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Abstract 

Generalized integrated autoregressive moving average bilinear model which is capable of achieving 
stationary for all non linear series is proposed and compared with subset generalized integrated 
autoregressive moving average bilinear model using the residual variance to see which perform better. 
The parameters of the proposed models are estimated using Newton-Raphson iterative method and 
Marquardt algorithm and the statistical properties of the derived estimates were investigated. An 
algorithm was proposed to eliminate redundant parameters from the full order generalized integrated 
autoregressive moving average bilinear models. To determine the order of the models, Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BIC) were adopted. Generalized 
integrated autoregressive moving average bilinear models are fitted to Wolfer sunspot numbers and 
stationary conditions are satisfied. Generalized integrated autoregressive moving average bilinear 
model performed better than subset generalized integrated autoregressive bilinear model. 
Keywords: Stationary, Newton-Raphson, Residual Variance, Marquardt Algorithm and Parameters. 
 

1. Introduction 

The bilinear time series models have attracted considerable attention during the last years. An overview 
of bilinear models and their application can be found in (Subba Rao 1981), (Pham & Tran 1981), (Gabr 
& Subba Rao 1981), (Rao et al. 1983), (Liu 1992), (Gonclaves et al. 2000), (Shangodoyin & Ojo 
2003), (Wang & Wei 2004), (Boonaick et al.2005), (Bibi 2006), (Doukhan et al. 2006), (Drost et al. 
2007), (Usoro & Omekara 2008) and (Ojo 2009). The bilinear modes studied by the above researchers 
could not achieve stationary for all nonlinear series. One-dimensional bilinear time series model that 
could achieve stationary for all non linear series was developed, for details see (Shangodoyin et al. 
2010) and (Ojo 2010). In this paper we proposed generalized integrated autoregressive moving average 
and subset integrated autoregressive moving average bilinear time series models that could achieve 
stationary for all non linear real series. 

 

2. Proposed Generalized Integrated Autoregressive Moving average Bilinear Time Series Models 

We define generalized bilinear (GBL) and generalized subset bilinear (GSBL) time series models as 

follows: 
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pφφ ,...,1  are the parameters of the autoregressive component; qθθ ,...1  are the parameters of the 
associated error process;

 rsbb ,,.........11  are the parameters of the non-linear component and )(Bθ is 
the moving average operator; p is the order of the autoregressive component; q is the order of the 
moving average process; r, s is the order of the nonlinear component and )()( BB dφψ ∇=  is the 
generalized autoregressive operator; d∇ is the differencing operator and d is the degree of consecutive 
differencing required to achieve stationary. et are independently and identically distributed as N (0, 2

eσ ) 
and the models are assume to be invertible. 
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The above equation is denoted as GSBL (p, d, q, r, s) and pi is the order of subset autoregressive 

integrated component, qj is the order of subset moving average component and kksr  is the order of 

subset nonlinear component. In the models above, et are independently and identically distributed as N 

(0, 2
eσ ) and the models are assume to be invertible. 

 
3. Stationary and Convergence of GBL (p, d, q, r, s) 

For general S, it is not easy to provide an infinite series representation for eachtX . For this general 
case, we exhibit the process ){ , ZtX t ∈  as an almost sure limit of a sequence  

}1},{{ ,, ≥∈ nZttnS of stationary processes. 

Theorem 

Let { }Ztet ∈, be a sequence of independent identically distributed random variables defined on a 
probability space ( )PIR,,Ω  such that E et = 0 and ∞<= 22 σtEe .Ψ , ,Θ B1, B2,….,Bq be q+1 
matrices each of order p x p. 
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Proof 

Let the process { }ZtnS tn ∈,,,  be defined as follows. 

,0, =tnS   if n < 0, 

     = Cet, if n = 0, 

     ,...)( ,22,221,111 qtqtqnqttnttnttt eSBeSBSeBeCe −−−−−−−−−− ++++Θ−Ψ+=  if n>0 

for every t in Z. 

tnn S ,lim ∞→  exists almost surely for every t in Z. If Xt is the almost sure limit of { }1,, ≥nS tn  for 

every t in Z, then it is obvious that the process },{ ZtX t ∈  conforms to the bilinear model 

strtrsttqtqttdptdptt eXbeXbeeeXXX −−−−−−−−+− +++−−−+++= ................... 11111111 θθψψ    

 Also, for every fixed n in Z, { }ZtS tn ∈,,  is a strictly stationary process. 

Let .,,1,, ZtSSs tntntn ∈−= −
2/

, )( n
itn KsE λ≤ for every 0≥n  and i = 1, 2, ….,p, where K is a 

positive constant. Since ,1<λ  this then implies that { }1,, ≥nS tn  converges almost surely for every t 
in Z. 

 

3.1Algorithm for Fitting One-dimensional Autoregressive Integrated Moving Average Bilinear Time 
Series Models  
 
For the sake of simplicity, we will break the algorithm down into the following steps. 

 

Step 1  

Fit various order of autoregressive integrated moving average model of the form  

tqtqtdptdptt eeeXXX +−−−++= −−−−+− θθψψ ......... 1111                                                                                                    

 

Step 2  

Choose the model for which Akaike Information Criterion (AIC) is minimum among various order 
fitted in step 1. 

 

Step 3  

Fit possible subsets of chosen model in step 2 using 12 −q  subsets approach (Hagan & Oyetunji 1980).  

 

Step 4  

Choose the model for which AIC is minimum among the fitted models in step 3 to have the best subset 
model and the parameters of this model form the initial values. 

 

Step 5 

Fit various order of generalized autoregressive integrated moving average bilinear model of the 
form tstrtrsttqtqtdptdptt eeXbeXbeeXXX ++++−−−++= −−−−−−−−+− .................. 11111111 θθψψ   

 

Step 6 

Fit possible subsets of chosen model in step 5 using 12 −q  subsets approach (Shangodoyin & Ojo 
2003)
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Step 7 The model with the minimum AIC is the generalized subset autoregressive integrated moving 
average bilinear model. 

 3.2 Estimation of the Parameters of Generalized Bilinear Models Proposed 

The joint density function of ),....,,( 1 nmm eee +  where m = max (r, s) is given by 
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follows that the second order derivatives with respect to iψ (i = 0, 1, 2, …, p) and iθ   (i = 0, 1, 2, …, 
q) are zero. For a given set of values {φi}, { iθ } and {Bij } one can evaluate the first and second order 
derivatives using the recursive equations 3, 4, 5 and 11. Now let 
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Rewriting this equation we get ),()(ˆ 1 GVGHGG −−=−  and thus obtain an iterative equation given 
by )()( )()(1)()1( kkkk GVGHGG −+ −= where )(kG  is the set of estimates obtained at the kth stage 
of iteration. The estimates obtained by the above iterative equations usually converge. For starting the 
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iteration, we need to have good sets of initial values of the parameters. This is done by fitting the best 
subset of the linear part of the bilinear model. 

 

3.3 Estimation of the Parameters of Generalized Subset Bilinear Model Proposed 

In the estimation procedure to be discussed in this section we assume that the sets of integers 
},,...,,{ 21 lkkk
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as is done in Marquardt algorithm. Expanding )ˆ(θG  near θθ =ˆ  in a Taylor series, we obtain 
).ˆ)(()(0 θθθθ −+= HG  

Rewriting this equation, we get )()()ˆ( 1 θθθθ GH −−=− and thus obtain the Newton-Raphson 
iterative equation 

)()( )()(1)()1( kkkk GH θθθθ −+ −=  
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)()( )()(1)1()( kkkk GH θθθθ −+ +=        (13) 

where )(kθ  is the set of estimates obtained at the kth stage of iteration. For starting the iteration, we 
need to have good sets of initial values of the parameters. This is done by fitting the best subset of the 
linear part of the bilinear model. 

 

4. Numerical Example 

 To present the application of the models proposed, we will use a real time series dataset, the Wolfer 
sunspot, available in (Box et al. 1994). The scientists track solar cycles by counting sunspots – cool 
planet-sized areas on the Sun where intense magnetic loops poke through the star’s visible surface. It 
was Rudolf Wolf who devised the basic formula for calculating sunspots in 1848; these sunspot counts 
are still continued. 

As the Wolfer sunspot data set represent a non-stationary series, the bilinear models proposed in this 
paper may be applied. The Wolfer sunspot data set is considered at sample size of 150 and 250. For the 
fitted model below we have used the algorithm and the estimation technique in the previous section. 

 

Fitted Model M1 and M2 at sample size150 

M1 

X t =0.217421Xt – 1 + 0.172224Xt – 3 – 0.518088Xt – 4 – 0.218600Xt – 5- 0.135334Xt – 6 - 0.269434Xt – 7  + 
0.630377et - 1 – 0.119139et – 2 - 0.763971et – 3 + 0.002651Xt – 1et – 1 - 0.002651Xt – 1et – 1 - 0.015220Xt – 1et 

– 2 + 0.001332Xt – 1et – 3 + 0.010671Xt – 2et – 1 + 0.007194Xt – 2et – 2 – 0.008443Xt – 2et – 3 – 0.018346Xt – 3et 

– 1 -0.007363Xt – 3et – 2 + et  

M2 

X t  =0.217421Xt – 1 + 0.172224Xt – 3 – 0.518088Xt – 4 – 0.218600Xt – 5- 0.135334Xt – 6 – 0.269434Xt – 7 + 
0.630377et – 1 - 0.763971et – 3 – 0.017434Xt – 1et – 2 + 0.014963Xt – 2et – 1 + 009280Xt – 2et – 2 - 0.007589Xt 
– 2et – 3 – 0.019788Xt – 3et – 1 - 0.008451Xt – 3et – 2 + et   

Fitted Model M1 and M2 at sample size 250 

M1 

X t   = - 0.712478Xt – 1 - 0.153047Xt – 2 + 0.032479Xt – 3 – 0.606080Xt – 4- 0.351330Xt – 5 - 0.422284Xt 
– 6  - 0.407042Xt - 7 - 0.311950Xt – 8 + 0.809607et – 1 - 0.048903et – 2 - 0.673588et – 3 + 0.000174Xt – 1et – 1 - 
0.012392Xt – 1et – 2 - 0.000523 + 0.008372Xt – 2et – 1 + 0.002290Xt – 2et - 2 – 0.004130Xt – 2et – 3 – 
0.010699Xt – 3et – 1 + et  

M2 

X t    = - 0.712478Xt – 1 - 0.153047Xt – 2 + 0.032479Xt – 3 – 0.606080Xt – 4- 0.351330Xt – 5 – 0.422284Xt 
– 6 - 0.407042Xt – 7 - 0.311950Xt – 8 + 0.809607et – 1 - 0.048903et – 2 – 0.673588et – 3 - 0.005131Xt – 1et – 2 -
0.003221Xt – 2et – 3 – 0.007347Xt – 3et – 1 + et   

The fitted models’ residual variances, coefficient of determination(R-squared) and F-statistic are given 
in table 1 below. 

 

5. Conclusion 

This study focused on generalized integrated bilinear models that could handle all non-linear series. 
Generalized bilinear models at different levels of sample sizes were considered using the non-linear 
real series.  Generalized integrated bilinear model emerged as the better model when compared with 
subset model. And this is an improvement in the model proposed. Moreover, estimation of parameters 
witnessed a unique, consistent and convergent estimator that has prevented the models from exploding, 
thereby making stationary possible.  
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Table 1. Goodness of fit of generalized and subset autoregressive integrated moving average bilinear 
models at sample sizes of 150 and 250. Two models are compared, namely M1: GBL (p, 1, q, r, s), M2: 
GSBL (p, 1, q, r, s). All models are significant at p<0.001. 
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Sample size Sample size of 150 Sample size of 250 
Model Full Bilinear Subset 

Bilinear 
Full Bilinear Subset 

Bilinear 
Residual 
Variance 

193.4 
 

194.2 
 

293.7 
 

300.1 
 

R2 0.61 
 

0.60 0.54 0.53 

F (Statistic) 31.22 43.97 47.0 136.91 
 
We could see the performance of the two models above using the residual variance attached to each 
model. The residual variance of full bilinear model is smaller than that of subset model. The proposed 
model gave us the best model at full model which is an improvement. The usual convention is that the 
subset model is always better than the full model. But in this proposed model, testing all subsets of the 
models is not necessary.  
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