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Abstract 

It is complicated to determine with exactitude the share of responsibility of the various sources of pollution for 

Africa. This intricacy emphasizes that pollution is not always considered a major risk for the continent. The 

existing data are still too few and often too imprecise to assess the extent of pollution on the continent. Sub-Saharan 

Africa is challenged by increasing pollution reinforced by a lack of politics and goodwill to formulate and 

implement good practices to deal with climate change issues. This paper highlight trends in carbon emissions due 

to agricultural land, energy use, agriculture-forestry and fisheries (value adds), real gross domestic product, and 

industry and construction based on their importance to the productive capacity of SSA. The output from the 

proposed study of causality between variables using the impulse response functions and the forecast error 

decomposition revealed this: the rise in agriculture/forestry, and fisheries, and energy use has positive shocks on 

CO2 emissions. The carbon emissions growth in the SSA does not necessarily reckon on agricultural land, industry 

construction or manufactural construction, and real gross domestic product.  
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1. Introduction 

Climate change and its effects now seem to be proven and linked, at least in part, to the additional anthropogenic 

greenhouse effect, which is reflected in the inclusion of this major issue on global political agendas(Levine and 

Kline 2017). The natural greenhouse effect that makes the Earth home has been modified by human activities 

[Solomon et al.(2007)and Society(2021)]. These activities emit greenhouse gases (GHGs) and change the 

atmosphere's quality (Mikhaylov et al. 2020). GHGs and atmospheric pollutants are today the main emitters and 

have an identical source (transport, housing, industry, and agriculture)(Eurostat 2015). There is evidence that 

burning fossil fuel leads to the increase of carbon dioxide and other harmful gases in the atmosphere(NAS 2021)and 

(Manisalidis et al.2020). Observed across the planet, carbon dioxide (CO2) is the main representative of GHGs 

emissions that come from human activities during combustions of fossil resources such as petroleum, natural gas, 

or coal for heating and transport(Abeydeera, Mesthrige, and Samarasinghalage 2019). The issue of atmosphere 

degradation relates to the redefinition of methods of access to resources, of risk sharing, of the ability to integrate 

the environmental issue for groups operating in multiple environments (natural, social, institutional, political, 

administrative, expertise), interacting and evolving (Hummels and Argyrou 2021). The main propeller of global 

change is the increase in human needs (Bush et al. 2018). As a result of this global change made possible by the 

growing human population’s demand, we now suffer from ozone depletion, climate change, widespread species 

extinction, air and water pollution, desertification, and other large-scale shifts (Wickham et al. 2019). 

Besides being affected by climatic change, sub-Saharan Africa remains one of the most susceptible regions 

to climate disasters due to its low adaptive capability (Serdeczny et al. 2017). The recent study of Nangombe et al. 

(2019)demonstrated that earth temperatures in Africa will rise faster and the continent will know extreme heat in 

the more arid regions. The lack of policy structuration, as well as the need to integrate new criteria, are major 

drawbacks in dealing with the climate problem in the region (Omisore 2018). The region now finds itself afflicted 

by the consequences of inappropriate policies, as well as by almost endemic political instability, an inability to 

manage its economies effectively, and an increasingly hostile external economic milieu(Shishaye 2017). As simple 

survival has become more problematic, it has become increasingly difficult to avoid overexploiting natural 

resources and degrading the environment. 

More often than not, poverty contributes to environmental degradation (Masron and Subramaniam 2019), the 

poor deplete the natural resources on which economic development depends. Due to a lack of sufficient resources 

and improper knowledge, people overuse every free resource available(Miller et al. 2021). They cannot cover the 

additional short-term expenses necessary to adopt environmentally sustainable development practices. To access 

energy, Sub-Saharan Africa is the world's poorest in the electricity region(Blimpo and Cosgrove-Davies 2019). 

The primary source of energy in the region is solid biomass like fuelwood and charcoal which accounts for more 

than 75 percent of the total energy consumed in the region  (Bär et al. 2021).  

Among causes of environmental issues, it is furtherly clear that our energy consumption has a detrimental 

impact on the environment and our health(Xing et al. 2019). Sub Saharan Africa is certainly the most contrasted 
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continent with a very dichotomy of energy systems (Ganda and Ngwakwe 2014). Inefficient traditional forms of 

energy, mainly fuelwood and charcoal, continue to dominate in most countries of sub-Saharan Africa, especially 

for cooking uses(Manfred Hafner, Simone Tagliapietra, and Lucia De Strasser 2018). The impacts are diverse, 

concern human health, ecosystems, buildings, plant crops, landscapes, and climate change, and vary according to 

the different energy sources(Frantál, Pasqualetti and van Der Horst 2014).  

Agricultural sub -Saharan African takes place in savanna and forest areas which support most of the 

continent’s cropland and pasture(Larmie 2019). Future changes in land exploitation could have an impact on these 

symbolic landscapes. Palmer et al. (2019)demonstrated that  Africa’s tropical land releases CO2 emissions. This is 

because the land surface is covered by tropical forests and peatlands, environments that typically absorb huge 

amounts of CO2 from the atmosphere(Leng, Ahmed, and Jalloh 2019). African greenhouse gas emissions produced 

on the continent contribute to the modification of the regional climate(Niang et al.2015). Some African countries 

are already committed to a growth model that is resilient to climate change, but this path promises to be difficult 

due to a lack of resources. The challenge is therefore how to ensure economic and technical progress with the 

current pace while simultaneously taking into account two aspects: socio-economic and environmental. This 

question is crucial because of the lack of awareness leading to a bad understanding of the action programs and bad 

practices. The success of environmental policies throughout the world and particularly in developing regions such 

as sub-Saharan Africa requires awareness combined with the participation of those who are concerned(Howes et 

al. 2007). Five keys considered as drivers of pollution in SSA are reviewed in detail in this study: agricultural land, 

energy use, agriculture-forestry and fisheries (value adds), real gross domestic product, and industry-construction 

based on their importance to the productive capacity of SSA and their contribution to current and future GHG 

emissions. 

Far through literature review, a series of empirical studies have been carried out to illustrate the relationship 

between human activities and CO2 emissions. These studies do not use the same approaches. They are based on 

the EKC (Environmental Kuznets Curve) hypothesis, and the gravity model for some, and the STIRPAT 

(Stochastic Impacts by Regression on Population, Affluence, and Technology) approach for others. Scholars have 

also extended it beyond income levels & the environment and focus on CO2 emissions impacts. For example, 

(Ameyaw and Yao 2018)examine the relationship between the real gross domestic product (RGDP) and CO2 

emissions in West African countries within the period of 2007–2014 based on a panel data model. The output from 

the analysis revealed a unidirectional causality running from GDP to CO2 emissions. In the same context, studies 

have been recorded an impact of agriculture, manufacturing industry, and service sector’s value-added in the GDP 

on the CO2 emissions(IPCC, 2015).   

Using an EKC in selected south Asian countries, Alam(2015) has found that a value adds of agriculture in 

the GDP has a negative significant impact on CO2 emissions where industrial and services value-added in the GDP 

has a great significant impact on CO2 emissions. Pant (2009) reviewed the literature on both aspects and test 

empirically what causes emissions of carbon dioxide to the atmosphere. Multiple linear regression analysis 

revealed that agricultural land, irrigation, forest area, biomass energy, and energy use lead to the increase of Carbon 

dioxide emission (Zhang et al. 2020). However, using an autoregressive distributed lag (ARDL) approach and 

Granger causality tests, Mehdi and Mounir (2017) investigate the dynamic causal links between carbon dioxide 

(CO2) emissions, real Gross Domestic Product (RGDP), combustible renewables and waste consumption, maritime, 

and rail transport in Tunisia spanning the period 1980–2011. The empirical results suggest a bidirectional short-

run causality between CO2 emissions and maritime transport, and a unidirectional causality running from real 

GDP, combustible renewables, waste consumption, and rail transport to CO2 emissions. Sarkodie and Owusu 

(2017) estimated a relationship between carbon dioxide, crop, and livestock production index in Ghana. Estimating 

the long-run elasticities and variance decomposition by employing a time series data spanning from 1960-2013 

using both fit regression and ARDL models.  The study evidence has shown a bidirectional causality between crop 

production index and carbon dioxide emissions, and a unidirectional causality exists from livestock production 

index to carbon dioxide emissions. The variance decomposition has shown that future fluctuations in carbon 

dioxide emissions are due to shocks in the crop production index. 

Scientists such as Zhao et al. (2018) and Sperry et al. (2019) believe that current developments will lead to 

increased extreme events (high magnitude storms and cyclones, catastrophic floods, or multi-year drought), as 

well as an increase in annual average temperatures over large areas of the globe. The primary cause of global 

warming would be the emission of increasing amounts of carbon dioxide in the atmosphere associated with the 

large-scale use of fossil fuels (coal, oil, natural gas). Carbon dioxide (CO2) emissions linked to the use of energy 

have been stabilized in the world in 2019 IEA(2019). It is the result of the development of renewable energies in 

developed economies.  

An extended Kaya identity and the Logarithm Mean Divisia Index (LMDI I) have been applied by Engo 

(2019) to identify, quantify, and explain the main driver of CO2 emissions in Cameroon from 2007 to 2014. 

Regarding contributions to the increase of CO2 emissions, findings have shown that population is the most positive 

whereas energy intensity, the substitution of fossil fuels, and penetration of renewable energies have contributed 
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to the CO2 emission reduction. Yorgancı (2018) employed an IPAT model as a framework using the Vector Error 

Correction Model (VECM). The results indicated the long-run responsiveness of CO2 emissions for the population 

is positive and significant. Max William Ssali (2018) conducted a unit root test, co-integration test, VECM, and 

FMOLS to assess the impact of economic growth, energy consumption, and population growth on carbon 

emissions. The output revealed that an increase in energy consumption and population growth would cause an 

increase in CO2 concentration. 

Though in general, there are a lot of studies for Africa related to energy consumption, not much of them have 

been focused on the sub-Sahara African CO2 emissions. Again, causes of CO2 have been investigated in their 

aggregated form focusing primarily on causality analysis without exploring its dynamic impacts.  

 

2. Material and methodology approach  

2.1 Econometric method 

This research is a type of descriptive analysis research with a quantitative approach. It is a time-series data type 

and consists of Sub -Saharan Africa region. We have chosen the best explanatory variables covering the period 

1981-2014, which are directly correlated with the CO2 emissions under the constraint of the availability of data 

from various reviews available on the British Petroleum Council and World Bank.  ��� = �� + ��	
�� + ����� + ��	������ + �������� + ��������� + ��                (1) 

Where: 

CO2:           Carbon dioxide(kt) 	
:           Agricultural land  �:           Energy use 	����:             Agriculture-forestry and fisheries (value adds) ����:    (Real)Gross domestic product �����:            Industry/construction (value adds) � :                    Error term 

 

2.2 Econometric approach 

The non-stationarity of several macroeconomic and financial series represents a problem for the application of the 

usual econometric methods. For the study of the evolution of these long-term series, we use the theory of 

cointegration which allows studying them whose linear combination is stationary. The study makes it possible to 

specify long-term stable relationships while jointly analyzing the short-term dynamics of the variables considered. 

The interest of this theory is that it provides a method of analyzing the non-stationary time series while avoiding 

the problem of spurious regressions ((Wang and Hafner, 2018). Analysis of these time series is primarily concerned 

with examining their stationary character. 

There are two types of stationarity: 

• A Strict Sense Stationary (SSS) process: 

We say that the process ��,� ∈ �  is stationary in the strict sense (SSS), if for all {��, ��, … , �!} the 

probability distribution of {���, ���, … , ��!} is the same as that for {���#$ , ���#$, … , ��!#$} K>=0. We 

denote by (�� , � ∈ �)~(((  where �  is the set of indices. It should be noted that the conditions of 

stationarity generally retained are those of second-order stationarity (or weak or in the broad sense or 

asymptotic or covariance stationarity). 

• Second-order stationarity (weak stationarity): 

The process (�� , � ∈ �) is stationary of second-order (SL) if: 

� (���) < ∞	∀� ∈ �: moments of order 2 are finite, 

� (��) = -∀� ∈ �: the mean of the process is constant which reflects the 

stability of its behavior over time, 

� �./(�� , ��#0 = 1∀� ∈ �, ∀ℎ ∈ �: the covariance between 2 periods t and  � + ℎ is 

only a function of the time difference h. 

If at least one of its first two moments varies with time, the time series is then said to be non-stationary. 

Economists focus their attention on a single equation representing for example a global consumption function, 

an equation teaches that these equations belong to a system or a subset of interdependent equations of which each 

equation makes it possible to give causal interpretations. This system is used to make simultaneous forecasts on a 

set of related variables. But, in a system of simultaneous equations containing one or more equations, it is not 

possible to obtain numerical values of each parameter in each equation because the equations are indistinguishable 

on the plane of the observation or they are gathered together too much we speak here of an identification problem. 

To do this, Sims (1980) proposed the VAR models [see Hanck et al.(2018)] as an alternative to traditional structural 

models with several equations. If there is real simultaneity between a series of variables, they should all be treated 

on an equal footing and there should be no distinction a priori between endogenous and exogenous variables.  
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Modern Econometrics uses methods to establish the relational model among economic variables in a 

nonstructural way: the vector autoregressive model (VAR) and vector error correction model (VEC). Assuming 3� = (4�� , 4�� , … , 4$�)′  as k-dimensional stochastic time series, 	� = 1,2, … 8    and 3� ∼ 	I	(1) , each 4��	 	 ∼	I	(1), i	 = 	1, 2, . ..		 is affected by exogenous time series of d-dimension �� = (=�� , =�� , … , =>�)′; .the VAR model 

can be formulated as below: 3� = 	�4�?� + 	�4�?� +⋯+ 	A4�?A + B� + C� ,     (2) � = 1,2, …8 .  If 3� is not affected by exogenous time series of d dimension �� = (=�� , =�� , … , =>�)′; VAR model 

of equation (2) becomes: 3� = 	�4�?� + 	�4�?� +⋯+ 	A4�?A + C�      (3) � = 1,2, …8 . 

From the specification above, it is interested to study the causality and analyze the effect of a shock of one of the 

variables considered on the others through the impulse response functions and the decomposition of the variance 

of the forecast error. 

To study the existence of a cointegrating relationship, two approaches are often used: the method of Engle and 

Granger (1987) and the maximum likelihood method (Johansen (1988,1991)). Those approaches make it possible 

to determine the number of long-run equilibrium relationships between integrated variables of the same order 

regardless of the standardization used. Johansen represented a vector ��   containing �  variables all �(1)as a 

VAR(p) model. �� = ∅���?�+,…∅A��?A + ��    (4) 

Where ��~BB(0, Ω)  and ∅� = (G = 1,… , H) are matrixes of parameters of size (� × �) . We start first by 

estimating the parameters constrained by the cointegration hypothesis. We rewrite Equation (9) in the form of an 

error correction model: ∆�� = K�∆��?�+,… , KA?�∆��?A#� + KA��?A + ��  (5) 

With: K� = −� + ∅� + ∅�+,… , ∅� for G = 1,… , H. 

The matrices K�(G = 1,… , H) have (� × �) size. All terms of this model are �(0) except ��?A	which is �(1). 
There is therefore an imbalance between the order of integration of the left limb and the terms of the right limb. 

For both members to be �(0) a necessary condition is that KA��?A become �(0). We set KA = −�Ḿ where Ḿ a 

matrix  (O, �) that contains the r cointegrating vectors and � a matrix (�, O) that contains the weights associated 

with each cointegrating vector. 

Equation (4) is rewritten: �� = K�∆��?�+,… ,+KA?�∆��?A#� − �Ḿ��?A + ��  (6) 

To estimate the different matrices, Johansen (1988, 1989) proposes to use the maximum likelihood method. Under 

the assumption of normality of ��, the log-likelihood is written: 
.P
Q�, M, K�, … , KA?�, ΩR = − ST
� 
.P2K − T

� 
.PU(VW�Ω)X − �
�∑ ��́Ω?���T�Z�   (7) 

Where 8  is the number of observations, �   is the number of variables contained in �  and VW�Ω denotes the 

determinant of the variance-covariance matrix of ��. 
We concentrate on the log-likelihood concerning the parameters K�, K�, … , KA?�.This amount to performing the 

regression of W[�on WA�. These are the residuals estimated by the OLS of the relations: 

\ ∆�� = ]��∆��?�+,… ,+]�A?�∆�?A#� + W[���?� = ]��∆��?�+,… ,+]�A?�∆�?A#� + WA�  ∀G = 1,… , H − 1    (8) 

With: ]�� = (K� − �MK^́ ) and ]�� = K� 
Using equation (4) again, it comes: �� + �Ḿ��?A = K�∆��?�+,… ,+KA?�∆��?A#� + ��   (9) �� + �Ḿ��?A = K�∆��?�+,… ,+KA?�∆��?A#� + �Ḿ_K�∆��?�+,… ,+KA?�∆��?A#�` −																														�ḾUK�∆��?�+,… ,+KA?�∆��?A#�X + ��     (10) 

The maximum likelihood estimators of the parameters (K�, … , KA?�) and � are provided from the OLS applied to 

equation (10) having previously replaced M by its estimator	Ma. 
The estimators of � and Ω are: 

b �c = −(A[MaQMa deffghR?� = −(A[MaΩi = ([[ − ([AMaMa dejk = ([[ − �c�c′                     (11) 

The O cointegrating vectors are provided by the O most significant eigenvectors, i.e., the O eigenvectors which 

correspond to the O largest eigenvalues solutions of the equation: lm(AA − (A[([[?�(A[l = 0 

To find the value of O (i.e., the number of cointegrating vectors) Johansen proposed to use two statistics: m�nopq = 8� = −8∑ 
.P(1 − mc�S�Zr#� )  s�tou = −8
.P(1 − mcr#�)  
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m�nopq tests null hypothesis: that is, there are at most O cointegrating vectors. This test amounts to testing the rank 

of the matrix KA i.e., we test v�: �PQKAR = O 

Johansen (1988) showed that under v� the statistic trace has for asymptotic law of: 

x y(O)Vy′(O) zx y(O)yd(O)VO�� {?� x V�� y(O)Vy′(O)��   

Where y is a Brownian motion of the variance-covariance matrix the identity matrix. The critical values of the m�nopq Statistics have been tabulated by Johansen and Juseluis (1990) then by Osterwald-Lenum (1992). We reject 

the null hypothesis of r cointegrating relations when the statistic	m�nopq  trace is greater than its critical value. 

Theories of cointegration allow specifying stable long-term relationships while jointly analyzing the short-term 

dynamics of the variables considered. This requires the use of a particular class of models directly related to 

cointegration: VECM. Consequently, VEC modeling and cointegration give a new dimension to dynamic 

modeling by providing it with solid theoretical bases and by making it possible to consistently identify the long-

term properties of time series.  

With cointegration transformation of formula (3), we can get that: ∆3� = Π4�?� + ∑ Γ�Δ4�?�A?��Z� + C�   (12) 

Where Π = ∑ 	�A�Z� − �,                                (13) 

 Γ� = −∑ 	�A�Z�#�  

If	3�  has a cointegration relationship, then Π4�?� ∼ I (0) and formula (28) can be written as follows: Δ3� = M��4�?� + ∑ Γ�Δ4�?�A?��Z� + C�  (14) 

Where, ��4�?� = W���?� is the error correction term, which reflects the long-term equilibrium relationships 

between variables. Equation (14) comes: Δ3� = MW���?� + ∑ Γ�Δ4�?�A?��Z� + C�   (15) 

Formula (15) is the vector error correction model (VECM), in which each equation is an error correction model. 

 

3.Results and Discussion 

3.1 Unit root tests application (ADF, PP, KPSS).   

The analysis of chronological/times series is primarily concerned with examining their stationary nature by 

presenting the various tests used in this context. When studying time series, we need to test for the presence of a 

unit root to demonstrate whether or not a chronicle is stationary and to determine the correct way of stationary. 

The Dickey and Fuller tests (DF and ADF) are the most widely used due to their great simplicity, but they also 

suffer from several criticisms which have led to the development of other unit root tests including those by Phillips 

and Perron (PP) (1988), Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) (1988) which we present in table 1. 

Table1: Unit root tests on variables 

Variables                      At level                                    At first Difference                   Conclusion 

                              ADF             PP          KPSS       ADF          PP              KPSS 

Ln(CO2) -1.5055 -1.5161 0.1632 -6.0138*** -6.0185** 0.0795* I (1) 

Ln(AL) -2.2444 -2.3341 0.0924 -5.7704** -6.5570** 0.1444** I (1) 

Ln(EU) -1.4898 -1.3111 0.1762 -7.5507*** -7.5851*** 0.0973*** I (1) 

Ln(AGRIF) -1.4917 -1.4917 0.1975 -3.8916** -3.8173** 0.0679*** I (1) 

Ln(GDPC) -2.3362 -2.2111 0.1979 -3.4963* -3.4440* 0.0928*** I (1) 

Ln(INDCO) -2.6044 -2.5583 0.1957 -4.5181*** -4.4609*** 0.1038*** I (1) 

Notes: (*) Significant at the 10%; (**) Significant at the 5%; (***) Significant at the 1%. and (no) Not Significant 

*MacKinnon (1996) one-sided p-values 

KPSS: The test says the p-value is significant (with p-value < 0.05) and hence, you can reject the null hypothesis 

(series is stationary) and derive that the series is NOT stationary.    

Source: Author's calculations. 

All series are non-stationary in their level at the various critical thresholds since all the calculated values are 

greater than those tabulated, which implies the rejection of the null hypothesis of stationarity. On the other hand, 

it is not stationary in the tendency to critical thresholds 1%, 5% and 10% since the test statistics are lower than the 

critical values so we accept the null hypothesis of stationarity. Based on all performed unit root tests statistics, it 

was concluded that most of the variables are non-stationary at their level but stationary after taking the first 

difference i.e., I (1) variables. 

 

3.2.Estimation of VAR Model.  

The presence of one or more cointegration relations, therefore, allows us to go further and estimate a certain error 

correction model allowing us to specify the short-term dynamics of the variables present to reach the stable 

equilibrium long term. 



Journal of Economics and Sustainable Development                                                                                                                        www.iiste.org 

ISSN 2222-1700 (Paper) ISSN 2222-2855 (Online)  

Vol.12, No.6, 2021 

 

40 

The first step of this analysis consists of determining the number of lags of the VAR model (p). To do this, 

we estimate a certain number of autoregressive processes and we retain the one that jointly minimizes the criteria 

of Akaike and Schwartz. Table 2 shows all the results retained.  

Table 2: Determination of Lag Length Criteria 

 Lag Log L LR FPE AIC SC HQ 

0  263.0797 NA   4.24e-15 -16.06748 -15.79266 -15.97639 

1  422.8284   249.607*  1.94e-18 -23.80177  -21.8779*  -23.1640* 

2  464.4242  49.39501   1.76e-18*  -24.1515* -20.57878 -22.96725 

* indicates lag order selected by the criterion 

LR: sequential modified LR test statistic (each test at 5% level 

 FPE: Final prediction error 

AIC: Akaike information criterion 

 SC: Schwarz information criterion 

 HQ: Hannan-Quinn information criterion 

Source: Author's calculations. 

 

3.3 Johansen cointegration test (trace test) 

The trace test assumes the absence of the trend in the cointegrating relationship and the absence of the constant in 

the error correction model. This choice can be justified economically by assuming that the long-term equilibrium 

relationships do not contain a trend. We, therefore, test the cointegration link between CO2 emissions and the 

factors that influence it, according to our study, namely AL, EU, AGRIF, GDPC, and INDCO. We apply the test 

of Johansen (1988) of the trace (��nopq) and of the eigenvalue (�tou). 

Table3: Johansen cointegration test results 

Ho: Rang r  Eigenvalue ������ 0.05 

Critical Value 

Ho: Rang r  ����� 0.05 

Critical Value 

r=0 *  0.768545  119.5026  95.75366 r=0 *  48.82787 40.07757 

r≤1 *  0.651531  72.67474  69.81889 r≤1   33.73456 33.87687 

r≤2  0.471245  38.94019  47.85613 r≤2  20.39138 27.58434 

r≤3  0.274117  18.54880  29.79707 r≤3  10.25172 21.13162 

r≤4  0.227945  8.297088  15.49471 r≤4  8.278368 14.26460 

r≤5  0.000585  0.018720  3.841466 r≤5  0.018720 3.8841466 

Trace test indicates 2 cointegrating equation(s) at the 0.05 level 

 * denotes rejection of the hypothesis at the 0.05 level 

**MacKinnon-Haug-Michelis (1999) p-values 

Source: Author's calculations. 

The results of the Johansen test(table 3) show that the null hypothesis for the test of the trace O = 0 and r≤1 

for the test of the eigenvalue is rejected at the threshold of 5% since the values calculated from these two statistics 

(119.5026 and 72.67474). On the other hand, the null hypothesis for the test of the trace O = 0 for the test of the 

maximum eigenvalue is rejected at the threshold of 5% through the values calculated from that statistic (48.82787) 

is greater than the corresponding critical value. The null hypothesis r≤1 cannot be rejected at the 5% threshold 

since the two test statistics are lower than the critical values associated with them.  

The following long-term equilibrium equation is retained: 
���2 = 2.558
�(	
)� − 15.441
�(�)� + 1.504
�(	����)� + 6.178
�(����)� −																			5.671
�(�����)� − 5.671
�(�����)� +139.8476   (16) 

This cointegration relation shows that environmental and economic variables AGRIF, AL have a positive 

long-term relationship with CO2 emissions respectively. If natural resource exploitation increases by 1%, the 

environmental degradation which induces CO2 emissions follows the same trend with a percentage of 1.5% and 

2.5% respectively. This cointegration goes hand in hand with the increase in income per habitat (GDPC) to ensure 

this relationship of cointegration. In favor of sustained energy consumption with a level of life more comfort, 

countries of sub-Saharan Africa highlight the decreasing carbon dioxide emissions. On the other hand, when 

energy consumption increases by 1%, CO2 emissions in the region undergo a decrease of 15.44%. Similarly, the 

increase in industries and constructions results in a decrease of 5.67% CO2 emissions. 

It is possible to estimate a vector error correction model(VECM). As its name indicates, it consists of 

correcting the estimation bias induced by cointegration. Since we have six variables, the VECM will have six 

equations presented in Table 4.  
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Table 4. VECM estimation results and test 

Error Correction: D(LNCO2) D(LNAL) D(LNEU) D(LNAGRIF) D(LNGDP) D(LNINDCO) 

CointEq1 -0.114910 -0.031438 -0.032473  0.230806  0.053379 -0.033148 

 [-2.28079] [-1.41076] [-2.12625] [ 2.33440] [ 0.56496] [-0.25123] 

D(LNCO2(-1))  0.030630 -0.017362  0.102600 -0.246978 -0.221675 -0.196759 

 [ 0.13285] [-0.17025] [ 1.46800] [-0.54585] [-0.51268] [-0.32585] 

D(LNAL(-1)) -0.322750 -0.142696  0.018604  0.302737  0.186491  0.021580 

 [-0.77306] [-0.77274] [ 0.14700] [ 0.36950] [ 0.23819] [ 0.01974] 

D(LNEU(-1))  0.481608  0.189113 -0.375866 -1.291758 -1.248027 -0.638851 

 [ 0.66725] [ 0.59236] [-1.71787] [-0.91195] [-0.92201] [-0.33796] 

D(LNAGRIF(-1))  0.071891 -0.056267  0.040488  0.174520  0.017394 -0.246380 

 [ 0.51901] [-0.91839] [ 0.96427] [ 0.64202] [ 0.06696] [-0.67918] 

D(LNGDPC(-1)) -0.335876 -0.220699  0.006934  1.299179  1.802981  2.386397 

 [-0.84996] [-1.26267] [ 0.05788] [ 1.67527] [ 2.43292] [ 2.30587] 

D(LNINDCO(-1))  0.337634  0.247612  0.033978 -0.931347 -0.994235 -1.229316 

 [ 1.19089] [ 1.97455] [ 0.39536] [-1.67392] [-1.86996] [-1.65563] 

C  0.014732  0.007457 -0.007775  0.054350  0.028213  0.061287 

 [ 1.15319] [ 1.31976] [-2.00766] [ 2.16783] [ 1.17760] [ 1.83178] 

 R-squared  0.223808  0.256853  0.385147  0.372406  0.452128  0.371843 

 Akaike AIC -3.242267 -4.873754 -5.629429 -1.893868 -1.984684 -1.316731 

 Schwarz SC -2.875833 -4.507320 -5.262995 -1.527434 -1.618250 -0.950297 

Source: Author's calculations. 

The equation which represents the short-run adjustments is the following equation relating to the variable 

LnCO2. ∆��(��2)� = 0.0147 − 0.3227��(	
)�?� + 0.4816��(�)�?� +																																								0.0718ln	(	����)�?� − 0.335ln	(����)�?� + 0.337��(�����)�?� −																																						0.1149��?�       (17) 

This correction is presented by the return force of 0.1149 which remains negative and significant especially 

since it is justified by a Student statistic of (2.28079) in absolute value at the 5% threshold. Also, the parameter of 

the error correction term is negative and significant, thus confirming the existence of a long-term relationship 

between CO2 emissions and the indicators considered. The value of this parameter further indicates that in the 

short-term imbalance, the CO2 emission seems to return fairly quickly to its equilibrium path (the speed of 

convergence is estimated at nearly 11%). In the same way, the cointegration equation which is the error correction 

term has been formulated and interpreted in the (16) equation. The VECM model is valid for these cointegrated 

variables. 

This VECM analysis sheds light on the meaning of the relationship between variables in the long and short-

term but does not provide insight into the sense of reaction between these variables. To interpret the 

interrelationships between variables, we propose in the next section, to study the causality between them by using 

the impulse response functions and the forecast error decomposition. 

 

3.4 Impulse response function and variance decomposition  

We mainly focus on shock response functions and variance decompositions of forecast errors. These two 

instruments make it possible to synthesize the essence of the information contained in the dynamics of the 

estimated VAR system. 

3.4.1 Impulse response function.  

The impulse response function is used to perform shocks on the innovations of CO2 emissions at 10 years and to 

measure the influence of this shock on the whole system. First of all, the shock only affects the value of CO2 

emissions on the orthogonality innovations. Then, throughout the dynamics of the system, this shock is transmitted 

to the following or future values of all variables. 

Figure 1[ABCDE] retrace the impulse response functions. We consider that the amplitude of the shock is 

equal to twice the standard deviation and we are interested in the effects of the shock over 10 periods (i.e. 10 years). 

This horizon represents the time required for the variables to return to their long-term levels.  

[A]After analysis of effects of CO2emissions, the CO2 emissions decrease rapidly after a sensitive shock, reach 

the lowest point in the third period, then increase slowly, reach a peak average in the 5th period, and then decline 

again until the lowest point in the 61/2periode but return to a slow increase. This suggests that the positive shock 

of CO2 has a significant influence on its increasing, and the significant influence has relatively long sustained 

effectiveness. 

[B]The results of different responses show that the response of CO2 emissions is characterized by a permanent 
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negative shock. It's far diagnosed that agricultural land could have positive externalities which include the 

provision of environmental offerings and amenities, for instance via water storage and purification, carbon 

sequestration, and the preservation of rural landscapes(Fanelli 2020). 

[C]The energy (EU) chock has, also, positive shocks(consequences) on CO2 emissions. The shock increase during 

the 4-5 period. Afterward, the energy shock to the CO2 emission continues to increase in the long run.  

[D]The impulse response of CO2 emissions caused by agriculture, forestry, and fisheries (AGRIF) is characterized 

by a positive and transitory shock. As seen in the figure, the first positive shock in the first period causes a quick 

increase, and CO2emissions reach a peak in the second-period, decrease until the 3rd period, and then remain at a 

stable level. If the changing demand and use of land, watershed, and forestry are not managed through rigorous 

planning and zoning regulatory framework, impacts in real terms are escalated uncontrolled development, 

increased energy demand and emissions, inefficient transport systems, overburdened water, and sanitation systems 

leading to reduced livelihoods. 

[F]The impulse response function of carbon emission changes caused by industrial-construction is permanent 

negative. After a positive shock in the first period, carbon emissions decline to the lowest point in the third period 

and begin to rise slowly. Then carbon emissions reach a peak in the fourth period, stay at a stable level, and slowly 

decrease in the 5th period. The CO2 emissions become stable from the eighth period. This shows that a positive 

shock on industrial-construction can cause changes in carbon emissions, and its effect becomes gentle since the 

eighth period. 

[E]The impulse response function of carbon emission changes caused by the real gross domestic product shows 

negative permanent effects. The general decrease in greenhouse gas intensities with the increase in income follows 

a certain logic. When this standard of living increases, we observe that certain consumptions, in particular, those 

of first necessity increase at a rate lower than that of the income (Engel low). 

 
Figure 1. Response to Cholesky One S.D. Innovations 

3.4.2 Variance Decomposition 

This study, based on impulse response functions, can be supplemented by an analysis of the variance 

decomposition of the forecast error. The objective is to calculate the contribution of each of the innovations to the 

variance of the error. We write the variance of the forecast error at a horizon h, in our case ranging from 1 to 10, 

depending on the variance of the error attributed to each of the six variables. 
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Table5: Variance decomposition of LNCO2 

Period S.E. LNCO2 LNAL LNEU LNAGRIF LNGDPC LNINDCO 

 1  0.043014  100.0000  0.000000  0.000000  0.000000  0.000000  0.000000 

 2  0.059296  94.31938  0.172261  0.013527  3.676613  0.045819  1.772404 

 3  0.069206  90.88376  0.249033  0.340410  3.756450  0.577961  4.192382 

 4  0.078935  90.95158  0.230025  0.787427  3.718781  0.865278  3.446909 

 5  0.088808  91.56881  0.238105  0.810875  3.744965  0.759410  2.877832 

 6  0.097181  91.30279  0.251750  0.757541  3.986103  0.702072  2.999741 

 7  0.104352  91.00204  0.258264  0.827080  4.108069  0.732813  3.071736 

 8  0.111406  91.06544  0.257091  0.892215  4.146289  0.731805  2.907164 

 9  0.118248  91.13347  0.259037  0.897652  4.213505  0.699646  2.796695 

 10  0.124549  91.06317  0.262315  0.900827  4.294904  0.681767  2.797015 

Source: Author’s calculation. 

The variance decomposition results [table 5] made it possible to deduce that the variance of the CO2 forecast 

error is due for 91.06%, over the 10 years horizon, to its innovations. It is largely due to 4.29%,2.79%, 0.90%, and 

0.68% of agriculture, forestry, and fisheries, industrial construction, and energy use respectively.  

 

4. Conclusion 

The study empirically analyzes the impact of human activities on CO2 emissions in the Sub -Sahara African region 

by taking into account the stationary or non-stationary character of the data series. It was possible to estimate a 

vector error correction model (VECM) but the light on the meaning of the relationship between variables in the 

long and short-term did not provide insight into the sense of reaction between variables. We proposed then to study 

the causality between variables using the impulse response functions and the forecast error decomposition. 

In the context of this work, it is important to summarize the main results: 

The application of unit root tests revealed that all series are non-stationary in level but are integrated of the 

same order at their difference I (1). This has led to suspecting a possible long-term relationship (cointegration) 

between CO2 emissions and its explanatory variables. 

Application of the Johansen cointegration test on variables found the existence of a long-term relationship 

between them. The output cointegration relation shows that environmental and economic variables agriculture, 

forestry, and fishing(value-added), Agricultural Land, and real Income have a positive long-term relationship with 

CO2 emissions. On the other hand, when energy consumption increases, CO2 emissions in the region undergo a 

decrease. Similarly, the increase in industry-construction results in a decrease in CO2emissions. 

Through the impulse response function analysis, results of different responses showed that the impulse 

response of CO2emissions changes caused by agricultural land, industry-construction, and the real gross domestic 

product is characterized by a permanent negative shock. Good agricultural land management gives a healthy 

environment that provides resources for habitats and further leads to the decline of carbon emissions. The rise in 

agriculture, forestry, and fisheries (AGRIF), and energy (EU) has, besides, positive shocks(consequences) on CO2 

emissions.  This shows that the growth of carbon emissions in the SSA does not necessarily promote AL, INDCO, 

and RGDP growth, and the growth of those sectors in the country does not intensify the excessive pollutants to 

cause plenty of carbon emissions. 

In the long- term, the agriculture, forestry, and fisheries sector, industry-construction, and energy use have a 

great influence on CO2emissions but the influence is leveling off in the short run. To prevent any kind of loss 

linked to atmospheric pollution, a massive investment in clean energies (wind, geothermal, solar…) and biofuels 

should make it possible to prevent CO2 emissions in the long term. As for forests and agriculture, stopping 

deforestation of tropical forests, launching of reforestation projects, reform of agricultural practices to protect soils. 

This sector has a strong potential for reducing emissions because forests and soils constitute sinks of natural carbon. 
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