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Abstract  

Several empirical studies have tried to examine the links between Foreign Direct Investment, financial 

development and economic growth. However, little work has been done to examine the direct relationship 

between FDI and financial development. Thus, through this study we aim to examine if a well-functioning 

financial system has an impact on the FDI inflows and outflows of a country using the data mining techniques of 

attribute analysis, association and classification. We have used data related to 78 countries over a period of 1980 

to 2009 for our analysis. The analysis suggests that FDI is not directed into countries that are financially weak 

and is dependent on both the stock market variables and the banking sector variables. The development of the 

financial system of the recipient country is an important precondition for FDI to have a positive impact on 

economic growth. 
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1. Introduction 

Foreign direct investment (FDI) or foreign investment refers to the net inflows of investment to acquire a lasting 

management interest (10 percent or more of voting stock) in an enterprise operating in an economy other than 

that of the investor. This study examines the effects of financial market development on FDI inflows and 

outflows by studying the link between FDI and the degree of development of the stock market and the banking 

system. To perform our analysis, we apply the data mining approach. 

Data mining is the process of analyzing data from different perspectives and summarizing it into useful 

information that can be used to increase revenue, cuts costs, or both. Technically, data mining is the process of 

finding correlations or patterns among dozens of fields in large relational databases (Data Mining: What is Data 

Mining?). 

The findings in our work can have important policy implications for various countries in the world. Identifying 

the relationship can help in improving the quality of local financial systems to make them more attractive for any 

multinational firms to invest in their markets. 

 

2. Literature Survey 

We study the various literatures available in the field of finance, economics and data mining which provide 

information and a background for our study. 

3.1 What determines financial development?  

This paper by Yongfu Huang (2005) studies the principal determinants that affect financial development. The 

author reaches the conclusion that the level of financial development is determined by its institutional quality, 

government policies, geographic endowments, its income level and cultural characteristics. Of the 39 variables 

used by in the analysis, 8 variables - initial income, initial population, land area, open trade policy, civil law 

countries, common law countries, a governance index and a political constraint index were found to be 

associated with the financial development. More open trade policies are associated with greater financial 

development and better institutional quality and higher levels of civil liberties and political rights are also 

associated with higher levels of financial development. The finding that the legal origins influence financial 

development supports the emphasis on legal determinants of financial development of (La Porta). Findings on 

institutions, policy and geography as a whole being all important for financial development have significant 

implications for developing financial markets. The author mentions that efficient supply of external finance can 

be achieved through good institutional quality. The significant effects of the structural factors which are 

relatively time-invariant means that any effort of the government to better institution quality implement more 

open trade and sound macroeconomic policies, and improve geographic infrastructure can stimulate financial 

development in the long run. 
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3.2 Foreign Direct Investment, Productivity, and Financial Development 

This paper by Niels Hermes and Robert Lensink (2003) argues that a more developed financial system has a 

positive effect on the process of technological diffusion that FDI brings in. Thus the author states that the 

development of the financial system is an important precondition for the FDI to have a positive impact on the 

economic growth. Data from 67 countries was used to perform empirical analysis. Out of these, 37 countries 

mainly from Latin America and Asia have a developed financial system which helps FDI in contributing to the 

economic growth of the country. The paper also deduces that the FDI does not have an impact on the economic 

growth in least developed countries. This means that only when these countries have achieved a significant 

development of their financial system can FDI have a positive impact on the economic growth. 

3.3 The causality relationship between financial development and foreign direct investment 

This paper by Zukarnain Zakaria (2007) carries out a systematic study to determine whether a causal relationship 

exists between FDI and the level of financial development. The author uses data from 37 developing countries 

for examining this causality in a multivariate framework. The findings from causality tests provide little support 

for the hypothesis that the inflows of FDI can contribute to the development of the domestic banking sector in 

developing countries. This study also finds that FDI has no effect on the development of the domestic banking 

sector. In contrast, the author finds strong support that FDI can affect the development of the domestic stock 

markets in the developing countries, and vice versa. 

3.4 Do Well-Functioning Financial Systems affect the FDI flows to Latin America? 

This paper by Omar M. Al Nasser and Xavier Garza Gomez (2009) examines the direct relationship between 

FDI and the development of the stock market and banking system using the pooled data of 15 Latin American 

countries from 1978 to 2003. The paper finds that FDI is positively correlated with trading volume (TV), an 

important variable that reflects the development of the stock market. FDI is significantly and positively 

correlated with the level of private credit (PC) offered by the banking sector and that the effect of TV and PC is 

incremental over control variables such as inflation, openness of the economy to foreign trade, technology gap 

and infrastructure level. 

3.5 An Introduction to Variable and Feature Selection 

This paper by Isabelle Guyon and Andr´e Elisseeff (2003) provides an understanding of feature, construction, 

feature ranking, multivariate feature selection, efficient search methods, and feature validity assessment methods. 

The objective of variable selection is three-fold: improving the prediction performance of the predictors, 

providing faster and more cost-effective predictors, and providing a better understanding of the underlying 

process that generated the data. The paper also contributes by providing a better definition of this objective 

function. The authors recommend using a linear predictor of one’s choice and select variables in two alternate 

ways: (1) with a variable ranking method using a correlation coefficient or mutual information; (2) with a nested 

subset selection method performing forward or backward selection or with multiplicative updates. 

3.6 Feature Subset Selection: A Correlation Based Filter Approach 

This paper by Mark A. Hall and Lloyd A. Smith describes a feature subset selector that uses a correlation based 

heuristic to determine the goodness of feature subsets, and evaluates its effectiveness with 3 machine learning 

algorithms: a decision tree inducer, a naive Bayes classifier, and an instance based learner. Results show that its 

evaluation heuristic chooses feature subsets that are useful to common machine learning algorithms by 

improving their accuracy and making their results easier to understand. A comparison with the Wrapper approach 

to feature selection shows CFS to be many times faster, making its application to domains with many features 

more feasible. 

3.7 Correlation-based Attribute Selection using Genetic Algorithm 

This paper by Rajdev Tiwari and Manu Pratap Singh formulates and validates a method for selecting optimal 

attribute subset based on correlation using Genetic algorithm (GA), where GA is used as optimal search tool for 

selecting subset of attributes. Given two attributes, such analysis can measure how strongly one attribute implies 

the other, based on the available data. For numerical attributes, we can evaluate the correlation between two 

attributes, X and Y, by computing the correlation coefficient. In general, a feature/attribute is good if it is 

relevant to the class concept but is not redundant to any of the other relevant features. If we adopt the correlation 

between two variables as a goodness measure, the above definition becomes that a feature is good if it is highly 

correlated to the class but not highly correlated to any of the other features. 

 
2. Design Phases 

For our analysis, we divide our study into 3 phases. Each data mining technique enables us to get more 

information about our data and helps us analyze it. 

Phase 1: Data Preprocess 
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We perform data preprocessing in order to integrate different data sets and to clean the missing values. We also 

apply Discretization to our data when it’s necessary for our analysis tasks. 

Phase 2: Data Characterize  

In this phase, the high level data descriptions are performed. We use Attribute Analysis techniques to get a better 

understanding of how the data distribution looks like. 

Phase 3: Associate Classify/ Predict 

We use Association method for discovering interesting relations between various attributes of our interest. We 

use Classification technique to predict group membership for the different attributes that we have chosen. For that 

we use popular classification techniques like regression and k-nearest neighbors. 

The Datasets used in our study are World Bank Research Dataset, UNCTAD Databases (United Nations 

conference on Trade and Development Database), International Monetary Fund Dataset (IMF Dataset). 

2.1 Data Selected 

2.1.1 Countries covered 

World Bank Research Dataset includes 224 countries. IMF has total 183 countries with their 40 different 

financial indicators in Excel file format when United Nations dataset contains around 230 countries. We use the 

intersection set to select the common data. 

 2.1.2 Year covered 

These three datasets give different time periods for the data. We will basically choose the years which all datasets 

cover. World Bank Research Dataset addresses the financial indicators from 1960 to 2009. IMF has the period 

from 1970 to 2005 and United Nations has the data between 1980 and 2009. We thus work on the years from 

1980 to 2009 for time period. 

2.1.3 Criteria and Indicator Selected 

For World Bank Research Dataset, their dataset addresses totally 17 different indicators that measure the size, 

activity, and efficiency of financial intermediaries and markets. Here we select those indicators we think relevant 

to international direct investment. 

2.2 Data Integration 

Since we use three different datasets in this study, we have to deal with data integration. First, these datasets 

address different topics and indicators. Second, the measurements of them are different as well. We choose the 

relevant topics and indicators from each dataset and integrate all the indicators into a final combined dataset. 

All those countries are identified for which we have very less amount of data i.e. most of the values are missing 

and they are not considered for our study. Final integrated data is obtained by filling the missing values in the 

dataset. We replace the empty cell by the mean of that attribute for that particular country. 

 

3. Attribute Analysis 

In order to analyze the relationship between the Foreign Direct Investment and the financial development of the 

country, it is essential to identify the relevant attributes in the dataset. 

We use Weka as our data mining tool, it supports several standard data mining tasks, more specifically, 

data preprocessing, clustering, classification, regression, visualization, and feature selection. It provides various 

attribute evaluation techniques. The attributes are then ranked according to their computed relevance to the data 

mining task. Attributes that are not relevant or are weakly relevant to the task are then removed. These methods 

enable us to make a preliminary analysis of the relationship between FDI and financial development and allow 

us to select only those relevant attributes for a more in-depth data mining. 

3.1 Selection of Class Attributes 

As we have to analyze the relationship between FDI and the financial development indicators, we select the 

attributes related to FDI as our classes, and then evaluate the relevance of the financial development indicators to 

these classes. Thus, the classes selected by us are: 

1. Inflows As A Percentage Of GFCF (Gross Fixed Capital Formation) 

2. Inward Stock As A Percentage Of GDP (Gross Domestic Product) 

3. Outflows As A Percentage Of GFCF 

4. Outward Stock As A Percentage Of GDP 

3.2 Evaluating and Searching relevant attributes 

Subset evaluators take a subset of attributes and return a numeric measure that guides the search. They are 

configured like any other Weka object. Single attribute evaluators evaluate each of the attributes individually and 

sort them, discarding those attributes that fall below a chosen cut off point. Search methods traverse the attribute 

space to find a good subset. For analyzing the attributes, we used two sets of evaluators and search methods.  

3.2.1 Feature Selection Method: Correlation based Feature Selection (CFS) 

         Search Method: Genetic Algorithm 
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CFS evaluates the worth of a subset of attributes by considering the individual predictive ability of each feature 

along with the degree of redundancy between them. Correlation coefficient is used to estimate correlation 

between subset of attributes and class, as well as inter-correlations between the features. Relevance of a group of 

features grows with the correlation between features and classes, and decreases with growing inter-correlation 

(Mark A. Hall). CFS is used to determine the best feature subset and is usually combined with search strategies 

such as forward selection, backward elimination, bi-directional search, best-first search and genetic search. 

Genetic Algorithm is a stochastic general search method, capable of effectively exploring large search spaces, 

which is usually required in case of attribute selection. Further, unlike many search algorithms, which perform a 

local, greedy search, GAs performs a global search. A genetic algorithm mainly composed of three operators: 

reproduction, crossover, and mutation. Reproduction selects good string; crossover combines good strings to try 

to generate better offspring’s; mutation alters a string locally to attempt to create a better string. In each 

generation, the population is evaluated and tested for termination of the algorithm. If the termination criterion is 

not satisfied, the population is operated upon by the three GA operators and then re-evaluated. This procedure is 

continued until the termination criterion is met (D. Goldberg).  

The subset of attributes related to the financial structure and development obtained by applying CFS and Genetic 

algorithm, which have correlation with the FDI inflows to the country are:  

Class Attribute: FDI inflow as percentage of GFCF 

Country, year, central bank assets to GDP, private credit by deposit money banks, stock market capitalization to 

GDP, current account balance GDP per capita, GDP purchasing power parity, GDP deflator, inflation annual per 

capita. 

Class Attribute: FDI outflow as percentage of GFCF 

GDP, purchasing power parity, life insurance penetration and per capita GDP. 

Class Attribute: FDI stock inflow GDP per capita 

Deposit money bank assets, GDP deflator, private credit and stock market capitalization. 

Class Attribute: FDI stock outflow GDP per capita 

GDP purchasing power parity, per capita GDP, life insurance penetration. 

3.2.2 Feature Selection Method: Information Gain Analysis 

         Search Method: Ranker 

This selection algorithm evaluates the worth of an attribute by measuring the information gain with respect to the 

class. It discretizes numeric attributes first using the MDL (Minimum Description Length)-based discretization 

method. This method can treat missing as a separate value or distribute the counts among other values in 

proportion to their frequency. 

Ranker is not a search method for attribute subsets but a ranking scheme for individual attributes. It sorts 

attributes by their individual evaluations and must be used in conjunction with one of the single-attribute 

evaluators. Ranker not only ranks attributes but also performs attribute selection by removing the lower-ranking 

ones. You can set a cutoff threshold below which attributes are discarded, or specify how many attributes to 

retain. 
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Table 1: Ranks of the attributes for their respective classes 

 

                                   

Classes 

Attributes 

Inflows As A 

Percentage Of 

GFCF 

Inflows As A 

Percentage Of 

GFCF 

Inflows As A 

Percentage Of 

GFCF 

Inflows As A 

Percentage Of 

GFCF 

Country 1 1 1 1 

Year 2 12 2 20 

Development 20 19 20 18 

Deposit money bank versus 

central bank assets 

11 14 14 12 

Central bank assets to GDP 14 18 10 17 

Deposit money bank assets to 

GDP 

9 10 3 7 

private credit by deposit money 

banks 

6 8 5 6 

Private credit by others too 10 7 8 5 

Liquid liabilities to GDP 13 13 9 11 

Life insurance penetration 19 3 19 4 

Non-life insurance penetration 16 9 15 8 

stock market capitalization to 

GDP 

12 5 6 10 

Stock market total value traded 

to GDP 

7 6 17 9 

Stock market turnover ratio 15 11 18 13 

current account balance GDP per 

capita 

18 20 16 19 

GDP purchasing power parity 5 2 11 2 

GDP purchasing power parity 

sow 

4 16 7 14 

GDP per capita current prices 8 4 13 3 

GDP deflator 3 17 4 16 

inflation annual per capita 17 15 12 15 

 

3.2.3 Conclusion 

The selected attributes from different set of evaluators and searching methods are quite different. Some attributes 

selected from the first set ranked rather low in the second set. Thus, after filtering the attributes from the 3 

combinations of evaluation and selection methods, we find that the most relevant attributes corresponding to the 

Foreign Direct Investment are: 

1. For FDI Inflows: 

Country, year, central bank assets to GDP, private credit by deposit money banks, stock market capitalization to 

GDP, GDP purchasing power parity, GDP purchasing power parity sow, GDP deflator, stock market total 

value traded to GDP, deposit money bank assets to GDP, inflation annual per capita. 

2. For FDI Outflows: 

Country, development, private credit by others, life insurance penetration, nonlife insurance penetration, stock 

market capitalization to GDP,stockmarkettotalvaluetradedtoGDP,GDP_per_capita_curr_prices, private 

credit by deposit money banks, inflation annual per capita. 

3. FDI Inward Stock: 

Country, year, central bank assets to GDP, private credit by deposit money banks, liquid liabilities to GDP, stock 

market capitalization to GDP, GDP purchasing power parity sow, GDP deflator, inflation annual per capita, 

deposit money bank assets to GDP, private credit by others. 

4. FDI Outward Stock:  

Country, private credit by others, life insurance penetration, stock market capitalization to GDP, stock market 

total value traded to GDP,      GDP purchasing power parity, deposit money bank assets to GDP, private 

credit by deposit money banks. 
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4. Association 

In data mining, association rule learning is a popular and well researched method for discovering interesting 

relations between variables in large databases.  

We will be using Apriori Algorithm for our study. The name of the algorithm is based on the fact that the 

algorithm uses prior knowledge of frequent item set properties (Jiawei Han). 

We implement the association analysis for the four class attributes separately. First we have to select the 

attributes those are relevant to the class attributes, this was already done as a part of the Attribute Analysis. 

The results of the Apriori Algorithm are as follows. 

Class Attribute: FDI inflow as percentage of GFCF 

The results show that the inflow of foreign direct investment when described as a percentage of Gross fixed 

capital formation is closely associated with Purchasing Power Parity and GDP deflector.   

Class Attribute: FDI outflow as percentage of GFCF 

The results show that the outflow of foreign direct investment when described as a percentage of Gross fixed 

capital formation is closely associated with the private credits and the GDP per capita current prices. 

Class Attribute: FDI stock inflow GDP per capita 

The results show that the per capita inflow of stocks is closely associated with GDP deflator and it is associated 

with other attributes strongly when they are taken in combination. 

Class Attribute: FDI stock outflow GDP per capita 

The results show that the per capita inflow of stocks is closely associated with private credits and ratio of 

deposited assets in bank to GDP. 

The association rules can be useful for predicting the range in which the FDI can lie given the range of the 

financial development variables that the FDI variables are associated with. 

 

5. Classification and Prediction 

Classification is a data mining technique used to predict group membership for data instances. It is the task of 

generalizing known structure to apply to new data. 

Prediction is similar to Classification. It constructs a model and uses it to predict unknown or missing values. 

The basic difference however between classification and prediction is that classification predicts categorical 

class labels whereas prediction models continuous-valued functions. 

We have to analyze correlation between the financial development variables and foreign direct investment of 

various countries. Because variant size of one country's financial structure may have different international 

investment behavior and strategy, understanding the correlation between the two can be very useful for the 

economy of a country. 

There are various algorithms that can be used to classify the data and further predict the unknown values. In our 

study, we will be primarily concentrating on Regression Analysis technique (Interpreting Regression). 

5.1 Linear Regression 

Regression is a data mining technique used to fit an equation to a dataset. The simplest form of regression, linear 

regression, uses the formula of a straight line (y = mx + b) and determines the appropriate values for m and b to 

predict the value of y based upon a given value of x. Advanced techniques, such as multiple regression, allow the 

use of more than one input variable. Multiple regression fits a model to predict a dependent (Y) variable from 

two or more independent (X) variables: Y= β0 + β1X1 + β2X2 + + β3X3 + …… + βnXn, where, the 

quantities β0……. βn are unknown coefficients, whose values are determined by least squares. 

5.1.1 Selection of attributes for regression 

We use the regression model to identify the impact of the various financial development attributes on the FDI 

data. 

Originally we have 38 attributes in our dataset. After using all of those attributes to do the mining task, we found 

that due to enormous variation of some values of the attributes, the resulting prediction is not very satisfied, even 

though we have done attributes normalization to eliminate the problem stemmed from scalability. So we decide 

to filter out those attributes whose values are absolute and varying dramatically from country to country. We 

keep only those attributes which are in percentage or ratio.  

Secondly, we remove country name, year, and development attributes. Because our goal is to build a model 

which can make a prediction on one nation’s inward or outward investment based on other attributes’ values 

excluding country, year and development situation. Therefore, we select the attributes based on the results of 

attribute analysis discarding the three attributes of country, year and development. 

1. FDI stock outflow as a percentage of GDP 

Attributes selected: 
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Private credit by others, life insurance penetration, stock market capitalization to GDP, stock market total value 

traded to GDP, GDP purchasing power parity, deposit money bank assets to GDP, private credit by deposit 

money banks 

Analysis: 

Here we find that only 2 variables are significant. The stock market total traded value as well as the GDP 

purchasing power parity has a positive and significant impact on the FDI inflows. 

2. FDI outflows as a percentage of GFCF 

Attributes selected: 

Private credit by others, life insurance penetration, nonlife insurance penetration, stock market capitalization to 

GDP, Stock market total value traded to GDP, GDP per capita current prices, private credit by deposit money 

banks, inflation annual per capita. 

Analysis: 

Here 5 variables are significant. The life insurance penetration variable negatively and significantly impacts the 

FDI outflows while the non-life insurance penetration is positively correlated to the outflows. The stock market 

capitalization and the total traded value also have a significant impact on the outflows. Thus, the stock market 

development in terms of total market capitalization as well as the total traded value affects the FDI outflows. 

3. FDI stock inflow as a percentage of GDP 

Attributes selected: 

Central bank assets to GDP, private credit by deposit money banks, liquid liabilities to GDP, 

Stock market capitalization to GDP, GDP purchasing power parity sow, GDP deflator, inflation annual per capita, 

deposit money bank assets to GDP, private credit by others. 

Analysis: 

Here we find that 6 variables are significant. The central bank assets and the GDP purchasing power parity 

variables seem to have a positive impact on the FDI inward stock. The inflation annual percentage variable also 

has a significant impact on the FDI. The deposit money bank assets variable has a negative impact on the FDI 

inward stock. 

4. FDI inflows as a percentage of GFCF 

Attributes selected: 

Central bank assets to GDP, private credit by deposit money banks, stock market capitalization to GDP, GDP 

purchasing power parity, GDP purchasing power parity sow, GDP deflator, stock market total value traded to 

GDP, deposit money bank assets to GDP, inflation annual per capita 

Analysis: 

Here 7 out of the 8 variables are significant. This shows that these variables have a significant impact on the FDI 

outward stock. 

 

After running regression analysis on the data we found out that there some of the financial indicators have an 

impact on FDI. To further check out if the FDI can be predicted for a country based on the financial development 

indicators, we applied few more algorithms. The best results were shown by K-Nearest Neighbor algorithm 

which is a distance based classification algorithm. 

5.2 K-Nearest Neighbors (KNN) 
K-Nearest Neighbors is a common classification scheme based on the use of distance measures. The KNN 

technique assumes that the entire training set includes not only the data in the set but also the desired 

classification for each item. In effect, the training data becomes the model. When a classification is to be made 

for a new item, its distance to each item in the training set must be determined. Only the K closest entries in the 

set are considered further. The new item is then placed in the class that contains the most items from this set of K 

closest items (Margaret H. Dunham). 

5.2.1 Selection of Attributes: 

As reasoned out for regression, it is inappropriate to apply the algorithm for all the attributes. Thus, the relevant 

attributes are selected based on the results of attribute analysis and the algorithm is applied only to these selected 

attributes. 

Analysis: 

1. FDI stock outflow as a percentage of GDP 

On applying this algorithm, we find that the coefficient of correlation is high and the relative absolute error is 

low. This suggests that the K-Nearest algorithm can be used to predict the FDI outward stock. 

2. FDI outflows as a percentage of GFCF 
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Here, we find that the coefficient of correlation is not high enough which means that there is significant 

difference in the predicted value and actual value of FDI outflows. Thus, the K-Nearest algorithm is not fit 

for predicting the FDI outflows. 

3. FDI stock inflow as a percentage of GDP 

The coefficient of correlation is very high for the FDI inward stock and the relative absolute error is sufficiently 

low. This suggests that the K-Nearest algorithm can be used to predict the FDI inward stock with greater 

accuracy. 

4. FDI inflows as a percentage of GFCF 

Here, we find that the correlation coefficient is sufficiently high. Thus, the K-Nearest algorithm can be used to 

predict the FDI inflows. 

5.3 Conclusion 

Linear regression techniques allowed us to analyze the impact of various financial development indicators on the 

FDI. Also K-Nearest algorithm can be used for predicting the FDI inflows, inward and outward stock with .least 

error. 

 

 6. Conclusion  

As discussed in the previous chapters, we have applied the data mining approach for analyzing the impact of the 

financial development variables on the Foreign Direct Investment to and out various countries. Feature Selection 

methods provided preliminary analysis about the financial development variables that can be useful for 

predicting the amount of Foreign Direct Investment. Association rules on applying the Apriori algorithm provide 

us with various rules which allow us to predict the range in which the FDI values can lie given the range of the 

financial development variables to which it is associated. We measure stock market development by stock 

market capitalization as a percentage of GDP, total value traded to GDP, and the turnover ratio. Through 

regression analysis, we find that stock market capitalization is positively and significantly correlated to the FDI 

inward stock and inflows to the countries. The stock market development in terms of stock market capitalization 

and total value traded is also a strong predictor of the FDI outflows. The banking sector development variables in 

terms of central bank deposits and deposit money bank assets variables have a significant impact on the FDI 

inward stock and inflows to countries. The central bank assets variable is positively correlated to both while 

deposit money bank assets variable is negatively correlated to both. We find that the K-Nearest algorithm fits the 

data best to predict the FDI inflows, inward and outward stock with less error as compared to other models. 

Thus overall the analysis suggests that FDI is not directed into countries that are financially weak and is 

dependent on both the stock market variables and the banking sector variables. The development of the financial 

system of the recipient country is an important precondition for FDI to have a positive impact on economic 

growth. 
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