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Abstract 
The depositional style of mid- Miocene to Pliocene sediments of selected wells in Niger Delta was studied to 

ascertain its dominating and influencing depositional system. The Ainsworth predictive model/trends were 

applied in determining the depositional system and styles, which takes into consideration the Basin morphology 

and accommodation/ sediment supply regime within a sequence stratigraphic system. The study suggests that 

depositional style of sequences 1,2,5 and 6 are fluvial- dominated, tide-influenced environment, which is marked 

by low wave effectiveness, high sediment supply/low accommodation and moderately embayed shoreline 

morphology, while sequences 3,4 and 7 are wave dominated, tide-influenced environment, which was noted with 

high wave effectiveness, low accommodation/high sediment supply and moderately embayed shoreline  

morphology. This study shows that the underlying basis morphology (moderately embayed) played a significant 

role in predicting the depositional style of the study area.  

Keywords: sequence stratigraphy, accommodation/sediment supply, basin morphology, Depositional style and 

Niger Delta Basin. 

 

INTRODUCTION 

 Many authors have researched on wave, fluvial and tidal dominance within a coastal depositional environment, 

which they have related to sea level changes. These authors have expressed the importance of changes in the 

underlying coastal morphology and rates of sedimentation and subsidence in predicting coastal depositional style 

(eg. Bhattacharya and Walker 1992; Boyd et. al. 1992, Cross .et al. 1993; Posamentier and Allen 1999; 

Bhattacharya and Willis 2001; Bhattacharya and Giosan 2003; Hoy and Ridgway 2003; Barton et. al. 2004; 

Gardner et.al.2004; Shuji et.al. 2006; Chiaghanam, 2007, Chiaghanam et.al, 2011). Some of these authors have 

tried to relate facies changes to rates of accommodation changes and sediment supply within a sequence 

stratigraphic perspective or framework, (Ainsworth et. al. 2005). Switches between wave dominance of 

deposystems during highstands to fluvial dominance during relative sea level fall in cretaceous Western interior 

basin of North American was done by Hampson et al. (1999). Ainsworth (2003) worked on the opposite 

relationship whereby deposystems changed from fluvial- dominance during highstands to wave-dominance 

during lowstand. Mellerre and Stell, (1995) recorded variation whereby switches from wave- dominance during 

highstands to tide- dominance during lowstand in the cretaceous Western interior Basin. The deposystem from 

tide-dominance/influence during transgression and highlands to wave- dominance during relative sea level falls 

in the Gallup sandstone of the Western interior basin was carried out by Cross et al. (1993).  

Wave energy may also change as frictional damping of waves is strongly depth dependent, and is more rapidly 

attenuated on a shallow coastal zone with a gentle slope, with or without bed forms than a deep one with high 

gradient of slope. Such process changes transform coastal geomorphology and are known to have been common 

for shore-zone systems in the Holocene and pre-Holocene without realizing this potential environmental 

complexity, identification of bounding discontinuities and regional correlation can easily be incorrect, and 

paleogeographic reconstruction can be severely unrealistic Shuji et al. (2006). The study area (Niger Delta), 

which is regarded as a mixed- process type of delta are influenced fairly strongly by both tides and wind, hence 

the deltaic sediments are modified by both tidal and wave–related processes (Boggs, 2006). Galloway, (1975), 

Wright, (1985) and Bhattacharya and Walker (1992) all class the Niger delta as being an intermediate type delta 

exhibiting aspects of Fluvial-wave and tidal-influence. That is, it is considered to be a delta closed to being in an 

equilibrium state with approximately equal dominance of all three processes Ainsworth et.al 2005). 

The objective of this paper is to establish bases that will help predict depositional style within a sequence 

stratigraphic perspective, with reference to basin morphological and accommodation/sediment supply changes 

and variations. 

 

STUDY AREA 
The three wells used in this study are located within three different fields in the offshore Niger Delta of Nigeria. 

See fig 1. The fields are pseudo named X,Y and Z, which are located within latitude : 5
0
 E, 4

0
N, longitude 5

0
E, 

2
0
E; 
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Figure 1: Map of the Study Area showing showing wave Approach direction (moderately embayed shoreline 

morphology)  

 

GEOLOGIC SETTING 

The Niger Delta, located in the gulf of Guinea, covers an area of over 70,000 square kilometers. Although the 

modern Niger Delta formed in the early tertiary deposits begin to accumulate in rift zones associated with the 

separation of the African and South American continents during the Mesozoic (Weber and Daukoru, 1975, 

Evamy et al, 1978, Doust and Omatsola, 1990 and Magbagbeola, 2004). Rifting was preceded by the intrusion of 

ring complexes in the central basement of Nigeria, these plutonic rocks may be related the upward-doming of the 

area prior to the rifting phase that followed. Syn-rift sediments accumulated during the Cretaceous to tertiary, 

with the oldest dated sediments of Albian Age. (Magbagbeola, 2004). Marine successions of syn-rift clastics and 

carbonates were deposited in a series of transgressive and regressive phases (Doust and Omatsola1989; 

Magbagbeola, 2004). The syn-rift phase ended with basin inversion in the Santonian (Late Cretaceous), possibly 

related to a reversal in pole of plates (Alpine Orogeny) movements. Subsidence resumed in Maastrictian as 

regressive proto-Niger delta (Anambra Delta) was initiated (Magbagbeola, 2004). 

The proto-Delta continued to episodically prograde during the late cretaceous from sediments sourced largely 

from the north and east. The Niger, Benue and cross Rivers increasing supplied sediments from the late Miocene 

onward. The Delta has steadily prograded into the Gulf of Guinea in response to these evolving drainages, 

subsidence and eustatic sea level changes. The present delta shoreline is smoothly convex seaward, modified by 

wave and tidal processes. Niger Delta deposits are primarily a prograding package of offlapping strata, 

comprised of three distinct time-transgressive lithologic units, the Akata, Agbada and Benin Formations (fig 2). 

At the base of the package the Akata Formation, thick marine shale, is typically under-compacted, overpressed 

and mobile. The Agbada Formation overlies the Akata and comprises alternating paralic sands and marine 

shales. The Agbada contains most Niger Delta hydrocarbon accumulations; the interlayering of sand-shale strata 

offering excellent opportunities for reservoir and Top-seal formation. The uppermost Benin Formation is a thick 

continental sand deposit, (Magbagbeola, 2004). 
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Figure 2: Stratigraphic column showing the three formations of the Niger Delta (Lawrence et.al 2002; 

Corridor et. al., 2005). 

The delta is characterized by series of depositional cycles (referred to as depobelts), that strike northwest to 

southwest and run sub-parallel to the shoreline. Each depobelt comprises a sub-basin, bounded by a growth fault 

to the north, which creates anticlinal ridges, and a counter regional fault seaward. Each sub-basin contains a 

distinct depositional cycle with its own tripartite assemblage of marine, parallic and continental formations, 

which ranges in age from Eocene in the north to Pliocene in the southern offshore edge. Hydrocarbon 

accumulations in the Niger Delta are generally found in the Agbada Formation within the crestal portion of the 

sub-basins (Magbagbeola, 2004). 
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METHODOLOGY  
The log suites were displayed of a consistent scale, chosen to entrance the log trend. The major trends on the log 

were marked (fig. 3). Intervals of progradations, retrogradations and aggradations from stacking patterns in 

parasequences/perasequence sets were determined and candidates for maximum flooding surfaces and sequence 

boundaries were marked from facies discontinuities and variations from Biofacies data. Absolute ages for these 

key stratigraphic surfaces were derived from curves of Hag et. al., 1987. Faunal abundance/diversity,  paleowater 

depth and ditch cuttings were employed in determining depositional environment. Trends of parasequence 

thickening and thinning were interpreted, which suggests variations in the relative sea level rise/fall and 

influence of accommodation/sediment supply. The system tracts were interpreted using stacking patterns and 

positions of key stratigraphic surfaces. The general basin morphology (Embayment) within the study area were 

noted, while the predictive model of Ainsworth et al., 2005 was employed in predicting the depositional style of 

the study area (Fig. 4 and 5). The major prevailing process is termed the “dominant” depositional mechanisms 

and the second prevailing process is termed the influential depositional mechanisms, while the third prevailing 

process is termed affected. The three wells used in this study were interpreted for their depositional style from 

the perspective of depositional sequence according to Galloway, 1989. 

 

INTERPRETATION  

The changes in coastal depositional style have been attributed to changes in the  balance between sediment 

supply and sediment storage capacity or accommodation (Cross 1988, Bhattcharya and Walker 1992; Boyd et al, 

1992, Cross et al., 1993; Schlager 1993, Barton et al, 2004; (Gardner et al. 2004; Ainsworth et al, 2005, 

Chiaghanam et al, 2011). Based on Ainsworth et al 2005 model for predicting coastal depositional style (fig 4). 

If rates of sediment supply(s) outpaced rates of accommodation addition (A), the fluvial dominated deposition 

will occur (low A/S regime). IF the rate of accommodation development was greater than the rates of sediment 

supply, wave- dominated coastlines will predominate (high A/S regime). The model shows that the 

accommodation rate decreases during late highstand systems tract (late HST) (Fig 4b), thus allowing 

sedimentation rate (Fig 4 c) to outpace accommodation addition (low A/S regime) and resulting in fluvial-

dominated coastline (fig.4d). The fluvial- dominated coastline will also prevail during falling stage systems tract 

(FST). Eventually, the rate of accommodation addition will outplace the rate of sediment supply during late 

lowstand systems tract, transgressive systems tract and early highstand systems tract (late LST, TST and early 

HST; fig. 4d) resulting in wave dominated coastline (Ainsworth, 2005).  

The presence of tidal influence or dominated environment is attributed to paleogeography of the Basin (embayed 

nature) or of the study area, and if it persists, it shows that there was a potential mechanism for the generation of 

tidally- influenced or dominated deposits through complete relative sea level cycles. The increase in the 

magnitude of tidal power due to the geometry of the basin will increase the potential for preserving tidally- 

influenced deposits over sediments deposited by other processes (Fluvial and wave). If the embayed geometry of 

the basin persisted through rises and falls in relative seal level, then the tidal signature could also be expected to 

be preserved throughout the succession (Ainsworth et al., 2005). Hence Basin morphology is important in 

controlling the degree of tide on a depositional system (see fig.5). The more curved or embayed a shoreline is, 

the more likely it is to experience higher tidal ranges due to the amplification of the tidal wave as it moves into 

the irregular coastal morphology (Ainsworth et al., 2005)The three coastal morphologies shown in fig.5 (straight 

to lobate, moderately embayed and highly embayed) was applied in this work. Figure 5 was builds on the 

tripartite subdivision of deltaic coastlines (Galloway, 1975) into fluvial dominated, wave dominated and tide- 

dominated and convolves them with other external forcing factors on shoreline deposition identified by Coleman 

and Wright, (1975), Ainsworth et. al., (2005). The ternary diagrams in Fig 5 shows the relative influence of 

waves, river input and tides on coastlines under the prevailing external conditions of basin morphology used as a 

proxy for tidal influence,  relative effectiveness of wave and fluvial energy and ratio of accommodation/sediment 

supply. The larger the area of a triangle covered by the depositional process (fluvial, wave or tidal), the greater 

the influence of that depositional mechanism under external conditions imposed. (Ainsworth et al, 2005). 
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Fig 3. Chronostratigraphic Correlation Chart Of Well X,Y and Z 
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Fig. 4: Summary of changes in depositional style related to ratios of accommodation/sediment supply (A/S) 

(Ainsworth et.al 2005). 
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Fig. 5: Predictive model for dominant and subordinate depositional processes acting on clastic coastal 

depositional systems (Ainsworth et.al 2005) 

The interpretation and prediction of the depositional style of the study area was based on sequence, which is the 

relatively conformable succession of genetically related strata bounded by unconformities or their correlative 

conformities (Mitchum, 1977). Seven sequences were identified as shown in Fig 3 and table 1. Sequences 1, 2, 5, 

6 suggest an environment whose depositional style is fluvial- dominated, tide- influenced and wave affected. 

This prediction was based on  

(a) That the environment recorded a low wave effectiveness which implies that the fluvial energy is greater than 

the wave energy,  

(b) That the accommodation/ sediment supply regime recorded a high sediment supply and low accommodation. 

The sequence stratigraphic implication is late highstand systems tract, falling stage systems tract, early lowstand 

systems tract, slightly rising, flat or falling shoreline trajectory .A narrow shelf will be created by this attributes 

(Helland-Hansen and Martinsen, 1996).  
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(c) The basin morphology (embayed nature) paleogeography of the study area is regarded as being moderately 

embayed shoreline morphology, as shown in fig. 1. sequence 3, 4 and 7 suggests an environment whose 

depositional style is wave- dominated, Tide – influenced  and  fluvial  affected. This prediction was based on  

(a) That the environment recorded a high wave effectiveness which implies that wave energy generated within 

the sequence is greater than the fluvial energy. 

(b) That the accommodation and sediment supply regime recorded a high sediment supply and low 

accommodation as seen in sequences 1,2,5 and 6. This implies late highstand systems tract, falling stage systems 

tract, early lowstand systems tract, slightly rising, flat or falling shoreline trajectory, and this will result in the 

development of narrow shelf (Heland-Hansen and Martinsen 1996).  

(c) The basin morphology/paleography of the study area is regarded as being moderately embayed. 

TABLE 1:.PREDICTIVE COASTAL DEPOSITIONAL STYLE SUMMARY TABLE  FOR SELECTED 

WELLS IN COASTAL SWAMP DEPOBELT, NIGER DELTA BASIN, NIGERIA  
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Conclusion  

The research indicates that ratios of accommodation/sediments and basin morphology have significant role in 

determining depositional style. The Ainsworth predictive model/trends shows the influence of wave, river input 

and tides on coastline under prevailing external conditions of basin morphology used as a proxy for tidal 

influence relative effectiveness of wave and fluvial energy and ratio of accommodation space/sediment supply. 

As a general role, the more curved or embayed a shoreline, the more likely it is to experience higher tidal ranges 

due to the amplification of the tidal wave as it moves into the irregular coastal morphology (Ainsworth et al 
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2005, Chiaghanam et al., 2011).It is assumed that the depositional products of the “dominan” process will have 

the highest preservation potential and those of the “influential” process will have the second highest preservative 

potential (Ainsworth et al., 2005). This worth have further supported research done by past workers, who 

suggested that Niger Delta is an intermediate type delta exhibiting  aspects of fluvial wave- and tide influences 

(Equilibrium state) or an intermediate phase between extreme low or extreme high accommodation space and  

sediment supply regime. 
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