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Abstract

Generalized integrated autoregressive moving aeehdlinear model which is capable of achieving

stationary for all non linear series is proposed @ompared with subset generalized integrated
autoregressive moving average bilinear model ugiegesidual variance to see which perform better.
The parameters of the proposed models are estimesied Newton-Raphson iterative method and
Marquardt algorithm and the statistical propertidsthe derived estimates were investigated. An
algorithm was proposed to eliminate redundant patars from the full order generalized integrated

autoregressive moving average bilinear models. €terchine the order of the models, Akaike

Information Criterion (AIC) and Bayesian InformaticCriterion (BIC) were adopted. Generalized

integrated autoregressive moving average bilineadets are fitted to Wolfer sunspot numbers and
stationary conditions are satisfied. Generalizetgrated autoregressive moving average bilinear
model performed better than subset generalizedriated autoregressive bilinear model.

Keywords: Stationary, Newton-Raphson, Residual Variance, Mardf Algorithm and Parameters.

1. Introduction

The bilinear time series models have attractediderable attention during the last years. An ov@mwi

of bilinear models and their application can benfbin (Subba Rao 1981), (Pham & Tran 1981), (Gabr
& Subba Rao 1981), (Rao et al. 1983), (Liu 199@priclaves et al. 2000), (Shangodoyin & Ojo

2003), (Wang & Wei 2004), (Boonaick et al.2005)ibjR2006), (Doukhan et al. 2006), (Drost et al.
2007), (Usoro & Omekara 2008) and (Ojo 2009). Titiadar modes studied by the above researchers
could not achieve stationary for all nonlinear egriOne-dimensional bilinear time series model that
could achieve stationary for all non linear sevies developed, for details see (Shangodoyin et al.
2010) and (Ojo 2010). In this paper we proposecgdized integrated autoregressive moving average
and subset integrated autoregressive moving avéiligear time series models that could achieve
stationary for all non linear real series.

2. Proposed Generalized Integrated Autoregressive ipaverage Bilinear Time Series Models

We define generalized bilinear (GBL) and generalizebset bilinear (GSBL) time series models as

follows:

Model 1(M1)

r S

w(B)X, =@B)O'X, +8(B)e +ZZQ<| X,«&_ ,denoted as GBL (p, d, q, 1, S)

k=1 =1
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¢-r4, are the parameters of the autoregressive comnng,ntH are the parameters of the
assocrated error proced3y,........ b are the parameters of the non-linear componeni{fa)) is

the moving average operatgris the order of the autoregressive compongig;the order of the
moving average process;sis the order of the nonlinear component #@B) = 0°@(B) is the
generalized autoregressive operarq is the differencing operator awnlds the degree of consecutlve
differencing required to achieve stationagyare independently and identically distributed\Na®, J )
and the models are assume to be invertible.

Model 2 (M2)

| m n
Xt :z(//p+dxt—p—d _qur e"qr +Zb"kﬁ< Xt"'ket‘% +Q’
i=1 =1 k=L

The above equation is denoted as GSBL (p, d, g) andp; is the order of subset autoregressive
integrated component, ¢ the order of subset moving average componett 38, is the order of
subset nonlinear component. In the models abgaee independently and identically distributed\as

(O,Uez) and the models are assume to be invertible.

3. Stationary and Convergenceof GBL (p,d, q,r, )

For general S, it is not easy to provide an infirsieries representation for eééh. For this general
case, we exhibit the procefX, t [1Z) as an almost sure limit of a sequence

{{ S, t0Z}, n=1} of stationary processes.
Theorem

Let {q t O Z ea seqp nce of independent |dent|cally distribtds@dom variables defined on a
probability spac fsuch that Eqe= 0 ancEq =0g°<w.Y, 0,B,B,...., By be g+1
matrices each of order p X p.

r=(Wow+o’(@00+B0OB)-200B))
[ =0’[B O(W7B +W7B, +..+WB,)
+(L|_Ji—1B1 + LI_Ji—ZB2 + ...+ LlJBl_l) M Bj

+ Bi il (@HB1 +@1‘—ZB2 + . + ij—l)
+(@'"B,+0'”’B, +...+0B_) 0B,

+(BJ' O Bj )], i=2.3,....s.

Suppose all the eigenvalues of the matrix

ol 4
l, 0 ... 0 O
L =| P
o< pPq 0 I 2 e 0 0
o 0 I, ... 0
P
have moduli less than unity, i.@(L) = A < 1. Let C be a given column vector. Then there exists

a vector valued strictly stationary procgsX,,t L1 Z Tonforming to the bilinear model
X, =WX,_,-0e_ + Z B, X,,&_ +Ceg forevery tin Z.
1=1
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Pr oof
Let the proces%Sn’t’n,t U Z} be defined as follows.
S, =0 ifn<o,

=Cgq ifn=0,

= Cq + (l.|J - ee[—l + Blet—l)Sn—t,t—l + BZSn—Z,t—ZeI—Z to.t Ban—q,t—qet—q’ if n>0
for every tin Z.

lim, S, exists almost surely for every t in Z. If, ¥ the almost sure limit O{Sn,t,n 2]} for

every t in Z, then it is obvious that the procesX,,t[]Z} conforms to the bilinear model
X =th Xyt oot X g 6 =06, —m B8 HD X 8+ +b X e

Also, for every fixed n in Z{Sn’t’t 0 Z} is a strictly stationary process.
Lets,, =S, —S, t0OZ E‘(Sw,t)i‘ < KA"?foyeveryn>0andi=1,2, ....p, where K is a

nt n
positive constant. Sincd <1, this then implies th Snyt,n Zi} converges almost surely for every t

inZ.

3.1Algorithm for Fitting One-dimensional Autoregse® Integrated Moving Average Bilinear Time
Series Models

For the sake of simplicity, we will break the aligom down into the following steps.

Step 1
Fit various order of autoregressive integrated mgwaverage model of the form
X = Xy +o +wp+dxt—p—d _glet—l_"'_gqet—q t&

Step 2

Choose the model for which Akaike Information i@ (AIC) is minimum among various order
fitted in step 1.

Step 3
Fit possible subsets of chosen model in step 2Ju8in-1 subsets approach (Hagan & Oyetunji 1980).

Step 4

Choose the model for which AIC is minimum amongfitted models in step 3 to have the best subset
model and the parameters of this model form thelnialues.

Step 5
Fit various order of generalized autoregressivegrdted moving average bilinear model of the
form X, =¢, X, +...... Y o X cpa — de_, —...— qut_q +h X8yt +bX_e.te

Step 6

Fit possible subsets of chosen model in step Jgudin-1 subsets approach (Shangodoyin & Ojo
2003)
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Step 7 The model with the minimum AIC is the generalizetiset autoregressive integrated moving
average bilinear model.

3.2 Estimation of the Parameters of Generalizdih®r Models Proposed

Thejoint density function of (€ 'y Cmat e en) wherem = max (r, ) isgiven by

1 1 &,
(2m2)(n—m+1)/2 exp(_ 20_2 ;q )

Since the Jacobian of the transformatlon fréﬂ?g1

V€rr ) 10 (Xyy Xags---n X, ) is unity,
the likelihood function of(X

X s X,,) is the same as the jomt density functlon of

( m, m+1, € ) MaX|m|S|ng the Ilkellhood function is the samenaisimizing the function
n

where Q(G) = ZQZ 1)
i=m

with respect to the paramet& = (l//l,....,l//p;ﬁl,ﬁz,....,Hq; BiyBrs)

Then the partial derivatives of Q(G) are given by

dQG) .& d
dg dG

d’QG) _ ., dg dg & ds
dGdG, (Z dG dG, ;qudG)

(i=1,2,...R) 2)(

where these partial derivatives of e(t) satisfyrgmursive equations

—+ ) W(t 1,if i= 0
dl/jl ; () d¢I|
Lifi=1,2,).,p 3)(
33 ;W(t) q‘—q, if i=1,2,..,q @)
z (t) q‘i :—Xt_ket_m (k=1,2,...,r; m=1,2,...,8) ()
da<m| j=1 da<mi
2 s d2 .
d°e . +ZWJ (t)i:O(i, =0, 1,2 ..., p) 6)(

dydy, = dy,dy,

LI VPN T 7
dgdg = ' dgag - 'O BB @
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2 : d%e_. 2e
dd—e1+2\Nj (t)i_'_ xt_k d € mi —
wid&mi j=1 da<m|d¢| d‘/fl

(i=0,1,2,...,p ; k=1,2,...,r; m=1,2,...,8) (8)

2 s d’e 20
T W), LEm =g
dgdB,, = ' dBdq dé

(i=1,2,...,q; k=1,2,...,r; m=1,2,...,8) (9)

d’e & d’e_,
+> W () ——L=0
dy,dq JZ ‘()dwida

(10)

2 s d?e_, . d2%,_ .
_d& Sw, () — X, d%Cm _ “X decn
dBkmldBkml j=1 dBkmidBkmi dBkmi dBkmi

(k, kK'=1,2,...,r; mm =1,2,...,9)
(11)

S
W, (1) = Z B; X,-;We assume;e 0 (t =1, 2, ..., m-1) and also
j=1

de _o_de& _g
dG  dGdG

(,j=1,2,...,Rt=1,2, ..., m-1)

Frome=0 (t=1, 2, ..., m-1),

de. ==X & K=1,2,...r:;m=1,2,....5),

2
de =0, d's =0, and—— ZW tH——-
dGI dGIdG da<mi i=1 da<mi

it

follows that the second order derivatives with egspgo{//; (i=0, 1, 2, ..., p) ancﬁ’i i=0,1,2,...,
q) are zero. For a given set of values{{ 49, } and {B;; } one can evaluate the first and second order
derivatives using the recursive equations 3, )bkl. Now let

V'(G) = dQ(G) dQ(G) —dQ(G)

dG, ' dG, " dG,

and letH (G) =[d’Q(G)/dG,dG ;] be a matrix of second partial derivatives as irzgfowski
1998). Expandiny (G), nearG = Gln a Taylor series, we obtain

V(G)s, =0=V(G)+H(G)(G-G) (12)

Rewriting this equation we 9@ G=-H" (G)V (G) and thus obtain an iterative equation given

by G*? =G® —H(GM)V(G™)where G® is the set of estimates obtained at thestage
of iteration. The estimates obtained by the abtemaiive equations usually converge. For startirgy t
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iteration, we need to have good sets of initialeal of the parameters. This is done by fittingkibst
subset of the linear part of the bilinear model.

3.3 Estimation of the Parameters of Generalizeds8uBilinear Model Proposed

In the estimation procedure to be discussed in $kistion W(-}\ assume that the sets of integers

{k.,k,,....k}, {9,,0,,...,0} and {(rl,sl),(rz,Sz),....,(rmSm) are fixed and known. Proceeding

as in (Subba Rao 1981), we can show that maximizihg likelihood function of
(Xgs Xgeg e+ Xy ) is the same as minimizing the function

N
Q) => ¢
t=ml
with respect to the parametel(sllkl,l,l/k2 /N ;qu""qe;brlsu'""brnﬁn) .

The partial derivatives oR(8) are G, = M 22

d*Q(6) _ 4
"~ 4gde _Z(dé’ij( ] ze‘ dede

where the partial derivatives satisfy the recurgiggations

m de,.
& Xy —3b X, (= 123.)
dwk =t 9 i wk,

de o dg_
—t = - E b X 1, = 2,3,....,'
dgqr et_qr j:]- rJSl t_rj d%r (r l )

d m de_
—q = _Xt—rqet Sy _zbrjsj xt r —J’

dbrqsq =1 B dbrqsq

In the calculation of these partial derivatives,se¢€, =€, =...= =0 and
de _de _ % _gi-12..R)

dg  d@ dé,

Let GT() = (G,,G,,...Gg) and H(6) = (h ).

d
In evaluating the second order partial derlvatwesapprommatdﬂ = ZZ(dS j{%]
i

as is done in Marquardt algorithm. Expandifg(d) near @ =€ in a Taylor series, we obtain

0=G(8) + H ()0 -0).

Rewriting this equation, we ge(é—@) =—-H ™(#)G(H) and thus obtain the Newton-Raphson
iterative equation

5(k+1) - g(k) -H —1(9(k))G(5(k))
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g% =9I +H6W)G(EY) (13)

where 8% is the set of estimates obtained at tlestage of iteration. For starting the iteration, we
need to have good sets of initial values of thepeters. This is done by fitting the best subsehef
linear part of the bilinear model.

4. Numerical Example

To present the application of the models proposedyill use a real time series dataset, the Wolfer
sunspot, available in (Box et al. 1994). The s¢ststrack solar cycles by counting sunspots — cool
planet-sized areas on the Sun where intense madoefis poke through the star’s visible surface. It
was Rudolf Wolf who devised the basic formula falcalating sunspots in 1848; these sunspot counts
are still continued.

As the Wolfer sunspot data set represent a noistat series, the bilinear models proposed in this
paper may be applied. The Wolfer sunspot datassminsidered at sample size of 150 and 250. For the
fitted model below we have used the algorithm dmedeistimation technique in the previous section.

Fitted Model M1 and M2 at sample size150
M1

X, =0.217421X_; + 0.172224%_3— 0.518088X_,— 0.218600X_s 0.135334%_¢- 0.269434X_; +
0.630377g ; — 0.119139¢ ,- 0.763971g 5+ 0.002651X 46 _ 1 - 0.002651X_s6_ ;- 0.015220X_q&
_,+0.001332X 463+ 0.010671X 6 _ 1+ 0.007194X_ 6 _,— 0.008443X_ s _s— 0.018346X £
_,-0.007363X_£_,+@

M2

Xt =0.217421X_ 1+ 0.172224X_3— 0.518088X_4,— 0.218600X 5 0.135334X_¢— 0.269434X_; +
0.630377e.,- 0.763971e 3— 0.017434X 16 _,+ 0.014963X_.6_ 1+ 009280X_-£ _,- 0.007589X
_2-3—0.019788X £ _1-0.008451X_ £ _.+ &

Fitted Model M1 and M2 at sample size 250
M1

Xt = -0.712478X 1- 0.153047X_,+ 0.032479X_3— 0.606080X_, 0.351330X_5- 0.422284X
—6-0.407042X 7- 0.311950X_g+ 0.809607¢ ;- 0.048903e ,- 0.673588¢ 3+ 0.000174X_ & _1-
0.012392X_4& _,- 0.000523 + 0.008372X. 1+ 0.002290X_.£ ., — 0.004130X £ _3—
0.010699X_£._1+ &

M2
Xt = -0.712478X 1- 0.153047X_,+ 0.032479X_3— 0.606080X_, 0.351330X_5— 0.422284X

—6-0.407042X_;- 0.311950X_5+ 0.809607¢ ; - 0.048903¢g ,— 0.673588e 3- 0.005131X_& _>-
0.003221X_£_3—0.007347X_ £ _1t &

The fitted models’ residual variances, coefficiehtleterminatioriR-squared) and F-statistic are given
in table 1 below.

5. Conclusion

This study focused on generalized integrated kilimeodels that could handle all non-linear series.
Generalized bilinear models at different levelsaple sizes were considered using the non-linear
real series. Generalized integrated bilinear mederged as the better model when compared with
subset model. And this is an improvement in the @hpdoposed. Moreover, estimation of parameters
witnessed a unique, consistent and convergent &stirthat has prevented the models from exploding,
thereby making stationary possible.
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Table 1. Goodness of fit of generalized and subgttregressive integrated moving average bilinear
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Sample size | Sample size of 150 Sample size of 250

Model Full Bilinear | Subset Full Bilinear | Subset
Bilinear Bilinear

Residual 193.4 194.2 293.7 300.1

Variance

R® 0.61 0.60 0.54 0.53

F (Statistic) | 31.22 43.97 47.0 136.91

We could see the performance of the two modelsalising the residual variance attached to each
model. The residual variance of full bilinear moesmaller than that of subset model. The proposed
model gave us the best model at full model whicdmismprovement. The usual convention is that the
subset model is always better than the full moBet.in this proposed model, testing all subsethef
models is not necessary.
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