00±0.07 0.91±0.06 0.82±0.06 0.70±0.04 

Means with different superscripts in the same column are significantly different (p<0.05) 

Average chicken number per household was 4.4 with no significant difference (p>0.05) observed among the 

four regions. However, the difference in the average number of sheep and goat was significant (p<0.05) among 

the four regions with an average number of 1.84 and 0.43 per household, respectively. Sample farmers from Tigray 

region owned the highest number of sheep (3.58) and goat (1.04) per household compared with the other regions.  

The average number of sheep was 0.95, 1.33 and 1.52 and goats per household in Amhara, Oromia, and SNNP 

regions was 0.95 and 0.47, 1.33 and 1.33, 1.52 and 0.04 and 3.58 and 1.04, respectively.  

 

Access to Extension Service 

The present study demonstrates 76% of farmers in the four regions had access to livestock extension services 

during the study period. Access to livestock extension is an important factor that positively affects the adoption of 

livestock-related technologies (Abdallah, 2011; Dehinenet et al., 2014; Kayaa et al., 2005; Sime et al., 2014) and 

management practices which can later affect productivity parameters. The result obtained in the present study 

seems very high as the study focused on those who had at least one kind of extension service. Access, on the other 

hand, doesn’t mean practicing a given technology or management practices. Further research is needed to examine 

the degree of access and application of extension system by looking at the different types of livestock extension 

systems. The proportion of farmers who had access to extension system is higher when compared with the report 

of Dehinenet et al. (2014) in Oromia region where only 66% had access to extension service. It is also higher than 
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Bangladesh and Tanzania farmers where only 11% and 20% of farmers reported to have access to extension service 

(Quddus, 2012; TLMI, 2015). Similarly, the CSA (CSA, 2018) reported that only 9.63% of farmers in the country 

were engaged in dairy development packages. This is extremely low when it comes to the application of improved 

dairy-related technologies and management practices.  

 

Experience of Farmers in Dairying 

As understood from sample respondent households, the establishment of dairying is in an increasing trend with 

most dairy farms being established in the last nine to ten years (2009 – 2018). About 48% of farms in Amhara, 

45% in Oromia, 24% in SNNP and 55% in Tigray regions established between 2009 and 2018 (Figure 1).  

 
Figure 1. Farmers experience in dairying in Amhara, Oromia, SNNP and Tigray regions 

About 78% of dairy farms are established in the last three decades. This clearly shows either a significant 

proportion of farms are established in the last ten years or dairying may not be kept for a longer period due to 

various reasons. The increasing demand for milk and milk products especially in urban and peri-urban areas seen 

in the last two decades can be mentioned as a driving force for the establishment of a significant proportion of 

dairy farms in the last two to three decades.  Future research shall focus on identifying factors that hindering 

farmers to keep their dairying for a longer period if this problem exists in the country. Land and labor shortage, 

increasing trend of the price of feed, veterinary and other input might be among important factors in this regard. 

The experience of farmers reported in the present study agrees with the experience of farmers in some other 

countries such as Bangladesh where about 66% of dairy farmers had less than 10 years of experience in dairy 

farming Quddus (2012). However, Lawrence et al. (2013) reported longer (23 years) dairy farming experience in 

Kenya.  The present study confirms a significant positive correlation (r=0.362) between experience in dairying 

and the number of years that farmers have been using AI technology.  This positive correlation agrees with previous 

research reports where it is indicated that farmers’ experience in dairying is interrelated with technology adoption 

(Abdallah, 2011; Dehninet et al., 2014; Joseph and Ango, 2014; Quddus, 2012). In contrary to the present study a 

negative correlation reported between experience and adoption of AI technology in Uganda (Kayaa et al., 2005; 

Masoud and Asghar, 2011; Sime et al., 2014).  

 

Experience of Farmers with AI Technology 

Adoption of improved dairy husbandry and management practices are among the most important factors for 

increased milk productivity (Khanal et al. 2010). However, most farmers are reluctant to adopt improved 

husbandry and management practices. Thus, the present study confirms the adoption level of these practices was 

very low in the four studied regions. 

Proper breeding strategy and high level of AI adoption, on the other hand, are vital to establish an efficient 

and profitable dairy sector Quddus (2012). About 62% of farmers in the four regions received artificial 

insemination service either once or twice in a year with an average AI service number of 2.14. Only 25% of 

respondents in the four regions received insemination service thrice or more. The study population is those farmers 

who received AI service at least once. Thus, it is impossible to make comparisons with those who have never used 

the technology and draw conclusions on the adoption of AI technology.  The average number of milking and dry 

cows reported in the four regions was 1.42 and 1.0, respectively. The number of AI services is directly related to 

the number of dairy cattle that need the service, availability, and accessibility of the service. Thus, the low number 
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of AI services might be directly related to the small number of dairy cattle that potentially need the service.  

Farmers in the four studied regions have been using AI service for an average of 5.4 years. The experience 

of farmers in AI technology reported in the present study is very similar to Hammonds (2016) in Bangladesh where 

farmers had been using for about 5.2 years. With reported 2.14 numbers of inseminations per year and 5.38 years 

of experience in AI technology, farmers in the four studied regions received an average of 11.5 inseminations since 

they began using AI technology. This is also very similar to Bangladesh farmers whey they performed an average 

of 10 inseminations since they start using this breeding technology (Hammonds, 2016). AI technology is 

introduced in the country in the 1960s and 1970s; however, farmers’ experience with AI technology is very low 

considering the time of its introduction. The technology is being provided in the country for about 50 years, but 

the present study revealed that the technology was being utilized by farmers only for an average of about 5 years. 

Utilization of AI service for a longer time has paramount importance to establish good dairy herd and improve the 

genetic make-up of the dairy herd. Reliable and sustainable AI service delivery system in this regard is vital to 

bring the desired result in AI-based crossbreeding programs. However, farmers’ experience with AI technology 

reported in the present study makes the sustainability and reliability of AI service delivery system in the country 

questionable. Factors contributed to the low level of experience with AI technology need to be further investigated. 

Intermittent service delivery system, intermittent input supply system, lack of awareness among farmers, short 

period of farmers experience for the dairy cattle and low level of livestock extension system can be mentioned as 

factors that hindering farmers to use AI technology for longer period than reported in this study. Quddus (2012) 

suggested that lack of basic equipment and negligible AI services, lack of knowledge among farmers about health 

management and proper feeding of animals are constraints to adopt AI technology and other improved agricultural 

technologies. Sime et al., (2014), on the other hand, reported a negative relationship between years in AI and 

adoption of AI technology. This is a different perspective regarding the experience of farmers in AI and its adoption.   

The present study clearly shows that farmers do not have extensive experience with AI technology as most 

farmers received the service only once or twice a year. The number of insemination service alone do not show the 

efficiency of the service and thus all the services might not be resulted in conception. Therefore, it may be vital to 

relate insemination services provided to farmers with their satisfaction. Only 9% of farmers in the four regions 

rated their AI technicians as excellent, 86% as very good and good. The level of satisfaction was measured without 

taking the different criteria used to measure satisfaction level. Further study shall be conducted to investigate the 

level of satisfaction based on clear and measurable criteria. Since private AI service delivery system was not 

available in most parts of the study areas, farmers rated their satisfaction based on the experience they had with 

public AI technicians. The present finding agrees with Sisay et al. (2017) who reported 85% of farmers were 

satisfied with AI service delivery system in West Shewa zone of Ethiopia. Unlike the present finding, Zerihun et 

al. (2013) reported 69% of farmers in Mecha district of Amhara region were dissatisfied with the overall AI service 

delivery system and its efficiency. This was mainly due to unreliable and inconsistent AI service. Similarly, 41% 

of farmers in Jimma district were not satisfied by AI service delivery system (Nuraddis et al., 2014). Yohanis and 

Tilahu (2018) also reported more than 50% of farmers in Adama Town of Oromia region were not satisfied with 

the overall AI service delivery system. The same authors mentioned discontinuation of the service during 

weekends and holidays, shortage of AI technicians, shortage of necessary inputs and long-distance of insemination 

sites as major reasons for the low satisfaction rate in the AI delivery system. Conception failure is also mentioned 

as a critical factor for the low satisfaction rate and adoption of AI technology in many parts of the country 

(Gebregiorgis et al., 2016; Nuraddis et al., 2014; Zerihun et al., 2013; Tessema and Atnaf, 2015; Sisay et al., 2017; 

Yohanis and Tilahun, 2018).     

Adoption of AI technology should be integrated with the adoption of other improved dairy technologies such 

as improved health management, housing, and feeding. About 66% of farmers in the four studied regions had 

permanent type of dairy cattle housing. However, the comfort, hygiene, and cleanliness of the dairy cattle houses 

were questionable. Nearly 62% of farmers were practicing either mainly stall feeding or mainly stall feeding with 

some grazing type of feeding system. About 68%, 75% and 69% of farmers in the studied regions were practicing 

deworming, external parasite treatment and vaccination, respectively. Only 12% of farmers in the four regions 

were keeping records about any aspect of their dairying. On the contrary, nearly 70% of farmers in Uganda keep 

records of AI (Camilla, 2013). The application of improved management practices seems good in the studied 

regions. Further study needs to be conducted to investigate the level of application of each of the management 

practices and to establish a relationship with productivity and other economically important parameters.   

 

CONCLUSION AND RECOMMENDATION  

Serious problem is not observed both in the training curriculum and duration of AI technicians training. However, 

the criteria used to select candidate AI technicians need to be revised again. AI is an art and science and needs 

background theoretical and if possible practical knowledge on female cattle reproductive anatomy and physiology. 

Thus, considering candidate AI technicians with this background knowledge will help in producing efficient and 

competent AI technicians. Though women are said to be passionate and responsible in their job, the engagement 
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of women in AI service delivery is very insignificant due to cultural taboos and biological issues. Much work must 

be done to increase their engagement as AI technician and special emphasis should be given to them while 

providing AI equipment, transportation facilities and incentives.  

One of the major factors for the success of AI service delivery system is the experience of AI technicians. 

The turnover rate of AI technicians is high in all studied regions due to their low monthly income, discouraging 

carrier structure and poor recognition and reward system. These factors lead to low level of job satisfaction among 

AI technicians. Thus, strategies need to be designed and implemented to motivate and retain AI technicians in their 

position and further studies should identify factors contributing to the high turn-over rate of AI technicians in the 

country. 

Though the study demonstrates high access to livestock extension service system, farmers in the four regions 

do not have long years of experience in dairying due to various reasons. Unreliable AI service, increasing trend of 

feed prices, shortage of labor and land are among factors contributing to the short experience of farmers in dairying. 

Utilization and adoption of AI technology and experience in dairying are interrelated. Therefore, to use and adopt 

AI technology, farmers are expected to have long years of dairying experience and vice versa. On top of this, 

emphasis should be given for reliability, quality, availability, and affordability of the service as these factors 

significantly affect the adoption of the technology.  
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