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Abstract   

Modeling, analyzing, and forecasting volatility has been the subject of extensive research among academics, 

practitioners and portfolio managers. This paper estimates a variety of GARCH models using weekly closing price 

(in USD/barrel) of Brent crude oil and weekly closing prices (in USD/pound) of coffee Arabica, and compares the 

forecasting performance of these models based on a high frequency intra-day data which allows for a more precise 

realized volatility measurement. The study used weekly price data to explicitly model volatility, and employed 

high-frequency intra-day data to assess model forecasting performance. The analysis points to the conclusion that 

GARCH (1,1) for Arabica coffee and GARCH(1,2) crude oil returns were best models, respectively with Student’s 

t distributed innovation terms is the most accurate volatility forecasting models in the context of our empirical 

setting. We recommend and encourage future researchers studying the forecasting performance of GARCH models 

to pay particular attention to the measurement of realized volatility, and employ high-frequency data whenever 

feasible. 
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1 INTRODUCTION 

1.1 Background of the study 

The recent global financial crisis has increased the susceptibility of Commodity Dependent Developing Countries 

(CDDCs) to excessive price volatility in commodity markets. Moreover, structural weaknesses in these countries 

render their economies more vulnerable to increased commodity market turbulence than developed countries, 

given their comparatively lower income and high dependence on commodity exports. The World Bank estimates 

that 119 million additional people have been pushed into hunger as a result of the 2008 food price crisis (World 

Bank, 2009).  

Modeling, analyzing, and forecasting volatility has been the subject of extensive research among academics, 

practitioners and portfolio managers (Baume et al, .2013). This has been used in risk management, derivative 

pricing and hedging, portfolio selection and policy making. Similarly the analysis of volatility spillovers between 

commodity and asset prices has a profound implication for risk management and portfolios maximization by the 

government and investors alike (Salisu and Oloko, 2015). In view of the current bearish behavior of oil price in 

the international markets, it is arguably of special interest to study the volatility of oil and coffee prices (Gil-Alana 

and Yaya, 2014).  

In the last two decades there has been an explosion in volatility research. The “Dynamic Volatility Era” began 

with the introduction of the Autoregressive Conditional Heteroskedastic (ARCH) model (Engle, 2012). The ARCH 

(p) model expresses the conditional variance as p − th order weighted average of past (squared) disturbances and 

thus is able to describe volatility clustering in financial series. Following this, an enormous body of research has 

focused on extending and generalizing the ARCH model, mainly by providing alternative functional forms for the 

conditional variance. Some of the most important contributors to the dynamic volatility literature have been Engle, 

Bollerslev, Nelson and Ding. Bollerslev (1986) proposed the Generalized ARCH (GARCH) model, as a more 

parsimonious way of modeling volatility dynamics.  

The most significant contribution of this extensive volatility research is that now we have a much clearer and 

better understanding of the probabilistic features of speculative returns data. This is of crucial importance in the 

search for an overarching framework, which will be able to first capture the empirical regularities adequately and 

ultimately give us reliable volatility forecasts. There are a number of extensive surveys of the literature including 

for instance Bollerslev (1990), Chou and Kroner (1992), Engle and Nelson (1994), and Ding and Engle (2001). 

While realized volatility models often demonstrate excellent forecasting performance, there is still much debate 

concerning optimal approaches. However, recent results reported by Hansen and Lunde (2005) have suggested 

that, in the context of exchange rate returns, nothing can beat a GARCH (1, 1) model. 

Naturally, different papers in the literature tend to focus on different commodity price volatility. The focus 

of this work is on the volatility of Brent crude oil and Coffee Arabica prices in the commodity futures markets 

which are markets where one can buy specific quantities of a commodity at a specified price with delivery set at a 
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specified time in the future. The choice of these commodities is motivated by the fact that these are the most 

actively traded commodities in the world which also happen to be major importing and exporting commodities of 

Ethiopia. Existing work appears to focus mostly on in-sample modeling of volatility of commodity prices giving 

less attention to model forecasting performance. This work will also seek to bridge this gap in the literature. 

 

1.2 Statement of the problem 

A number of recent papers have investigated the volatility of energy and commodity price mainly due to increased 

interest for understanding the drivers and dynamics of such volatilities in these highly volatile times. Alternative 

estimation approaches are used in the literature, but thus far there is a dearth of work undertaking a thorough 

“GARCH” analysis –a statistical framework which is particularly suited for modeling asset price volatility. 

Moreover existing work appears to focus mostly on in-sample modeling of volatility of commodity price giving 

less attention to model forecasting performance. Accordingly, this work will seek to contribute to the literature by 

undertaking a systematic analysis of volatility forecasting performance of different GARCH models.  

Most of the existing research on volatility spillovers employ statistical models in order to estimate realized 

volatilities which turned out to be oftentimes poor approximations of true volatilities. An attractive alternative to 

model-based statistical volatility is to compute realized volatility based on high frequency intra-day or `tick’ data. 

Realized volatility has been found to be more accurate than model based volatilities in predicting latent volatility 

(Christensen and Prabhala, 1998). Thus, the results provided by previous studies can be potentially misleading in 

that they may have underestimated or overestimated the extent of the true volatility.  

This paper avoids this potential pitfall by using realized volatility based on a 30-minute intra-day data. We 

argue that doing so represents an important contribution to the literature of volatility measurement within 

commodity markets. 

 

1.3 Objective of the study 

1.3.1 General Objective  

The general objective of this study is to model the volatility of the Arabica coffee and crude oil prices using 

GARCH type models and perform volatility forecasting using realized variance. 

1.3.2 Specific Objectives 

The specific objectives of this study are: 

1. To fit a univariate GARCH models for each commodity prices separately. 

2. To forecast the volatility of the two commodities  

3. To compare the realized volatility forecasts obtained from weekly return square and a high frequency (a 

thirty minute interval) data.  

 

2 METHODS 

2.1 Stationarity 

The concept of stationarity is fundamental in time series analysis. A time series ���� is said to be strictly stationary 

if the joint distribution of 	��
,��� , … , ����is identical to that of 	��
�� , ����� , … , ������ for all t, where � is an 

arbitrary positive integer and ���, �� … , ��� is a collection of � positive integers. In other words, strict stationarity 

requires that the joint distribution of 	��
,��� … , ���� is invariant under time shift. Strict stationarity imposes a very 

strong condition and is hard to test empirically. Often the concept of weak stationarity is used. A time series ���� 

is weakly stationary if both the mean of �� and the covariance between ��  and ���� are time invariant, where � is 

an arbitrary integer. More specifically, ���� is weakly stationary if (a) �(���=µ, which is a constant and (b)  !"�#� , #���� =#� which only depends on � . In practice, suppose that we have observed $ data points ��� ∣ � =1, … , $�. Weak stationarity implies that the time plot of the data would show that the values fluctuate with constant 

variation around a fixed level. In application, weak stationarity enables one to make inferences concerning future 

observations (e.g. Forecasting).The covariance #� =  !"�#� , #���� is called the �() − � auto-covariance of ��  . It 

has two important properties: (a) #* = +(,���� and (b) #�� = #�. In the finance literature, it is necessary to test 

weakly stationarity of an asset return series. There are three methods of testing stationarity: graphical analysis, 

unit root test due to Dickey and Fuller (1979) test. 

A. Graphical Analysis of the Series 

Before pursuing formal tests, it is always advisable to plot the time series under study. Such a plot gives an initial 

clue about the likely nature of the time series. For instance, if a line-graph of a time series shows an upward trend, 

then this suggests perhaps that the mean of the data has been changing. This may be a clue that the series is not 

stationary. Such an intuitive feel is the starting point of more formal tests of stationarity. 

B. Unit Root Test 

A test for stationarity that has become widely popular over the past several years is the -$.� ,!!� �/0� .The 

Augmented Dickey-Fuller (ADF) test is discussed below. To illustrate the use of Dickey-Fuller test, consider first 
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an autoregressive process of order one (AR (1)) process: �� = 1 + 3����� + 4�                                                                             �1�                                                                      

where 1  and 3�  are parameters and  4� is assumed to be white noise.  � is a stationary series if −1 < 3� <1. If  31 = 1 , �  is a non-stationary series (a random walk with drift); if the process is started at some point, the 

variance of �  increases steadily with time and goes to infinity. If the absolute value of 3�  is greater than one, the 

series is explosive. Therefore, the hypothesis of a stationary series can be evaluated by testing whether the absolute 

value of 3�  is strictly less than one. The augmented Dickey-Fuller (ADF) test takes the unit root as the null 

hypothesis,  6*: 3� = 0. Since explosive series do not make much economic sense, this null hypot0hesis is tested 

against the one-sided alternative 69 ∶ 3� < 1.The test is carried out by estimating an equation with ���� subtracted 

from both sides of the equation: ∆�� = 1 + <���� + 4�                                                                      �2�                                                                                          

where  < = 3� − 1  , ∆ is the first difference operator, and the null and alternative hypotheses are 6* :  < =0  ,69: < < 0. 

While it may appear that the test can be carried out by performing a � − �/0� on the estimated  <, the � −0�(�.0�.  under the null hypothesis of a unit root does not have the conventional t-distribution. Dickey and Fuller 

(1979) showed that the distribution under the null hypothesis is nonstandard, and simulated the critical values for 

selected sample sizes. Recently, MacKinnon (1991) has implemented a much larger set of simulations than those 

tabulated by Dickey and Fuller. In addition, MacKinnon estimates the response surface using the simulation results, 

permitting the calculation of Dickey-Fuller critical values for any sample size and for any number of right-hand 

variables. The simple unit root test described above is valid only if the series is an AR (1) process. If the series is 

correlated at higher order lags, the assumption of white noise disturbances is violated. The ADF test uses different 

methods to control for higher-order serial correlation in the series. It makes a parametric correction for higher-

order correlation by assuming that the �  series follows an AR ( >) process and adjusting the test methodology: �� = 1 + 3����� + 3����� + ⋯ + 3@���@ + 4�                                              (3) 

The ADF approach controls for higher-order correlation by adding lagged difference terms of the dependent 

variable   to the right-hand side of the regression: ∆�� = 1 + <���� + #�∆���� + #�∆���� + ⋯ + #@��∆���@�� + 4�                  �4� 

Where,  < = �∑ (D@DE� � − 1 ,#F = − ∑ #�@�EF�� , ∆ is the first difference operator, and the null and alternative 

hypotheses are  6*: < = 0  ,69: < < 0. 

An important result obtained by Fuller is that the asymptotic distribution of the t-statistic on <  is independent 

of the number of lagged first differences included in the ADF regression. Moreover, while the parametric 

assumption that  �  follows an autoregressive (AR) process may seem restrictive, Said and Dickey (1984) 

demonstrate that the ADF test remains valid even when the series has a moving average (MA) component, 

provided that enough lagged difference terms are augmented to the regression.  

 

2.2 Tests for autocorrelation  

A weakly stationary series is not serially correlated (or is a white noise process) if the autocorrelation function is 

0 for all k >0. The ACF at lag �, denoted by G�  is defined as: 

  G� = #�#*    = H!"(,.($ / (� �() �"(,.($ /                                                                �5� 

Since both covariance and variance are measured in the same units of measurement,  G� is unit less, or pure, 

number. It lies between -1 and 1. If we plot  G�  against  � , the graph we obtain is known as the population 

correlogram.  

In practice it is only possible to compute the sample autocorrelation function (SACF), GJ�.To compute this, 

first computing the sample covariance at lag �, #J�, and the sample variance, #* is a must. 

Therefore, the SACF at lag  �  is  

                                    GJ� = KLMKLN                                                                                                         �6� 

A plot of    GJ�  against � is known as the sample correlogram.  

Financial applications often require to test jointly that several autocorrelations of  ��  are zero. the Portmanteau 

statistics (Q-statistics)  is defined as 

P = $ Q GJ��
R

�E�
                                                                                              �7� 

Where n=sample size and m=lag length. The null hypothesis for this test is, all the G�  up to certain lags are 

simultaneously zero. In large samples, the T  statistic is approximately distributed as the   ℎ. − 0T-(,/ 

distribution with V degree of freedom .In application, if the computed Q exceeds the critical value from the  ℎ. −
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0T-(,/ distribution at the chosen level of significance, the null hypothesis is rejected. 

Ljung and Box (1978) modify the above Q-statistic as LB statistic (Ljung-Box Q-statistic) which is defined as:  

WX = $�$ + 2� Q Y GJ��$ − �Z   ∼
R

�E�
  \R�                                                  �8�    

Although in large samples both P and LB statistics follow the chi-square distribution with V degrees of freedom, WX statistic has been found to have better performance in small samples than the P statistic. 

 

2.3 The univariate GARCH model 

First of  all let  the returns  ,�  be  expressed  as  the change  in logarithmic  price  over  a certain period  

,� = �!) >�>���                                                                                               �9� 

Consider the following financial return model; ,� = _� + 4�   , 4� = �̀a�                                        (i)         

  a� ∼ iid N (0,1)                                                              (ii)                       (10) 

�̀� = 3b + 3�4����    ,  3b > 0 ,0 ≤ 3� < 1                   (iii) 

 Where; ,� –return series at time  �, _�-the average return at time  �, 4� –the innovation term 

The autoregressive AR (p), moving average MA (q) and autoregressive moving average ARMA (p, q) models are 

applicable when the innovation term (4�) maintains a constant variance (homoscedasticity). If the error term 4� is 

conditionally heteroskedastic, then ARCH/GARCH models are applicable to model the conditional variance of 

the innovation term. Since the model involves just one lag of 4���.. / 4���� �, it is known as ARCH(1) model. The 

generalized ARCH (here after, GARCH) model is a generalization of the ARCH model in that it includes lagged 

variances in the conditional variance equation. GARCH models have the advantage of capturing long lags in the 

shocks by using fewer parameters than ARCH models. The GARCH (1, 1) model is defined as: ,� = _� + 4�                                                                                                 �11� 

�̀� = 3b + 3�4���� + f� �̀���                                                                        �12� 

The GARCH model with p number of lagged variance term and q number of lagged squared error terms denoted 

as GARCH (q, p),and can be written as: 

�̀� = 3b + Q (D4��D� + Q gF �̀�F�
h

iE�

j

DE�
       3b  > 0   ,   (D  ≥ 0   ,       gF ≥ 0                                 �13�    

 Where the volatility term �̀�F�  denote the variance and l represents the number of lags, and the term 4��D�  is the 

squared error for the period  � − .. We can write the above equation more compactly: 

�̀� = 1 + 3�W�4�� + f�W� �̀  �                         
where    3�W� = 3�W + ⋯ + 3jWj  

              f�W� = f� + ⋯ + f@W@ 

To ensure that the conditional variance is well defined in a GARCH (p, q) model all the coefficients in the 

corresponding linear ARCH (∞) should be positive rewriting the GARCH (p, q) modeled as an ARCH (∞): 

�̀�  = m1 − Q fDWD
@

DE�
n

��
+ �1 + Q 3F

j

FE�
4��F�  

= 1∗ + Q p�
q

�E�
4������  

�̀� ≥ 0, if 1∗ ≥ 0 and all p� ≥ 0. The non-negativity of 1∗ and p� is also a necessary condition for the non-

negativity of �̀� (Rossi, 2004). 

The ( coefficients of lagged squared returns are interpreted as how fast the model react to, for example, 

market events, the g −coefficients of lagged conditional variance determines the degree of persistence in the 

volatility. A large value of ( indicates that the conditional variance decays slowly, and that the volatility is 

persistent. On the other hand, if the ( value is relatively higher than the g value, then the volatility is more extreme. 

The sum of (D and gF (∑ (D + ∑ gFhiE�jDE� ) should be less than one for the above rstH6 �T, >� to be stationary. 

Nevertheless, one regions’ volatility has impact on volatility of the other regions. Making estimations that include 

this contagion effect requires an extended model. 
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2.4 The model order selection: AIC and BIC 

An important step before making the estimations is to determine the order of the models. Theoretically one can do 

this using the autocorrelation function, but in practice this may be difficult. A more formal way is to use an 

information criterion and choose the order that minimizes the criterion value. Two common criteria are the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The formulas for these are suH = −2 × WWw + 2x XuH = −2 × WWw + x × Wy�y� 

where y  is the sample size, and x is the number of parameters. WWw is an abbreviation for log likelihood 

function. The reason for using both criteria is that the BIC is consistent but inefficient, and the  suH is the opposite, 

not consistent but efficient. No criteria are superior to others, but an overall assessment is needed based on the 

results showed by the criteria. For a model to be best it should have the smallest information criteria (Brooks, 

2008). 

 

2.5 Determining the conditional distribution 

When fitting a GARCH-model based on financial data, the conditional distribution of the returns has to be defined. 

Studies, for example Bollerslev (1987) , illustrate that returns are not normally distributed. Instead, the Student-t 

distribution captures the observed kurtosis in empirical returns in a more sufficient way than the normal 

distribution. Returns have excess kurtosis and fatter tails than the normal distribution. Therefore, the Student-t 

distribution is more suitable (Reider, 2009). There are three assumptions about the conditional distribution of the 

error term commonly employed when working with GARCH models: normal (Gaussian) distribution, student’s t-

distribution, and the generalized error distribution (GED).                                                       

 

2.6 The ARCH LM test 

This test was introduced by Engle in 1982, and it investigates whether the conditional Volatilities of the chosen 

sample of data contain variation. The test can be used first to determine if there is volatility clustering in the data, 

and then to determine if there is any stH6 −effects left in the residuals. Firstly, the estimated residuals,  4�̂� are 

regressed as: 

4�̂� = H + mQ (D
j

DE�
4�̂�D� n + "�                                                                          �16� 

and secondly, the hypotheses are 

     6*:(� = (� = ⋯ = (j=0      6�:(� �/(0� !$/ !{ (D≠0 

If 6b  is true, then homoscedasticity characterizes the variance indicating no volatility clustering. The test statistic 

is 

                         Wx = $t�~\�                                                                             (17) 

Where $ is the number of observations and t� is computed from the regression (16) using estimated residuals. If $ is large, Wx is chi-squared distributed with T degrees of freedom. 

 

2.7 Defining a proxy   

In evaluating volatility forecasts the usual proxy for ‘true’ volatility is ‘ex post’ squared returns, or the squared 

errors. However, as noted by Andersen and Bollerslev (1998) and Andersen et al. (1999), although the use of 

squared returns or the squared errors is justifiable as an unbiased estimate of the volatility process, it provides a 

very noisy measure due to a large idiosyncratic term. Specifically, the returns innovation can be written as 4�= �̀a�   with a�   an independent zero mean and unit variance stochastic process and  �̀ is the volatility process. 

If the model for �̀� is correctly specified, then the conditional expectation, �(4��|u���) = �� �̀�a��|u���� = �̀�, and 

the squared error is an unbiased estimate of the volatility process; however, it still contains the noisy idiosyncratic 

term, a��. This typically resulted in a poor performance, which instigated a discussion of the practical relevance of 

volatility models. 

 However, Andersen and Bollerslev (1998) showed that the ‘poor’ performance could be explained by the 

fact that the squared return is a noisy proxy for the conditional variance. By substituting the realized variance 

(instead of the squared return), Andersen and Bollerslev (1998) showed that volatility models perform quite well. 

Hansen and Lunde (2003) provide another important argument for using the realized variance rather than the 

squared return. They show that substituting the squared returns for the conditional variance can severely distort 

the comparison, in the sense that the empirical ranking of models may be inconsistent for the true (population) 

ranking. So an evaluation that is based on squared returns may select an inferior model as the ‘best’ with a 

probability that converges to one as the sample size increases. For this reason, our evaluation is based on the 

realized variance. Building upon this line of research Andersen et al. (2003) define the so-called ‘realized volatility’ 
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on day t as: 

ℎ�}~ = Q ,�,D�  
�

DE�
                                                                                                    �18� 

Where; 

N–is the number of equally spaced intervals within a day, ,�,D– is a logarithmic return on day t at time interval i; with i = 1, 2…, N and t = 1, …, T.  

Thus realized volatility is the sum of squared intra-day returns. In principle, letting N tend to large, i.e. continuous 

time sampling, the measure approaches the true integrated volatility of the underlying continuous time process and 

is theoretically free from measurement error. Further, this measure allows a market participant to essentially treat 

volatility as an observed variable and to allow direct estimation.  

 

2.8 Forecast evaluation 

2.8.1 The MZ regression 

A popular way to evaluate volatility models out-of-sample is in terms of the  t�  from a Mincer –Zarnowitz (MZ) 

regression,  

�̀�=( + gℎ��+"�,                                                                                         (19) 

that is, squared returns are regressed on the model forecasts of  �̀� and a constant.  

Here: 

�̀� -is ex-post volatility (e.g. realized volatility) at time t, ℎ�� is estimated (in-sample) or forecasted (out-of sample) 

volatility at time t,  "�  -independent and identically distributed; vi~ N (0, 1). α and g are parameters to be estimated. 

If the model for conditional variance is well specified, we should have: ( = 0, g = 1. According to specific features 

of financial data series, the value of t� is usually low (even less than 5%) (Anderson et al., 2009). 

2.8.2 Mean Absolute Error (MAE) 

Another way of determining the goodness of the estimations and forecasts is calculating the  xs�. The approach 

is to measure how the received conditional covariance are close to their corresponding realized value. The formula 

is:  xs� = �
� ∑ | �̀� − ℎ��|��E�                                                                       (20) 

Where the proxy is used as �̀�  and the estimated conditional covariance is used as ℎ�� .By comparing the xs� between the estimated models, it can give an indication of which model that makes the best estimations. 

2.8.3 Root Mean Square Error (RMSE) 

The third measure is the Root Mean Square Error (RMSE), which is defined as 

tx�� = ��
� ∑ � �̀� − ℎ������E�                                                                                (21) 

Using these methods, the estimated models can be compared, and using the same measurements for estimations 

and forecasts, one can determine if the relatively best estimations model also makes the best forecast.      

 

3 .RESULTS  

3.1 Data 

The data considered in this paper were the weekly time series of Brent crude oil and coffee Arabica futures 

market closing price, given in US dollars per barrel and US dollars per pound, respectively. Both series contain 

data spanning between first week of January 2005 and last week of October, 2016 (a total of 616 observations) 

extracted from Bloomberg database. The full sample is split into two parts: in sample data, in order to estimate the 

parameters of models and out of sample data, in order to make forecasts. The in-sample period spans from first 

week of January 2005 up to last week of December, 2015 and the out-of-sample period spans from first week of 

January, 2016 through last week of October, 2016. For the out of sample period, we have also extracted a 30 

minute intra-day data for realized volatility measuring purpose. 

 

3.2 Test of stationarity and features of log return series 

Our data consists of two commodity prices; crude oil, and Arabica coffee. Fig. 3.1 is the trend charts of the two 

commodity prices in the study period. The two commodity prices present the same trend and direction during the 

entire study period. Price for both of the commodities have risen from 2005 up to 2008 and fallen from 2009 up 

to 2010 with a similar pattern. Another impression is that both commodity level series are non-stationary. To 

visualize the returns series for these two markets, we depict the return time series plots in Fig.3.2. The weekly 

return series display volatility persistence properties, indicating that large changes tend to be followed by large 

changes of both sign and small changes tend to be followed by small changes, and the differenced series suggests 
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stationarity.  

 
Figure 3.1: Time series plot for level series, Arabica coffee and crude oil 

 

 
Figure 3.2 Time series plot for differenced series, Arabica coffee and crude oil  

The level series plot in Fig 3.1 show that the level prices are non-stationary. Thus, the first logical step is to 

check the stationarity of these prices using unit root test. In this test the null hypothesis of unit root is rejected if 

the t-statistic is less than the critical value.  

Table 3.1 summarize the DF unit root test results of the two commodity level prices. As can be seen in the 

table, the t-statistics are greater than the critical values, at 1%, 5% and 10% the significance. Hence, the null 

hypothesis of unit root would not be rejected, that is, there is a unit root problem in each of the data.  

Table 3.1: DF Unit root test of stationarity for level prices, with trend 

Series �-statistic 1%critical value 5% critical value 10%critical value 

Crude oil -1.675 -3.960 -3.410 -3.120 

Arabica coffee -2.053 -3.960 -3.410 3.120 

If a time series data is non-stationary, it is necessary to look for possible transformations that might bring 

stationarity. In practice, econometricians usually transform financial prices in to return forms. This is because often 

return series are found to be stationary such that analysis is possible. The log return series is obtained by: 

,� = 52 ∗ ��!) p�p���� 

where  ,�  is the log return series of the real price multiplied by 52 (which is simply a scaling factor), to 
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annualize as we are using weekly data and each year contains 52 weeks, and pt is the real price series and log is 

the natural logarithm. 

Table 3.2 summarize the DF unit root test of the log return series for each of the commodities. The table 

show that all the t-statistics are less than the critical values at all levels of significance. These indicates that the 

null hypothesis of unit root would be rejected in both cases. Hence, the log return series are stationary for each of 

the items as shown by the time series plots.  

Table 3.2: DF Unit root test of stationarity for log Returns 

Series t-statistic 1%critical value 5%critical value 10%critical value 

Crude oil  -5.791 -3.430        -2.860 -2.570 

Arabica coffee -5.877         -3.430 -2.860 -2.570 

 

3.3 Volatility Modeling 

To build a volatility model for the log return series, the first step is specifying the mean equation. Once we specify 

the mean equation we have to test for ARCH effects using the residuals of the mean equation. If ARCH effects are 

statistically significant, specifying a volatility model and carrying out a joint estimation of the mean and volatility 

equations is necessary. The conditional mean specification is, in general, arbitrary for GARCH models of the 

conditional volatility. Various modifications to the conditional means in GARCH models are possible (see, for 

example, Asai and McAleer (2003).   

3.3.1 Specification of Mean Equation 

Based on two statistics, the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) we 

have chosen the temporary mean equation to estimate the joint mean and variance parameters. In most applications, 

lower order ARMA models, say, ARMA (1, 1), ARMA (1, 2), ARMA (2, 1) and ARMA (2, 2) are used. Table 

3.3 gives the alternative ARMA models together with their corresponding AIC and BIC. 

Table 3.3: ARMA model selection for the weekly log returns using AIC & BIC  

  Lag length                                         Returns  

         Arabica Coffee           Crude Oil  

 P  Q AIC BIC AIC BIC 

0 1 2587.192 2600.234 2551.377 2572.674 

0 2 2581.203 2598.593 2553.267 2570.656 

1 0 2587.093 2600.135 2515.398 2564.44 

1 1 2588.146 2605.535 2553.22 2570.609 

1 2 2578.419 2600.156 2553.64 2575.377 

2 0 2582.588 2599.977 2553.274 2570.664 

2 1 2577.982  2606.049 2552.285 2568.674 

2 2 2576.96 2599.719 2546.107 2564.419 

As can be seen in Table 4.3, the best in-sample results are achieved by ARMA (2, 2) for both commodity log 

return series. Therefore, ARMA (2, 2) is the best (having minimum AIC & BIC) conditional mean equation for 

both of the two cases. Hence, the ARMA (2, 2) model given by the following expression is used to model the 

conditional variance as mean equation of the log return series of prices: ,� = _ + G�,��� + G�,��� + 4� + ��4��� + ��4���                                        (22) 

Where; ,� –return series at time �, either of Arabica coffee or crude oil return, ARMA (2, 2) process 4� is an innovation term. 

3.3.2 Test for ARCH Effects  

Considering the above chosen financial returns model i.e. Equation (22) and on fitting this model, if there is no 

volatility clustering in each of the returns, the random disturbance term 4�  should be a white noise process. The 

standardized residual plot from Equation (22) can be an initial insight to judge the heteroskedastic characteristics 

of the error term. The standardized residual plot from each commodity return series, and is given below (Figure 

3.3). The figure depicts the residual plots of the two commodity return series generated from the mean 

equation .We see from the figure that for both of the series there is a prolonged period of low volatility and 

prolonged period of high volatility. For example for Arabica coffee return there is a long period of low volatility 

from the first week of 2005 to the end of 2008 and also there exist a long periods of high volatility from first week 

of 2014 to the end week of 2016. Crude oil return also exhibits a prolonged period of low volatility than the coffee 

series, which is from the first week of 2005 to the first week of 2009. In other words periods of high volatility are 

followed by periods of high volatility and periods of low volatility tend to be followed by periods of low volatility, 

which is known as volatility clustering. This suggests that the residuals or error terms are conditionally 

heteroskedastic and can be represented by GARCH models. 
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Figure 3.3: Residual plots of the Arabica coffee and crude oil return series from the mean  

Based on the residuals from the mean equation chosen above, it is possible to test for the existence of ARCH effect 

which will allow continuing the analysis using GARCH model. 

Table 3.4 shows the results of ARCH LM test for the two commodity returns. The last column of the table 

includes the p-values that indicate rejection of the null hypothesis that “there is no ARCH effect” up to the fourth 

lag at 5% level of significance. The results indicate that the two commodities price log return series are volatile 

and need to be modeled using GARCH models. 

Table 3.4:  ARCH LM Test Summary Statistics 

Series  Obs*t� \�(4) Lag(>) Prob. 

Arabica  coffee 12.6477 9.488 4 0.0040 

Crude oil 105.6419 9.488 4 0.0000 

3.3.3 GARCH Model Identification 

To estimate and evaluate the forecasts of the competing GARCH models, different p and q values for the standard 

symmetric GARCH models are tested using different statistics such as Akaike Information Criterion (AIC) and 

Bayesian information Criterion (BIC) in order to choose the best model based on the in-sample data. The 

appropriate specification is chosen, and then for this specific p and q, the alternative GARCH models are estimated, 

tested and finally one GARCH model is chosen based on forecasting performance. For this GARCH (p, q)-model 

different distributions are evaluated. Namely, normal distribution, student’s t-distribution and generalized error 

distribution (GED). Finally the parameters for the chosen GARCH model is presented. Table 3.5 summarizes 

these two statistics computed from different GARCH models. Note that the AIC and BIC of the GARCH models 

are obtained by estimating the mean return and variance equations simultaneously. 

Table 3.5: ARMA (2, 2)-GARCH model selection based on AIC and BIC 

 Arabica coffee, in sample output 

Statistics GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 3290.974 

(1) 

3291.862 

(2) 

3292.442 

(3) 

3293.363 

(4) 

BIC 3308.363 

(1) 

3313.599 

(2) 

3314.179 

(3) 

3319.447 

(4) 

Rank Sum 2 4 6 8 
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Crude oil, in sample output 

Statistics GARCH(1,1) GARCH(1,2) GARCH(2,1) GARCH(2,2) 

AIC 3208.934 

(4) 

3204.773 

(3) 

3202.883 

(2) 

3200.631 

(1) 

BIC 3226.324 

(2) 

3226.510 

(3) 

3224.620 

(1) 

3226.716 

(4) 

Rank Sum 6 6 3 5 

The row ranks indicate the ranking of the various GARCH models based on the two statistics. As a result, the 

lower the rank sum is the better the model. The best models for the two commodity series are: 

 GARCH(1,1) for Arabica coffee  

 GARCH(1,2) for crude oil  

That is, the conditional variance processes are modeled by     �̀� = 1 + (�4���� + f� �̀���                     GARCH (1, 1)     �̀� = 1 + (�4���� + f� �̀��� + f� �̀���      GARCH (1, 2)  

3.3.4. Forecast comparison to realized volatility measures 

Below in Table 3.6 and Table 3.7 we present different forecast accuracy measures. We compare the realized 

volatility measures by taking the weekly return square and a high frequency (30-minute intra-day) data as realized 

volatility measure. We use the mincer-zarnowitz regression to our estimates. If the estimated parameters in this 

regression are as expected, it means ( close to zero and g  close to one and R2 is not lower than 30% from 

Equation(3.35), indicating that the differences between the compared estimates are not huge and if so both of them 

are good estimates (Mincer, 1969). 

Table 3.6: Forecast error measures, ARMA (2,2)-GARCH (1, 1) models under different distribution and 

realized volatility, Arabica coffee return. 

 

 

Statistics  

                                                Realized volatility 

          Weekly return  square            High frequency 

N-GARCH T-GARCH  GED-GARCH N-GARCH T-GARCH GED-GARCH 

MZ.reg .R2 0.0667 0.0712 0.010 0.156 0.230 0.155 

MSE 21.030 22.6411 21.641 18.44 18.139 18.1755 

RMSE 4.586 4.758 4.651 4.2941 4.25894 4.26234 

MAE 4.576 4.753 4.581 3.5013 3.553 3.497 

AIC 2540.605 2535.28 2536.791 2540.605 2535.28 2536.791 

LogL. -1261.393 -1264.303 -1259.64 -1261.393 -1264.303 -1259.64 

 

Table 3.7: Forecast error measures, ARMA (2,2)-GARCH (1,2) model under different distribution and 

realized variance, Crude oil return 

 

 

Statistics  

                                                Realized volatility 

          Weekly return  square            High frequency 

N-GARCH T-GARCH  GED-GARCH N-GARCH T-GARCH GED-GARCH 

MZ.reg .R2 0.016 0.022 0.011 0.1763 0.267 0.18 

MSE 126.6363 125.6408 125.6408 67.985 64.512 64.56 

RMSE 11.2532 11.2089 11.2039 8.2453 8.0319 8.0349 

MAE 7.6397 7.5618 7.5817 7.9126 7.739 7.762 

AIC 2460.264 2443.797 2443.877 2460.264 2443.797 2443.877 

LogL.   -1222.132 -1213.938 -1212.898 -1222.132 -1213.938 -1212.898 

Forecast error measures and t� values from the Mincer-zarnowitz regression presented in Table 4.6 & Table 

4.7 imply that the realized volatility measure from high frequency data is a better measure of unobserved volatility 

than the commonly used squares of returns (R2 values are the lowest). This is also confirmed by the other forecast 

error measures having 44 one step ahead forecasts (2016w1-2016w44). The values of the RMS and MAE should 

get lower if the computing model is best performing. With regards to the distribution of the error term, the student’s 

t-distribution combined with high frequency data is best performing for both series. 

 

3.4 Estimations of the univariate GARCH 

The values of the coefficients of the two commodities are shown below in Table 3.8.The estimation was done 

assuming that the error term comes from student’s t-distribution with eight degree of freedom. From the table, it 

can be seen that some of the coefficients in both of the returns are not significant at 5% level of significance; for 

instance, the constant term is not significant in both cases.  

Non-negativity rules: As we are modeling variance and  the estimated variance must be non- negative, there is 
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no easy rule that ensures non-negativity for the general GARCH(p, q) process .But Nelson &Cao(1992) give easy 

checkable condition for GARCH(1,q) model and (somewhat) manageable conditions for GARCH(2,q) model. The 

non-negativity condition for GARCH (1, 1)  and GARCH(2,1) model are:     �̀� = 1 + (�4���� + f� �̀���                        GARCH (1, 1)     �̀� = 1 + (�4���� + f� �̀��� + f� �̀���          GARCH (1,2) 

For both of the models to be non-negative the following condition should be satisfied:  1 > 0,      (� ≥ 0 , f� ≥ 0 , f� + f� < 1,  and  f� ≥ 0 

Looking the parameter estimates of ARCH and GARCH terms from the table below they satisfy the non-negativity 

rule described above for both commodity return series. 

Table 3.8: parameter estimates from ARMA (2,2)-GARCH models 

Returns Coffee Oil 

Mean equation   ��� -0.5158 

(0.000) 

-0.7636 

(0.000) ��� -0.4884 

(0.000) 

0.6585 

(0.000) GJ� 0.5645 

(0.000) 

0.780 

(0.000) GJ� 0.4362 

(0.000) 

-0.9325 

(0.000) 

Variance equation  1 0.1037 

(0.38) 

0.0317 

(0.160) 3J 0.0249 

(0.0097) 

0.0391 

(0.002) f�� 0.9556 

(0.000) 

1.5861 

(0.000) f��  -0.6194 

(0.000) 3J + f�  0.9805 0.9988 

**values in parenthesis are p-values at 5% level of significance 

 

3.5 Discussion  

The aim has been modeling and forecasting the volatility dynamics of weekly time series of Brent crude oil and 

coffee Arabica futures market closing price using GARCH models. From the preliminary analysis over the time 

period considered, both of the price series show an increasing trend. To determine whether the series are stationary 

or not, the Augmented Dickey-Fuller (ADF) test was carried out. Often, raw data of commodity prices are non-

stationary, which was also the case in this study. For both level time series, the tests indicates to the existence of 

unit root I(1). The first log difference of each time series was considered as stationary (Table 3.3). 

As a reference point for the analysis, a standard univariate GARCH models were fitted with ARMA(2,2) 

mean equation, and it is found that the variance equation for Arabica coffee and crude oil returns were  GARCH(1,1) 

and GARCH(1,2) ,respectively.  

In the two commodity returns it appears that the ARCH term coefficients were significant at 5% level of 

significance. The result is an implication of the presence of volatility clustering, i.e. large changes followed by 

large changes and small changes followed by small changes. In the case of Arabica coffee our result go in line 

with the Hansen and Lunde (2003) findings. They conclude that GARCH (1,1) model with high frequency data is 

enough to capture the volatility of exchange rates return volatility, but in the case of crude oil our finding is 

something different. 

This study suggests that using high frequency data results in a more accurate forecast values in both the 

standard univariate GARCH and multivariate GARCH models. This result agrees with David G. McMillan and 

Alan E. H. Speight (2010) inference in the context of exchange rate returns. In fact, they consider a daily GARCH 

(1,1) model and 5-minute intra-day return. In addition to the usual ‘ex post’ squared returns measure, they also 

construct realized volatility and two versions of bias-corrected realized volatility. In order to evaluate these 

forecasts they utilize the Mincer–Zarnowitz regression test of predictive power, comparing forecasting 

performance on the basis of the t� values obtained. In our analysis the procedure is similar, but we use a weekly 

return series and a 30-minute interval intra-day return series and we stretch their conclusion. 
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4 CONCLUSION AND RECOMMENDATIONS 

This study estimates a variety of GARCH  models using weekly closing price (in USD/barrel) of Brent  crude oil  

and weekly  closing prices  (in USD/per pound) of coffee Arabica, and compares the forecasting performance of 

these models based on a high frequency intra-day data which allows for a more precise realized volatility 

measurement. The analysis points to the conclusion that for Arabica coffee and crude oil returns GARCH (1,1) 

and GARCH(1,2) were best models, respectively with Student’s t distributed innovation terms is the most accurate 

volatility forecasting models in the context of our empirical setting.  

We recommend and encourage future researchers studying the forecasting performance of MGARCH models 

to pay particular attention to the measurement of realized volatility, and employ high-frequency data whenever 

feasible. 

 We also recommend that public policy makers interested in foreseeing the price volatility of these two major 

commodities in the context of the Ethiopian economy consider using the information documented in this study as 

input in their deliberations given that it is based on some robust econometric work and highly appropriate data.  

The scope of the analysis in this study has been limited to the volatility of the two commodities. In order to 

overcome this limitation and provide a more nuanced analysis, it might be profitable for future researchers to 

consider incorporating stock, currency and bond markets volatilities into the analysis. The potential complexity of 

such a research agenda notwithstanding, the results are likely to be rewarding in light of the deeper integration 

between global financial and commodity markets in recent years, a phenomenon which came to be known as the 

financialization of commodities. 
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